1.

`xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)=`A. `-(1)/(1+x)`B. `-(1)/((1+x)^(2))`C. `(1)/((1+x)^(2))`D. `(sqrtx)/(sqrt(1+x))`

Answer» Correct Answer - B
Given equation
`xsqrt(1+y)+ysqrt(1+x)=0`
Can be written as :
`xsqrt(1+y)=-ysqrt(1+x)`
Squaring both sides, we get
`x^(2)(1+y)=y^(2)(1+x)`
`rArr" "x^(2)+x^(2)y=y^(2)+y^(2)x" "rArr" "x^(2)-y^(2)=y^(2)x-x^(2)y`
`rArr" "(x-y)(x+y)=-xy(x-y)`
`rArr" "x+y=-xy" "rArr" "y(1+x)=-x`
`y=(-x)/(1+x)` which is in explicit form.
Differentiating w.r.t. x, we get
`(dy)/(dx)=((1+x)(-1)+x(1))/((1+x)^(2))=(-1)/((1+x)^(2))`


Discussion

No Comment Found