Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Degree of zero is ……………….. A) 0 B) -1 C) 3 D) not defined

Answer»

Correct option is  D) not defined

102.

Find the products:(4x + 9) × (x – 6)

Answer»

Given (4x + 9) × (x – 6)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(4x + 9) × (x – 6)

⇒4x (x – 6) + 9 (x – 6)

⇒4x2 – 24x + 9x – 54

⇒ 4x2 – 15x – 54

103.

Using the formula for squaring a binomial, evaluate the (69)2.

Answer»

Given (69)2

But we can write 69 as 70-1

And also we know that (a – b)= a2-2ab+b2

By applying the above identity we get

(69)= (70-1)2= 702-2(70) (1) +12

(70-1)2=4900-140+1=4761

104.

(82)2 – (18)2 = ? A. 8218 B. 6418 C. 6400 D. 7204

Answer»

(82)2 – (18)2 

By using (a – b)(a + b) 

= a2 – b2 = (82 – 18)(82 + 18) 

= (64)(100) 

= 6400

105.

(197 × 203) = ? A. 39991 B. 39999 C. 40009 D. 40001

Answer»

We can write following problem such as, 

(197 × 203) = (200 – 3)(200 + 3) 

From the formula, (a +b)(a – b) = a2 – b

We get, 

(200 – 3)(200 + 3) = 2002 – 32 = 40000 – 9 = 39991.

106.

Find the products:(2x + 5 ) × (4x – 3)

Answer»

Given (2x + 5) × (4x – 3)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(2x + 5) × (4x – 3)

⇒2x (4x – 3) + 5 (4x – 3)

⇒8x2 – 6x + 20x – 15

⇒ 8x2 + 14x – 15

107.

2a + b – (a – b) = ……………….. A) a – b B) 2a – 2b C) a + 2b D) a – 2b

Answer»

Correct option is  C) a + 2b

Correct option is (C) a + 2b

2a + b – (a – b) = 2a+b-a+b

= a + 2b

108.

Find the products: (x2+7) (x2+7)

Answer»

Given that (x2+7) (x2+7)

But we can write the given expression as

(x2+7) (x2+7)= (x2+7)2

But we have (a + b)2=a2+2ab+b2

On applying above identity in the given expression we get,

(x2+7)2= (x2)2+2 ((x2) (7) + (7)2

(x2+7)2= x4+14x2 + 49

109.

Verify the following are identities by taking a, b, c as positive integers. (i) (a – b)2 = a2 – 2ab + b2(ii) (a + b) (a – b) = a2 – b2

Answer»

i) (a – b)2 = a2 – 2ab + b2

a = 3, b = 1

⇒ (3 – 1)2 = (3)2 – 2 × 3 × 1 + 12

⇒ (2)2 = 9 – 6 + 1

⇒ 4 = 4

∴ (i) is an identity,

ii) (a + b) (a – b) = a2 – b2

a = 2, b = 1

⇒ (2 + 1) (2 – 1) = (2)2 – (1)2

⇒ 3 × 1 = 4 – 1

⇒ 3 = 3

∴ (ii) is an identity.

110.

Find the product: (k + 3m)(3m – k)

Answer»

(k + 3m) (3m – k) 

= k(3m – k) + 3m(3m – k)

= k × 3m – k × k + 3m × 3m – 3m × k

= 3km – k2 + 9m2 – 3km

= 9m2 – k2

111.

Find the products:((5/6) a2+2) ((5/6) a2+2)

Answer»

Given that ((5/6) a2+2) ((5/6) a2+2)

But we can write the given expression as

((5/6) a2+2) ((5/6) a2+2)= ((5/6) a2+2)2

But we have (a + b)2=a2+2ab+b2

On applying above identity in the given expression we get,

((5/6) a2+2)2= ((5/6) x)2+2 ((5/6)) (2) + (2)2

((5/6) a2+2)2= (25/36) x2+ (10/3) x + 4y2

112.

2x2 + 5x – 1 + 8x + x2 + 7 – 6x + 3 – 3x2 = …………… A) 7x + 9 B) x – 7 C) x – 9 D) x + 3

Answer»

Correct option is  A) 7x + 9

Correct option is (A) 7x + 9

\(2x^2+5x-1+8x+x^2+7–6x+3–3x^2\)

\(=(2+1-3)x^2+(5+8-6)x+(-1+7+3)\)

\(=0x^2+7x+9\)

= 7x + 9

113.

Find the products: (5x2 + (3/4)y2) (5x2-(3/4)y2)

Answer»

Given (5x+ (3/4)y2) (5x2-(3/4)y2)

By using the formula (a + b) (a – b) = a– b2

Applying the formula we get

(5x+ (3/4) y2) (5x2-(3/4) y2)= (5x2)2-((3/4) y2)2

(5x+ (3/4) y2) (5x2-(3/4) y2)= 25x4-(9/16) y4

114.

Expand: (x2y – yz2)-2

Answer»

Given (x2y – yz2)-2

According to the identity (a – b)2=a2-2ab+bwe have to expand the given expression,

(x2y – yz2)-2= (x2y)2-2 (x2y)( yz2)+( yz2)2

(x2y – yz2)-2= x4y2-2x2y2z2+y2z4

115.

Find the products:(3y – 8) × (5y – 1)

Answer»

Given (3y – 8) × (5y – 1)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(3y – 8) × (5y – 1)

⇒3y (5y – 1) – 8 (5y – 1)

⇒15y2 – 3y – 40y + 8

⇒15y2 – 43y + 8

116.

Find the products: (x – 4) (x – 4)

Answer»

Given (x – 4) (x – 4)

But we can write the given expression as (x – 4) (x -4) = (x – 4)2

But we have (a – b)2=a2-2ab+b2

On applying above identity in the given expression we get,

(x – 4)2= x2-2 x (4) + 42

(x – 4)2= x2-8 x + 16

117.

Find the products:(7x + 2y) × (x + 4y)

Answer»

 Given (7x + 2y) × (x + 4y)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(7x + 2y) × (x + 4y)

⇒7x (x + 4y) + 2y (x + 4y)

⇒7x2 + 28xy + 2yx + 8y2

⇒ 7x2 + 39xy + 8y2

118.

Find each of the following products: (3y – 8) × (5y – 1)

Answer»

By using horizontal method, 

We have; 

= (3y - 8) × (5y - 1) 

= 3y(5y – 1) – 8(5y – 1) 

= 15y2 – 3y – 40y + 8 

= 15y2 – 43y +8

119.

Find each of the following products: (7x + 2y) × (x + 4y)

Answer»

By using horizontal method, 

We have; 

= (7x + 2y) × (x + 4y) 

= 7x(x +4y) + 2y(x + 4y) 

= 7x2 + 28xy + 2xy + 8y2 

= 7x2 + 30xy + 8y2

120.

A rectangle is (8x + 5) cm long and (5x + 3) cm broad. Find its area.

Answer»

Length of the rectangle = (8x + 5) cm 

Breadth of the rectangle = (5x + 3) cm 

∴ Area of the rectangle = length × breadth 

= (8x + 5) × (5x + 3) 

= 8x × (5x + 3) + 5 × (5x + 3) 

= (8x × 5x) + (8x × 3) + (5 × 5x) + (5 × 3) 

= 40x2 + 24x + 25x + 15 

= 40x2 + 49x + 15 

∴ The area of the rectangle is (40x2 + 49x + 15) sq. cm.

121.

Find the products: (2x-3y) (2x-3y)

Answer»

Given (2x-3y) (2x-3y)

But we can write the given expression as (2x – 3y) (2x -3y) = (2x – 3y)2

But we have (a – b)2=a2-2ab+b2

On applying above identity in the given expression we get,

(2x – 3y)2= 4x2-2 (2x) (3y) + 9y2

(2x – 3y)2= 4x2-12 xy + 9y2

122.

The product of (23x2y3z) and (-15x3yz2) is __(A) -34 x5y4z3 (B) 34 x2y3z5 (C) 14 5x3y2z (D) 170 x3y2z3

Answer»

Correct answer is

(A) -34 x5y4z3

123.

Simplify (3x – 11y) – (17x + 13y) and choose the right answer. (A) 7x – 12y (B) -14x – 54y (C) -3(5x + 4y) (D) -2(7x + 12y)

Answer»

Correct answer is

(D) -2(7x + 12y)

Hints:

(3x – 11y) – (17x + 13y) 

= 3x – 11y – 17x – 13y 

= – 14x – 24y 

= – 2 × 7x – 2 × 12y 

= – 2(7x + 12y)

124.

Find the following products:-5a(7a-2b)

Answer»

-5a(7a – 2b)

= -5a × 7a – (-5a) × 2b

= -5 × 7 × a × a + 5 × 2 × a × b

= -35a2 + 10ab

Product of given Equation is=     -35a+ 10ab

125.

Find the following products:\(\frac{6x}{5}(x^3+y^3)\)

Answer»

\(\frac{6}{5}x(x^3+y^3)\)

\(\frac{6}{5}x\times x^3+\frac{6}{5}x\times y^3\)

\(\frac{6}{5}x^4+\frac{6}{5}xy^3\)

126.

Find the products: ((3/4) x – (5/6) y) ((3/4) x + (5/6) y)

Answer»

Given that ((3/4) x – (5/6) y) ((3/4) x + (5/6) y)

But we can write the given expression as

((3/4) x – (5/6) y) ((3/4) x + (5/6) y)= ((3/4) x – (5/6) y)2

But we have (a – b)2=a2-2ab+b2

On applying above identity in the given expression we get,

((3/4) x – (5/6) y)2= ((3/4) x)2-2 ((3/4) x) ((5/6) y) + ((5/6) y)2

((3/4) x – (5/6) y)2= (9/16) x2– (15/12) x + (25/36)y2

127.

Find each of the following products:(2x2 – 5y2) × (x2 + 3y2)

Answer»

By using horizontal method,

We have;

= (2x2 – 5y2) × (x2 + 3y2

= 2x2(x2 + 3y2) – 5y2(x2 + 3y2

= 2x4 + 6x2y2 – 5x2y2 – 15y4 

= 2x4 + x2y2 – 15y4

128.

Subtract :(i) -5y2 from y2(ii) 6xy from – 12xy(iii) (a – b) from (a + b)(iv) a(b – 5) from b(5 – a)(v) -m2 + 5mn from 4m2 – 3mn + 8(vi) -x2 + 10x – 5 from 5x – 10(vii) 5a2 – 7 ab + 5b2 from 3ab – 2a2 – 2b2(viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2 – pq

Answer»

(i) -5y2 from y2

= y2 – (-5y2)

= y2 + 5y2 = 6y2

(ii) 6xy from – 12xy

= -12xy – (6xy)

= -12xy – 6xy = -18xy

(iii) (a – b) from (a + b)

= a + b – (a – b) 

= a + b - a + b

= 2b

(iv) a(b – 5) from b(5 – a)

= ab – 5a from 5b – ab

= (5b – ab) – (ab – 5a)

= 5b – ab – ab + 5a

= 5a – 5b – 2ab

(v) -m2 + 5mn from 4m2 – 3mn + 8

= (4m2 – 3mn + 8) – (-m2 + 5mn)

= 4m2 – 3mn + 8 + m2 – 5mn

= 4m2 + m2 – 3mn – 5mn + 8

= 5m2 – 8mn + 8

(vi) -x2 + 10x – 5 from 5x – 10

= (5x – 10) – (-x2 + 10x – 5)

= 5x – 10 + x2 – 10x + 5

= 5x – 10x + x2 – 10 + 5

= x2 – 5x – 5

(vii) 5a2 – 7 ab + 5b2 from 3ab – 2a2 – 2b2

= (3ab – 2a2 – 2b2) – (5a2 – 7ab + 5b2)

= 3ab – 2a2 – 2b2 – 5a2 + 7ab – 5b

= -2a2 – 5a2 – 2b2 – 5b2 + 7ab + 3ab

= -7a2 – 7b2 + 10ab

(viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2 – pq

= (5p2 + 3q2 – pq) – (4pq – 5q2 – 3p2)

= 5p2 + 3q2 – pq2 – 4pq + 5q2 + 3p2

= 5p2 + 3p2 + 3q2 + 5q2 – 4pq – pq

= 8p2 + 8q2 – 5pq

129.

The perimeter of a rectangle is ……………… units. A) 11xyB) 22 xyC) 28 x2 y2D) 28 xy

Answer»

Correct option is B) 22 xy

130.

Find the products: (x – (3/x) ) ( x – (3/x) )

Answer»

Given that (x – (3/x)) (x – (3/x))

But we can write the given expression as

(x – (3/x)) (x – (3/x))= (x – (3/x))2

But we have (a – b)2=a2-2ab+b2

On applying above identity in the given expression we get,

(x – (3/x))2= (x)2-2 (x) (3/x) + (3/x)2

(x – (3/x))2= x2– 6+ (9/x2)

131.

Find each of the following products: (3m – 4n) × (2m – 3n)

Answer»

By using horizontal method, 

We have; 

= (3m – 4n) × (2m – 3n) 

= 3m(2m – 3n) – 4n(2m – 3n) 

= 6m2 – 9mn – 8mn + 12n

= 6m2 – 17mn + 12n2

132.

Find each of the following products: (9x + 5y) × (4x + 3y)

Answer»

By using horizontal method, 

We have; 

= (9x + 5y) × (4x + 3y) 

= 9x(4x + 3y) + 5y(4x + 3y) 

= 36x2 + 27xy + 20xy + 15y

= 36x2 + 47xy + 15y2

133.

Find the product:(5y – 1) (3y – 8)

Answer»

(5y – 1) (3y – 8)

Suppose (a – b) and (c – d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a – b) × (c – d) = a × (c – d) – b × (c – d) = (a × c – a × d) – (b × c – b × d)

= ac – ad – bc + bd

Let,

a= 5y, b= 1, c= 3y, d= 8

Now,

= 5y × (3y – 8) -1 × (3y – 8)

= [(5y × 3y) + (5y × -8)] – [(1 × 3y) + (1 × -8)]

= [15y2 – 40y – 3y + 8]

= [15y2 – 43y + 8]

134.

Find the products: ((1/3) x2 – 9) ((1/3) x2 – 9)

Answer»

Given that ((1/3) x2 – 9) ((1/3) x2 – 9)

But we can write the given expression as

((1/3) x2 – 9) ((1/3) x2 – 9)= ((1/3) x2 – 9)) 2

But we have (a – b)2=a2-2ab+b2

On applying above identity in the given expression we get,

((1/3) x2 – 9))2= ((1/3) x)2-2 ((1/3) x) (9) + (9)2

((1/3) x2 – 9))2= ((1/9) x4)- 6x +81

135.

Find the product:(7x + 2y) (x + 4y)

Answer»

(7x + 2y) (x + 4y)

Suppose (a + b) and (c + d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a + b) × (c + d) = a × (c + d) + b × (c + d) = (a × c + a × d) + (b × c + b × d)

= ac + ad + bc + bd

Let,

a= 7x, b= 2y, c= x, d= 4y

Now,

= 7x × (x + 4y) +2y × (x + 4y)

= [(7x × x) + (7x × 4y)] + [(2y × x) + (2y × 4y)]

= [7x2 + 28xy + 2yx + 8y2]

= [7x2 + 30xy + 8y2]

136.

Find the perimeter of the rectangle.

Answer»

The perimeter of the rectangle ABCD

\(\overline{AB} + \overline{BC} + \overline{CD} + \overline{DA} \) 

or 

= 2 (l + b) 

= 2 (3x + 2x) 

= 2 × 5x 

= 10x units

137.

Find the perimeter of the rectangle?

Answer»

The perimeter of a rectangle = 2 (length + breadth)

= 2 (6x + y + 3x – 2y)

= 2 (9x – y)

∴ P = (18x – 2y) units

138.

Find the products: ((1/2) y2 – (1/3) y) ((1/2) y2 – (1/3)y)

Answer»

Given that ((1/2) y2 – (1/3) y) ((1/2) y2 – (1/3) y)

But we can write the given expression as

((1/2) y2 – (1/3) y) ((1/2) y2 – (1/3) y) = ((1/2) y2 – (1/3) y) 2

But we have (a – b)2=a2-2ab+b2

On applying above identity in the given expression we get,

((1/2) y2 – (1/3) y) 2= ((1/4) y2-2 ((1/2) y) (1/3) + (1/3) y2

((1/2) y2 – (1/3) y) 2= ((1/4) y2– y (1/3) + (1/9) y2

139.

Simplify: x + (y + 1) + (x + 2) + (y + 3) + (x + 4) + (y + 5)

Answer»

Given x + (y + 1) + (x + 2) + (y + 3) + (x + 4) + (y + 5) 

= x + y + 1 + x + 2 + y + 3 + x + 4 + y + 5

= (x + x + x) + (y + y + y) + (1 + 2 + 3 + 4 + 5) 

= 3x + 3y + 15

140.

Expand: (8a+3b)2

Answer»

Given (8a+3b)2

According to the identity (a + b)2=a2+2ab+bwe have to expand the given expression,

(8a+3b)2= (8a)2+2 (8a)(3b)+(3b)2

(8a+3b)2= 64a2+48ab+9b2

141.

Expand: (5x+11)2

Answer»

Given (5x+11)2

According to the identity (a + b)2=a2+2ab+bwe have to expand the given expression,

(5x+11)2= (5x)2+2 (5x)(11)+(11)2

(5x+11)2= 25x2+110x+121

142.

The symbol used for an equation identity is ……………….C) ≡D) =

Answer»

Correct option is  C) ≡

143.

Expand: (7x+2y)2

Answer»

Given (7x+2y)2

According to the identity (a + b)2=a2+2ab+bwe have to expand the given expression,

(7x+2y)2= (7x)2+2 (7x)(2y)+(2y)2

(7x+2y)2= 49x2+28xy+4y2

144.

Expand: ((a/2) + (2/a))2

Answer»

Given ((a/2) + (2/a))2

According to the identity (a + b)2=a2+2ab+bwe have to expand the given expression,

((a/2) + (2/a))2= (a/2)2+2 (a/2) (2/a)+ (2/a)2

((a/2) + (2/a))2= a2/4+2+4/a2

145.

Write the following expressions in Statements.(i) x + 3(ii) y – 7(iii) 10l(iv) x/5(v) 3m + 11(vi) 2y – 5

Answer»
ExpressionStatements
i) x + 3x is added to 3
ii) y – 77 is subtracted from y.
iii) 10ll is multiplied by 10.
iv) x/5x is divided by 5
v) 3m + 11m is multiplied by 3 and added to 11
vi) 2y – 5y is multiplied by 2 and 5 ¡s subtracted from the product

146.

Expand: (9x-10)2

Answer»

Given (9x-10)2

According to the identity (a – b)2=a2-2ab+bwe have to expand the given expression,

(9x-10)2= (9x)2-2 (9x)(10)+(10)2

(9x-10)2= 81x2-180x+100

147.

Expand: ((3x/4) + (2y/9))2

Answer»

Given ((3x/4) + (2y/9))2

According to the identity (a + b)2=a2+2ab+bwe have to expand the given expression,

((3x/4) + (2y/9))2= (3x/4)2+2 (3x/4) (2y/9)+ (2y/9)2

((3x/4) + (2y/9))2= 9x2/16+ (1/3) xy + (4y 2/81)

148.

(a + b) (a – b) = ………………..A) a2 – b B) b2 – a2 C) a2 – b2 D) a – b2

Answer»

Correct option is  C) a2 – b2 

149.

(2x + 5)(2x - 5) = ?A. (4x2 + 25)B. (4x2 - 25)C. (4x2 - 10x + 25)D. (4x2 + 10x - 25)

Answer»

We know that,

From formula, (a + b)(a – b) = a2 – b2

(2x + 5)(2x – 5) = (2x)2 – (5)2

= 4x2 – 25

150.

(a – b)2 = …………….. A) a2 – 2ab + b B) a2 – ab + b C) a2 – 2a + b2D) a2 – 2ab + b2

Answer»

D) a2 – 2ab + b2