

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
201. |
State whether the statement given are True or False.A binomial has more than two terms. |
Answer» False Expression with two unlike terms is called a ‘Binomial’. |
|
202. |
Identify the terms and also mention the numerical coefficients of those terms:(i) 4xy, -5x2y, -3yx, 2xy2(ii) 7a2bc,-3ca2b,-(5/2) abc2, 3/2abc2,(-4/3)cba2 |
Answer» (i) Like terms – 4xy, -3yx and Numerical coefficients – 4, -3 (ii) Like terms (-7a2bc, −3ca2b) and (−4/3cba2) and their Numerical coefficients – 7, -3, (-4/3) Like terms are (−5/2abc2) and (3/2 abc2) and numerical coefficients are (−5/2) and (3/2). |
|
203. |
Identify the numerical coefficients of terms (other than constants) in the following expressions :(i) 5 – 3t2(ii) 1 + t + t2 + t3(iii) x + 2xy + 3y(iv) 100m + 1000n(v) -p2q2 + 7pq(vi) 1.2a + 0.8b(vii) 3.14 r2(viii) 2 (l + b)(ix) 0.1 y + 0.01 y2 |
Answer» (i) 5 – 3t2 Term other than constant = -3/2 numerical co-efficient = -3 (ii) 1 + t + t2 + t3 Term other than constant = t, t2, t3 Numerical co-efficients = 1, 1, 1. (iii) x + 2xy + 3y Terms other than constants = x, 2xy + 3y Numerical co-efficients = 1, 2, 3 (iv) 100m + 1000n Terms other than constants = 100m, 1000n Numerical co-efficients = 100, 1000. (v) -p2q2 + 7pq Terms other than constants = -p2 q2, 7 pq Numerical co-efficients = -1, 7 (vi) 1.2a + 0.8b Terms other than constants = 1.2a, 0.8b Numerical co-efficients = 1.2, 0.8 (vii) 3.14 r2 Terms other than constants = 3.14r2 Numerical co-efficients = 3.14 (viii) 2 (l + b) Terms other than constants = 2l, 2b (∵ 2(l + b) = 2l + 2b) Numerical co-efficients = 2, 2 (ix) 0.1 y + 0.01 y2 Terms other than constants = 0.1 y, 0.01 y2 Numerical co-efficients = 0.1, 0.01 |
|
204. |
State whether the statement given are True or False.The total number of planets of Sun can be denoted by the variable n. |
Answer» False. We know that, total number of planets are 8 is constant. We are not going to denote planets in variables. |
|
205. |
State whether the statement given are True or False.Sum of 2 and p is 2p. |
Answer» False. Sum of 2 and p is 2 + p. |
|
206. |
State whether the statement given are True or False.In like terms, the numerical coefficients should also be the same. |
Answer» False. The terms having the same algebraic factors are called like terms. Numerical of the coefficient can be vary. |
|
207. |
State whether the statement given are True or False.Sum of x and y is x + y. |
Answer» True Sum of x and y is x+y. |
|
208. |
State whether the statement given are True or False.A polynomial with more than two terms is a trinomial. |
Answer» False. Expression with three unlike terms is called a ‘Trinomial’. |
|
209. |
State whether the statement given are True or False.A trinomial can be a polynomial. |
Answer» True. In general, an expression with one or more than one term (with nonnegative integral exponents of the variables) is called a ‘Polynomial’. |
|
210. |
State whether the statement given are True or False.If we add a monomial and binomial, then answer can never be a monomial. |
Answer» False. If we add a monomial and binomial, then answer can be a monomial. For example: sum of y2 and –y2 + x2 = y2 + (-y2 + x2) = y2 – y2 + x2 = x2 |
|
211. |
State whether the statement given are True or False.If we subtract a monomial from a binomial, then answer is at least a binomial. |
Answer» False. If we subtract a monomial from a binomial, then answer is at least a monomial. For example: difference of y2 and y2 + x2 = y2 – (y2 + x2) = y2 – y2 – x2 = – x2 |
|
212. |
The product of xy, yz and zx is(a) 2xyz(b) x2y2z2(c) xy + yz + zx(d) x3y3z3 |
Answer» The product of xy, yz and zx is 2xyz. |
|
213. |
Coefficient of x5 in 8/5 x5 is(a) 8/5(b) 5(c) 8(d) 5/8 |
Answer» Coefficient of x5 in 8/5 x5 is 8/5. |
|
214. |
4y – 7z is a trinomial. |
Answer» False 4y – 7z is a trinomial. |
|
215. |
Fill in the blanks1. The coefficient of x4 in 2/8 x4 is ___2. The solution of 8xyz – 5xyz is ___3. The sum of 8x2 + 2x and 4x + 2 is ___4. The product of 2x, 4x and 2/3 x is ___5. x2 + (a + b) x + ab = (x + a) ___ |
Answer» 1. 2/8 2. 3xyz 3. 8x2 + 6x + 2 4. \(\frac{16x^3}{3}\) 5. (x + b) |
|
216. |
Find the like terms from the following—ax2y, 2n, 5y2 – 7x2, – 3n, 7xy, 25y2 |
Answer» 2n, – 3n are like terms. |
|
217. |
Write three like terms for the expression 7xy2. |
Answer» Like terms similar to 7xy2 are – 7xy2, 3xy2, – 4xy2 |
|
218. |
Like term of expression 7x2y is(a) 7xy(b) – 10x2y(c) 7(d) 7x2 |
Answer» Like term of expression 7x2y is – 10x2y. |
|
219. |
Find the product:(3x + 8) (5 – 2x) |
Answer» (3x + 8) (5 – 2x) = 3x (5 – 2x) + 8(5 – 2x) = 3x × 5 – 3x × 2x + 8 × 5 – 8 × 2x = 15x – 6x2 + 40 – 16x = – 6x2 + 15x – 16x + 40 = – 6x2 – x + 40 |
|
220. |
Find the product:(x + 3y) (3x – y) |
Answer» (x + 3y) (3x – y) = x (3x – y) + 3y (3x – y) = x × 3x – x × y + 3y × 3x – 3y × y = 3x2 – xy + 9yx – 3y2 = 3x2 – xy + 9xy – 3y2 = 3x2 + 8xy – 3y2 |
|
221. |
Identify the terms, their coefficients for each of the following expressions.(i) 5xyz2 − 3zy(ii) 1 + x + x2(iii) 4x2y2 − 4x2y2z2 + z2(iv) 3 − pq + qr − rp |
|||||||||||||||
Answer» The terms and the respective coefficients of the given expressions are as follows.
|
||||||||||||||||
222. |
Simplify combining like terms :(i) 21b – 32 + 7b – 20b(ii) z2 + 13z2 – 5z + 7Z2 – 15z(iii) p – (p – q) – q – (q – p)(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2(vi) (3y2 + 5y – 4) – (8y – y2 – 4) . |
Answer» (i) 21b – 32 + 7b – 20b (re-arranging the terms) = 21b + 7b – 20b – 32 = 28b – 20b – 32 = 8b – 32 (ii) z2 + 13z2 – 5z + 7Z2 – 15z (re-arranging the terms) = -z2 + 13z2 – 5z – 15z + 7z3 = 12z2 – 20z + 7z3 (iii) p – (p – q) – q – (q – p) = p – p + q – q – q + p (re-arranging the terms) = p + p - p + q - q - q = p – q (iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a = 3a – 2b – ab – a + b – ab + 3ab + b – a = 3a – a – a – 2b + b + b – ab – ab + 3ab = 3a - 2a - 2b + 2b - 2ab + 3ab = a + ab (v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2 (re-arranging the terms) = 5x2y + 3yx2 – 5x2 + x2 – 3y2 – y2 – 3y2 + y2 = 8x2y – 4x2 – 7y2 + 8xy2 (vi) (3y2 + 5y – 4) – (8y – y2 – 4) . 3y2 + 5y – 4 – 8y – y2 – 4 (re-arranging the terms) 3y2 + y2 + 5y – 8y – 4 + 4 = 14y2 – 3y |
|
223. |
Find the product:(a2 + b) (a + b2) |
Answer» (a2 + b) (a + b2) = a2 (a + b2) + b (a + b2) = a2 × a + a2 × b2 + b × a + b × b2 = a3 + a2b2 + ba + b3 = a3 + a2b2 + ab + b3 |
|
224. |
The product of pq + qr + 2p and 0 is(a) 0(b) 1(c) pqr(d) pq + qr + rp |
Answer» The product of pq + qr + 2p and 0 is 0. |
|
225. |
Find the product:(p2 – q2) (2p + q) |
Answer» (p2 – q2) (2p + q) = p2 (2p + q) – q2 (2p + q) = p2 x 2p + p2 x q – q2 x 2p – q2 x q = 2p3 + p2q – 2q2p – q3 |
|
226. |
Simplify:(x + 5) (x – 7) + 35 |
Answer» (x + 5) (x – 7) + 35 = x (x – 7) + 5 (x – 7) + 35 = x2 – 7x + 5x – 35 + 35 = x2 – 2x |
|
227. |
Identify the terms, their coefficients for each of the following expressions.(i) x/2 + y/2 - xy(ii) 0.3a - 0.6ab + 0.5b |
||||||
Answer»
|
|||||||
228. |
Simplify:(a2 – 3) (b2 + 3) + 5 |
Answer» (a2 – 3) (b2 + 3) + 5 = a2 (b2 + 3) – 3 (b2 + 3) + 5 = a2b2 + 3a2 – 3b2 – 9 + 5 = a2b2 + 3a2 – 3b2 – 4 |
|
229. |
Simplify:(a + b + c) (a + b – c) |
Answer» (a + b + c) (a + b – c) = a (a + b – c) + b (a + b – c) + c (a + b – c) = a2 + ab – ac + ab + b2 – bc + ac + bc – c2 = a2 + b2 – c2 + 2ab |
|
230. |
Simplify:(t + s2) (t2 – s) |
Answer» (t + s2) (t2 – s) = t (t2 – s) + s2 (t2 – s) = t3 – ts + s2t2 – s3 = t3 – s3 + s2t2 – ts |
|
231. |
Simplify:(a + b) (a2 – ab + b2) |
Answer» (a + b) (a2 – ab + b2) = a (a2 – ab + b2) + b (a2 – ab + b2) = a3 – a2b + ab2 + ba2 – ab2 + b3 = a3 + b3 – a2b + a2b + ab2 – ab2 = a3 + b3 |
|
232. |
Solve the question Algebraic Expressions(i) (a2 − b2)2 (ii) (2x +5)2 − (2x − 5)2(iii) (7m − 8n)2 + (7m + 8n)2 (iv) (4m + 5n)2 + (5m + 4n)2 |
Answer» (i) (a2 − b2)2 = (a2)2 − 2(a2) (b2) + (b2)2 [(a − b)2 = a2 − 2ab + b2 ] = a4 − 2a2b2 + b4 (ii) (2x +5)2 − (2x − 5)2 = (2x)2 + 2(2x) (5) + (5)2 − [(2x)2 − 2(2x) (5) + (5)2] [(a − b)2 = a2 − 2ab + b2] [(a + b)2 = a2 + 2ab + b2] = 4x2 + 20x + 25 − [4x2 − 20x + 25] = 4x2 + 20x + 25 − 4x2 + 20x − 25 = 40x (iii) (7m − 8n)2 + (7m + 8n)2 = (7m)2 − 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2 [(a − b)2 = a2 − 2ab + b2 and (a + b)2 = a2 + 2ab + b2] = 49m2 − 112mn + 64n2 + 49m2 + 112mn + 64n2 = 98m2 + 128n2 (iv) (4m + 5n)2 + (5m + 4n)2 = (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)2 [ (a + b)2 = a2 + 2ab + b2] = 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2 = 41m2 + 80mn + 41n2 |
|
233. |
Simplify:(a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd) |
Answer» (a + b) (c – d) + (a – b) (c + d) + 2(ac + bd) (a + b) (c – d) + (a -b) (c + d) + 2(ac + bd) = a (c – d) + b(c – d) + a(c + d) – b(c + d) + 2 (ac + bd) = ac – ad + bc – bd + ac + ad – bc – bd + 2 ac + 2 bd = ac + ac + 2ac – ad + ad + be – bc – bd – bd – 2 bd = 4ac |
|
234. |
Find the product.(i) (a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)(ii) (x + y) (2x + y) + (x + 2y) (x − y) |
Answer» (i) (a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd) = a (c − d) + b (c − d) + a (c + d) − b (c + d) + 2 (ac + bd) = ac − ad + bc − bd + ac + ad − bc − bd + 2ac + 2bd = (ac + ac + 2ac) + (ad − ad) + (bc − bc) + (2bd − bd − bd) = 4ac (ii) (x + y) (2x + y) + (x + 2y) (x − y) = x (2x + y) + y (2x + y) + x (x − y) + 2y (x − y) = 2x2 + xy + 2xy + y2 + x2 − xy + 2xy − 2y2 = (2x2 + x2) + (y2 − 2y2) + (xy + 2xy − xy + 2xy) = 3x2 − y2 + 4xy |
|
235. |
Find the product.(i) (x + y) (x2 − xy + y2)(ii) (1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y(iii) (a + b + c) (a + b − c) |
Answer» (i) (x + y) (x2 − xy + y2) = x (x2 − xy + y2) + y (x2 − xy + y2) = x3 − x2y + xy2 + x2y − xy2 + y3 = x3 + y3 + (xy2 − xy2) + (x2y − x2y) = x3 + y3 (ii) (1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y = 1.5x (1.5x + 4y + 3) − 4y (1.5x + 4y + 3) − 4.5x + 12y = 2.25 x2 + 6xy + 4.5x − 6xy − 16y2 − 12y − 4.5x + 12y = 2.25 x2 + (6xy − 6xy) + (4.5x − 4.5x) − 16y2 + (12y − 12y) = 2.25x2 − 16y2 (iii) (a + b + c) (a + b − c) = a (a + b − c) + b (a + b − c) + c (a + b − c) = a2 + ab − ac + ab + b2 − bc + ca + bc − c2 = a2 + b2 − c2 + (ab + ab) + (bc − bc) + (ca − ca) = a2 + b2 − c2 + 2ab |
|
236. |
Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the following products. (i) (x + 3) (x + 7) (ii) (4x +5) (4x + 1)(iii) (4x − 5) (4x − 1) (iv) (4x + 5) (4x − 1) |
Answer» (i) (x + 3) (x + 7) = x2 + (3 + 7) x + (3) (7) = x2 + 10x + 21 (ii) (4x + 5) (4x + 1) = (4x)2 + (5 + 1) (4x) + (5) (1) = 16x2 + 24x + 5 (iii) (4x - 5) (4x - 1) = (4x)2 + [ (-5) + (-1) ] (4x) + (5) (-1) = 16x2 + 16x -5 (iv) (4x + 5) (4x - 1) = (4x)2 + [ (5) + (-1) ] (4x) + (5) (-1) =16x2 + 16x − 5 |
|
237. |
Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the following products.(i) (2x +5y) (2x + 3y) (ii) (2a2 +9) (2a2 + 5)(iii) (xyz − 4) (xyz − 2) |
Answer» (i) (2x +5y) (2x + 3y) = (2x)2 + (5y + 3y) (2x) + (5y) (3y) = 4x2 + 16xy + 15y2 (ii) (2a2 +9) (2a2 + 5) = (2a2)2 + (9 + 5) (2a2) + (9) (5) = 4a4 + 28a2 + 45 (vii) (xyz − 4) (xyz − 2) + (xyz)2 + [ (-4) + (-2) ] (xyz) + (-4) (-2) = x2y2z2 - 6xyz + 8 |
|
238. |
Find the product.(i) (x2 − 5) (x + 5) + 25(ii) (a2 + 5) (b3 + 3) + 5(iii) (t + s2) (t2 − s) |
Answer» (i) (x2 − 5) (x + 5) + 25 = x2 (x + 5) − 5 (x + 5) + 25 = x3 + 5x2 − 5x − 25 + 25 = x3 + 5x2 − 5x (ii) (a2 + 5) (b3 + 3) + 5 = a2 (b3 + 3) + 5 (b3 + 3) + 5 = a2b3 + 3a2 + 5b3 + 15 + 5 = a2b3 + 3a2 + 5b3 + 20 (iii) (t + s2) (t2 − s) = t (t2 − s) + s2 (t2 − s) = t3 − st + s2t2 − s3 |
|
239. |
Use a suitable identity to get each of the following products.(i) (x + 3) (x + 3) (ii) (2y + 5) (2y + 5)(iii) (2a − 7) (2a − 7) |
Answer» The products will be as follows. (i) (x + 3) (x + 3) = (x + 3)2 = (x)2 + 2(x) (3) + (3)2 [(a + b)2 = a2 + 2ab + b2] = x2 + 6x + 9 (ii) (2y + 5) (2y + 5) = (2y + 5)2 = (2y)2 + 2(2y) (5) + (5)2 [(a + b)2 = a2 + 2ab + b2] = 4y2 + 20y + 25 (iii) (2a − 7) (2a − 7) = (2a − 7)2 = (2a)2 − 2(2a) (7) + (7)2 [(a − b)2 = a2 − 2ab + b2] = 4a2 − 28a + 49 |
|
240. |
Find the product.(i) (a2 + b) (a + b2) (ii) (p2 − q2) (2p + q) |
Answer» (i) (a2 + b) (a + b2) = a2 (a + b2) + b (a + b2) = a3 + a2b2 + ab + b3 (ii) (p2 − q2) (2p + q) = p2 (2p + q) − q2 (2p + q) = 2p3 + p2q − 2pq2 − q3 |
|
241. |
Find the product.(i) (5 − 2x) (3 + x) (ii) (x + 7y) (7x − y) |
Answer» (i) (5 − 2x) (3 + x) = 5 (3 + x) − 2x (3 + x) = 15 + 5x − 6x − 2x2 = 15 − x − 2x2 (ii) (x + 7y) (7x − y) = x (7x − y) + 7y (7x − y) = 7x2 − xy + 49xy − 7y2 = 7x2 + 48xy − 7y2 |
|
242. |
Multiply the binomials.(i) (2x + 5) and (4x − 3) (ii) (y − 8) and (3y − 4) |
Answer» (i) (2x + 5) × (4x − 3) = 2x × (4x − 3) + 5 × (4x − 3) = 8x2 − 6x + 20x − 15 = 8x2 + 14x −15 (By adding like terms) (ii) (y − 8) × (3y − 4) = y × (3y − 4) − 8 × (3y − 4) = 3y2 − 4y − 24y + 32 = 3y2 − 28y + 32 (By adding like terms) |
|
243. |
Add the product: a(a – b), b(b – c), c(c – a) |
Answer» a(a – b) + b(b – c) + c(c – a) = a × a – a × b + b × b – b × c + c × c – c × a = a2 – ab + b2 – bc + c2 – ca = a2 + b2 + c2 – ab – bc – ca |
|
244. |
Add the product: x(x + y – r), y(x – y + r),z(x – y – z) |
Answer» x(x + y – r) + y(x – y + r) + z(x – y – z) = x2 + xy – xr + xy – y2 + yr + zx – yz – z2 = x2 – y2 – z2 + 2xy – xr + yr + zx – yz |
|
245. |
Subtract the product of 2x(5x – y) from product of 3x(x+2y) |
Answer» 3x(x + 2y) – 2x(5x – y) = (3x × x + 3x × 2y) - (2x × 5x – 2x × y) = 3x2 + 6xy – (10x2 – 2xy) = 3x2 + 6xy- 10x2 + 2xy = 8xy – 7x2 |
|
246. |
Find the following products:1.5x (10x2y-100xy2) |
Answer» 1.5x (10x2y – 100xy2) = 1.5x × 10x2y – 1.5x × 100xy2 = 15 × x3 × y – 150 × x2 × y2 = 15x3y – 150x2y2 |
|
247. |
Add 2x2 – 3x + 1 to the sum of 3x2 – 2x and 3x + 7. |
Answer» Given 2x2 – 3x + 1, 3x2 – 2x and 3x + 7 sum of 3x2 – 2x and 3x + 7 = (3x2 – 2x) + (3x +7) =3x2 – 2x + 3x + 7 = (3x2 + x + 7) Now, required expression = 2x2 – 3x + 1+ (3x2 + x + 7) = 2x2 + 3x2 – 3x + x + 1 + 7 = 5x2 – 2x + 8 |
|
248. |
83 × 77 = ………………… A) 3691 B) 6391C) 6091 D) 1391 |
Answer» Correct option is B) 6391 Correct option is (B) 6391 83 \(\times\) 77 = (80+3) (80-3) = \(80^2-3^2\) = 6400 - 9 = 6391. |
|
249. |
a (a-b) + b (b-c) + c (c – a) = ……………….. A) 0 B) a2 – b2 C) a2 + b2 D) a2 + b2 + c2 – ab – bc – ca |
Answer» D) a2 + b2 + c2 – ab – bc – ca |
|
250. |
a (a2 – b2) = ………………A) a3 – b2a B) a – b2 C) a3 – b2 D) a – b3 |
Answer» Correct option is A) a3 – b2a |
|