Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

State whether the statement given are True or False.A binomial has more than two terms.

Answer»

False

Expression with two unlike terms is called a ‘Binomial’.

202.

Identify the terms and also mention the numerical coefficients of those terms:(i) 4xy, -5x2y, -3yx, 2xy2(ii) 7a2bc,-3ca2b,-(5/2) abc2, 3/2abc2,(-4/3)cba2

Answer»

(i) Like terms – 4xy, -3yx and Numerical coefficients – 4, -3

(ii) Like terms (-7a2bc, −3ca2b) and (−4/3cba2) and their Numerical coefficients – 7, -3,

(-4/3)

Like terms are (−5/2abc2) and (3/2 abc2) and numerical coefficients are (−5/2) and (3/2).

203.

Identify the numerical coefficients of terms (other than constants) in the following expressions :(i) 5 – 3t2(ii) 1 + t + t2 + t3(iii) x + 2xy + 3y(iv) 100m + 1000n(v) -p2q2 + 7pq(vi) 1.2a + 0.8b(vii) 3.14 r2(viii) 2 (l + b)(ix) 0.1 y + 0.01 y2

Answer»

(i) 5 – 3t2

Term other than constant = -3/2

numerical co-efficient = -3

(ii) 1 + t + t2 + t3

Term other than constant = t, t2, t3

Numerical co-efficients = 1, 1, 1.

(iii) x + 2xy + 3y

Terms other than constants = x, 2xy + 3y

Numerical co-efficients = 1, 2, 3

(iv) 100m + 1000n

Terms other than constants = 100m, 1000n

Numerical co-efficients = 100, 1000.

(v) -p2q2 + 7pq

Terms other than constants = -p2 q2, 7 pq

Numerical co-efficients = -1, 7

(vi) 1.2a + 0.8b

Terms other than constants = 1.2a, 0.8b

Numerical co-efficients = 1.2, 0.8

(vii) 3.14 r2

Terms other than constants = 3.14r2

Numerical co-efficients = 3.14

(viii) 2 (l + b)

Terms other than constants = 2l, 2b

(∵ 2(l + b) = 2l + 2b)

Numerical co-efficients = 2, 2

(ix) 0.1 y + 0.01 y2

Terms other than constants = 0.1 y, 0.01 y2

Numerical co-efficients = 0.1, 0.01

204.

State whether the statement given are True or False.The total number of planets of Sun can be denoted by the variable n.

Answer»

False.

We know that, total number of planets are 8 is constant. We are not going to denote planets in variables.

205.

State whether the statement given are True or False.Sum of 2 and p is 2p.

Answer»

False.

Sum of 2 and p is 2 + p.

206.

State whether the statement given are True or False.In like terms, the numerical coefficients should also be the same.

Answer»

False.

The terms having the same algebraic factors are called like terms. Numerical of the coefficient can be vary.

207.

State whether the statement given are True or False.Sum of x and y is x + y.

Answer»

True

Sum of x and y is x+y.

208.

State whether the statement given are True or False.A polynomial with more than two terms is a trinomial.

Answer»

False.

Expression with three unlike terms is called a ‘Trinomial’.

209.

State whether the statement given are True or False.A trinomial can be a polynomial.

Answer»

True.

In general, an expression with one or more than one term (with nonnegative integral exponents of the variables) is called a ‘Polynomial’.

210.

State whether the statement given are True or False.If we add a monomial and binomial, then answer can never be a monomial.

Answer»

False.

If we add a monomial and binomial, then answer can be a monomial.

For example: sum of y2 and –y2 + x2

= y2 + (-y2 + x2)

= y2 – y2 + x2

= x2

211.

State whether the statement given are True or False.If we subtract a monomial from a binomial, then answer is at least a binomial.

Answer»

False.

If we subtract a monomial from a binomial, then answer is at least a monomial.

For example: difference of y2 and y2 + x2

= y2 – (y2 + x2)

= y2 – y2 – x2

= – x2

212.

The product of xy, yz and zx is(a) 2xyz(b) x2y2z2(c) xy + yz + zx(d) x3y3z3

Answer»

The product of xy, yz and zx is 2xyz.

213.

Coefficient of x5 in 8/5 x5 is(a) 8/5(b) 5(c) 8(d) 5/8

Answer»

Coefficient of x5 in 8/5 x5 is 8/5.

214.

4y – 7z is a trinomial.

Answer»

False

4y – 7z is a trinomial.

215.

Fill in the blanks1. The coefficient of x4 in 2/8 x4 is ___2. The solution of 8xyz – 5xyz is ___3. The sum of 8x2 + 2x and 4x + 2 is ___4. The product of 2x, 4x and 2/3 x is ___5. x2 + (a + b) x + ab = (x + a) ___

Answer»

1. 2/8

2. 3xyz

3. 8x2 + 6x + 2

4. \(\frac{16x^3}{3}\)

5. (x + b)

216.

Find the like terms from the following—ax2y, 2n, 5y2 – 7x2, – 3n, 7xy, 25y2

Answer»

2n, – 3n are like terms.

217.

Write three like terms for the expression 7xy2.

Answer»

Like terms similar to 7xy2 are – 7xy2, 3xy2, – 4xy2

218.

Like term of expression 7x2y is(a) 7xy(b) – 10x2y(c) 7(d) 7x2

Answer»

Like term of expression 7x2y is – 10x2y.

219.

Find the product:(3x + 8) (5 – 2x)

Answer»

(3x + 8) (5 – 2x)

= 3x (5 – 2x) + 8(5 – 2x)

= 3x × 5 – 3x × 2x + 8 × 5 – 8 × 2x

= 15x – 6x2 + 40 – 16x

= – 6x2 + 15x – 16x + 40

= – 6x2 – x + 40

220.

Find the product:(x + 3y) (3x – y)

Answer»

(x + 3y) (3x – y)

= x (3x – y) + 3y (3x – y)

= x × 3x – x × y + 3y × 3x – 3y × y

= 3x2 – xy + 9yx – 3y2

= 3x2 – xy + 9xy – 3y2

= 3x2 + 8xy – 3y2

221.

Identify the terms, their coefficients for each of the following expressions.(i) 5xyz2 − 3zy(ii) 1 + x + x2(iii) 4x2y2 − 4x2y2z2 + z2(iv) 3 − pq + qr − rp

Answer»

The terms and the respective coefficients of the given expressions are as follows.

-TermsCpefficients
(i)5xyz2
-3zy
5
 - 3
(ii)1
x
x2
1
1
1
(iii)4x2y2
 - 4x2y2z2
z2
4
 - 4
1
(iv)
3
 - pq
qr
 - rp
3
 - 1
1
 - 1

222.

Simplify combining like terms :(i) 21b – 32 + 7b – 20b(ii) z2 + 13z2 – 5z + 7Z2 – 15z(iii) p – (p – q) – q – (q – p)(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2(vi) (3y2 + 5y – 4) – (8y – y2 – 4) .

Answer»

(i) 21b – 32 + 7b – 20b

(re-arranging the terms)

= 21b + 7b – 20b – 32

= 28b – 20b – 32

= 8b – 32

(ii) z2 + 13z2 – 5z + 7Z2 – 15z

(re-arranging the terms)

= -z2 + 13z2 – 5z – 15z + 7z3

= 12z2 – 20z + 7z3

(iii) p – (p – q) – q – (q – p)

= p – p + q – q – q + p

(re-arranging the terms)

= p + p - p + q - q - q

= p – q

(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a

= 3a – 2b – ab – a + b – ab + 3ab + b – a

= 3a – a – a – 2b + b + b – ab – ab + 3ab 

= 3a - 2a - 2b + 2b - 2ab + 3ab

= a + ab

(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2

(re-arranging the terms)

= 5x2y + 3yx2 – 5x2 + x2 – 3y2 – y2 – 3y2 + y2

= 8x2y – 4x2 – 7y2 + 8xy2

(vi) (3y2 + 5y – 4) – (8y – y2 – 4) .

3y2 + 5y – 4 – 8y – y2 – 4

(re-arranging the terms)

3y2 + y2 + 5y – 8y – 4 + 4

= 14y2 – 3y

223.

Find the product:(a2 + b) (a + b2)

Answer»

(a2 + b) (a + b2)

= a2 (a + b2) + b (a + b2)

= a2 × a + a2 × b2 + b × a + b × b2

= a3 + a2b2 + ba + b3

= a3 + a2b2 + ab + b3

224.

The product of pq + qr + 2p and 0 is(a) 0(b) 1(c) pqr(d) pq + qr + rp

Answer»

The product of pq + qr + 2p and 0 is 0.

225.

Find the product:(p2 – q2) (2p + q)

Answer»

(p2 – q2) (2p + q)

= p2 (2p + q) – q2 (2p + q)

= p2 x 2p + p2 x q – q2 x 2p – q2 x q

= 2p3 + p2q – 2q2p – q3

226.

Simplify:(x + 5) (x – 7) + 35

Answer»

(x + 5) (x – 7) + 35

= x (x – 7) + 5 (x – 7) + 35

= x2 – 7x + 5x – 35 + 35

= x2 – 2x

227.

Identify the terms, their coefficients for each of the following expressions.(i) x/2 + y/2 - xy(ii) 0.3a - 0.6ab + 0.5b

Answer»
(i)x/2
y/2
 - xy
1/2
1/2
 - 1
(ii)0.3a
 - 0.6ab
0.5b
0.3
 - 0.6
0.5

228.

Simplify:(a2 – 3) (b2 + 3) + 5

Answer»

(a2 – 3) (b2 + 3) + 5

= a2 (b2 + 3) – 3 (b2 + 3) + 5

= a2b2 + 3a2 – 3b2 – 9 + 5

= a2b2 + 3a2 – 3b2 – 4

229.

Simplify:(a + b + c) (a + b – c)

Answer»

(a + b + c) (a + b – c)

= a (a + b – c) + b (a + b – c) + c (a + b – c)

= a2 + ab – ac + ab + b2 – bc + ac + bc – c2

= a2 + b2 – c2 + 2ab

230.

Simplify:(t + s2) (t2 – s)

Answer»

(t + s2) (t2 – s)

= t (t2 – s) + s2 (t2 – s)

= t3 – ts + s2t2 – s3

= t3 – s3 + s2t2 – ts

231.

Simplify:(a + b) (a2 – ab + b2)

Answer»

(a + b) (a2 – ab + b2)

= a (a2 – ab + b2) + b (a2 – ab + b2)

= a3 – a2b + ab2 + ba2 – ab2 + b3

= a3 + b3 – a2b + a2b + ab2 – ab2

= a3 + b3

232.

Solve the question Algebraic Expressions(i) (a2 − b2)2 (ii) (2x +5)2 − (2x − 5)2(iii) (7m − 8n)2 + (7m + 8n)2 (iv) (4m + 5n)2 + (5m + 4n)2

Answer»

(i) (a2 − b2)2 

= (a2)2 − 2(a2) (b2) + (b2)2    [(a − b)2 = a2 − 2ab + b2 ]

= a4 − 2a2b2 + b4

(ii) (2x +5)2 − (2x − 5)

= (2x)2 + 2(2x) (5) + (5)2 − [(2x)2 − 2(2x) (5) + (5)2]    

 [(a − b)2 = a2 − 2ab + b2]  [(a + b)2 = a2 + 2ab + b2]

= 4x2 + 20x + 25 − [4x2 − 20x + 25]

= 4x2 + 20x + 25 − 4x2 + 20x − 25 

= 40x

(iii) (7m − 8n)2 + (7m + 8n)2

= (7m)2 − 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2

[(a − b)2 = a2 − 2ab + b2 and (a + b)2 = a2 + 2ab + b2]

= 49m2 − 112mn + 64n2 + 49m2 + 112mn + 64n2

= 98m2 + 128n2

(iv) (4m + 5n)2 + (5m + 4n)2

= (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)   [ (a + b)2 = a2 + 2ab + b2]

= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2

= 41m2 + 80mn + 41n2

233.

Simplify:(a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

Answer»

(a + b) (c – d) + (a – b) (c + d) + 2(ac + bd)

(a + b) (c – d) + (a -b) (c + d) + 2(ac + bd)

= a (c – d) + b(c – d) + a(c + d) – b(c + d) + 2 (ac + bd)

= ac – ad + bc – bd + ac + ad – bc – bd + 2 ac + 2 bd

= ac + ac + 2ac – ad + ad + be – bc – bd – bd – 2 bd

= 4ac

234.

Find the product.(i) (a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)(ii) (x + y) (2x + y) + (x + 2y) (x − y)

Answer»

(i) (a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)

= a (c − d) + b (c − d) + a (c + d) − b (c + d) + 2 (ac + bd)

= ac − ad + bc − bd + ac + ad − bc − bd + 2ac + 2bd

= (ac + ac + 2ac) + (ad − ad) + (bc − bc) + (2bd − bd − bd)

= 4ac

(ii) (x + y) (2x + y) + (x + 2y) (x − y)

= x (2x + y) + y (2x + y) + x (x − y) + 2y (x − y)

= 2x2 + xy + 2xy + y2 + x2 − xy + 2xy − 2y2

= (2x2 + x2) + (y2 − 2y2) + (xy + 2xy − xy + 2xy)

= 3x2 − y2 + 4xy

235.

Find the product.(i) (x + y) (x2 − xy + y2)(ii) (1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y(iii) (a + b + c) (a + b − c)

Answer»

(i) (x + y) (x2 − xy + y2)

= x (x2 − xy + y2) + y (x2 − xy + y2)

= x3 − x2y + xy2 + x2y − xy2 + y3

= x3 + y3 + (xy2 − xy2) + (x2y − x2y)

= x3 + y3

(ii) (1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y

= 1.5x (1.5x + 4y + 3) − 4y (1.5x + 4y + 3) − 4.5x + 12y

= 2.25 x2 + 6xy + 4.5x − 6xy − 16y2 − 12y − 4.5x + 12y

= 2.25 x2 + (6xy − 6xy) + (4.5x − 4.5x) − 16y2 + (12y − 12y)

= 2.25x2 − 16y2

(iii) (a + b + c) (a + b − c)

= a (a + b − c) + b (a + b − c) + c (a + b − c)

= a2 + ab − ac + ab + b2 − bc + ca + bc − c2

= a2 + b2 − c2 + (ab + ab) + (bc − bc) + (ca − ca)

= a2 + b2 − c2 + 2ab

236.

Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the following products. (i) (x + 3) (x + 7) (ii) (4x +5) (4x + 1)(iii) (4x − 5) (4x − 1) (iv) (4x + 5) (4x − 1)

Answer»

(i) (x + 3) (x + 7) 

= x2 + (3 + 7) x + (3) (7) 

= x2 + 10x + 21

(ii) (4x + 5) (4x + 1) 

= (4x)2 + (5 + 1) (4x) + (5) (1) 

= 16x2 + 24x + 5

(iii) (4x - 5) (4x - 1)

= (4x)2 + [ (-5) + (-1) ] (4x) + (5) (-1)

= 16x2 + 16x -5

(iv) (4x + 5) (4x - 1) 

= (4x)2 + [ (5) + (-1) ] (4x) + (5) (-1)

=16x2 + 16x − 5

237.

Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the following products.(i) (2x +5y) (2x + 3y) (ii) (2a2 +9) (2a2 + 5)(iii) (xyz − 4) (xyz − 2)

Answer»

(i) (2x +5y) (2x + 3y) 

= (2x)2 + (5y + 3y) (2x) + (5y) (3y)

= 4x2 + 16xy + 15y2

(ii) (2a2 +9) (2a2 + 5) 

= (2a2)2 + (9 + 5) (2a2) + (9) (5)

= 4a4 + 28a2 + 45

(vii) (xyz − 4) (xyz − 2)

+ (xyz)2 + [ (-4) + (-2) ] (xyz) + (-4) (-2)

= x2y2z2 - 6xyz + 8

238.

Find the product.(i) (x2 − 5) (x + 5) + 25(ii) (a2 + 5) (b3 + 3) + 5(iii) (t + s2) (t2 − s)

Answer»

(i) (x2 − 5) (x + 5) + 25

= x2 (x + 5) − 5 (x + 5) + 25

= x3 + 5x2 − 5x − 25 + 25

= x3 + 5x2 − 5x

(ii) (a2 + 5) (b3 + 3) + 5

= a2 (b3 + 3) + 5 (b3 + 3) + 5

= a2b3 + 3a2 + 5b3 + 15 + 5

= a2b3 + 3a2 + 5b3 + 20

(iii) (t + s2) (t2 − s)

= t (t2 − s) + s2 (t2 − s)

= t3 − st + s2t2 − s3

239.

Use a suitable identity to get each of the following products.(i) (x + 3) (x + 3) (ii) (2y + 5) (2y + 5)(iii) (2a − 7) (2a − 7)

Answer»

The products will be as follows.

(i) (x + 3) (x + 3)  = (x + 3)2

= (x)2 + 2(x) (3) + (3)2 [(a + b) = a2 + 2ab + b2]

= x2 + 6x + 9

(ii) (2y + 5) (2y + 5)  = (2y + 5)2

= (2y)2 + 2(2y) (5) + (5)2 [(a + b)2 = a2 + 2ab + b2]

= 4y2 + 20y + 25

(iii) (2a − 7) (2a − 7)  = (2a − 7)2

= (2a)2 − 2(2a) (7) + (7)2 [(a − b)2 = a2 − 2ab + b2]

= 4a2 − 28a + 49

240.

Find the product.(i) (a2 + b) (a + b2) (ii) (p2 − q2) (2p + q)

Answer»

(i) (a2 + b) (a + b2

= a2 (a + b2) + b (a + b2)

= a3 + a2b2 + ab + b3

(ii) (p2 − q2) (2p + q) 

= p2 (2p + q) − q2 (2p + q)

= 2p3 + p2q − 2pq2 − q3

241.

Find the product.(i) (5 − 2x) (3 + x) (ii) (x + 7y) (7x − y)

Answer»

(i) (5 − 2x) (3 + x) 

= 5 (3 + x) − 2x (3 + x)

= 15 + 5x − 6x − 2x2

= 15 − x − 2x2

(ii) (x + 7y) (7x − y) 

= x (7x − y) + 7y (7x − y)

= 7x2 − xy + 49xy − 7y2

= 7x2 + 48xy − 7y2

242.

Multiply the binomials.(i) (2x + 5) and (4x − 3) (ii) (y − 8) and (3y − 4)

Answer»

(i) (2x + 5) × (4x − 3) 

= 2x × (4x − 3) + 5 × (4x − 3)

= 8x2 − 6x + 20x − 15

= 8x2 + 14x −15 (By adding like terms)

(ii) (y − 8) × (3y − 4) 

= y × (3y − 4) − 8 × (3y − 4)

= 3y2 − 4y − 24y + 32

= 3y2 − 28y + 32 (By adding like terms)

243.

Add the product: a(a – b), b(b – c), c(c – a)

Answer»

a(a – b) + b(b – c) + c(c – a)

= a × a – a × b + b × b – b × c + c × c – c × a

= a2 – ab + b2 – bc + c2 – ca

= a2 + b2 + c2 – ab – bc – ca

244.

Add the product: x(x + y – r), y(x – y + r),z(x – y – z)

Answer»

x(x + y – r) + y(x – y + r) + z(x – y – z)

= x2 + xy – xr + xy – y2 + yr + zx – yz – z2

= x2 – y2 – z2 + 2xy – xr + yr + zx – yz

245.

Subtract the product of 2x(5x – y) from product of 3x(x+2y)

Answer»

3x(x + 2y) – 2x(5x – y)

= (3x × x + 3x × 2y) - (2x × 5x – 2x × y)

= 3x2 + 6xy – (10x2 – 2xy)

= 3x2 + 6xy- 10x2 + 2xy

= 8xy – 7x2

246.

Find the following products:1.5x (10x2y-100xy2)

Answer»

1.5x (10x2y – 100xy2)

= 1.5x × 10x2y – 1.5x × 100xy2

= 15 × x3 × y – 150 × x2 × y2

= 15x3y – 150x2y2

247.

Add 2x2 – 3x + 1 to the sum of 3x2 – 2x and 3x + 7.

Answer»

Given 2x2 – 3x + 1, 3x2 – 2x and 3x + 7

sum of 3x2 – 2x and 3x + 7

= (3x2 – 2x) + (3x +7)

=3x2 – 2x + 3x + 7

= (3x2 + x + 7)

Now, required expression = 2x– 3x + 1+ (3x+ x + 7)

= 2x+ 3x2 – 3x + x + 1 + 7

= 5x– 2x + 8

248.

83 × 77 = ………………… A) 3691 B) 6391C) 6091 D) 1391

Answer»

Correct option is  B) 6391

Correct option is (B) 6391

83 \(\times\) 77 = (80+3) (80-3)

= \(80^2-3^2\) = 6400 - 9 = 6391.

249.

a (a-b) + b (b-c) + c (c – a) = ……………….. A) 0 B) a2 – b2 C) a2 + b2 D) a2 + b2 + c2 – ab – bc – ca

Answer»

D) a2 + b2 + c2 – ab – bc – ca

250.

a (a2 – b2) = ………………A) a3 – b2a B) a – b2 C) a3 – b2 D) a – b3

Answer»

Correct option is  A) a3 – b2