Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

The approximate value of `(7.995)^(1//3)` correct to four decimal places , isA. 1.9995B. 1.9996C. 1.999.0D. 1.9991

Answer» Correct Answer - B
352.

If `(1-x-x^(2))^(20) = sum_(r=0)^(40)a_(r).x^(r )`, then value of `a_(1) + 3a_(3) + 5a_(5) + "….." + 39a_(39)` is

Answer» Correct Answer - 40
`(1-x-x^(2))^(20) = underset(r=0)overset(40)suma_(r).x^(r)`
Differentiating both sides w.r.t.x, we get
`20 (1-x-x^(2))^(19)(-1-2x) = underset(r=0)overset(40)suma_(r).x^(r-1)"........."(1)`
Putting `x = 1` into `(1)`, we get
`20(1-4)^(19)(-1-2) = underset(r=0)overset(40)sumra_(r)`
`rArr 60 = a_(1) + 2a_(2) + 3a_(3) + "...." + 40a_(40) "......."(2)`
Putting `x = - 1` into `(1)`, we get
`20(1+1-1)^(19)(-1+2) = underset(r=0)overset(40)sumra_(r)(-1)^(r-1)`
`rArr 20 = a_(1) - 2a_(2) + 3a_(3) + "......" - 40 a_(40) "......."(3)`
Adding `(2)` and `(3)`, we get
`80 = 2a_() + 6a_(3) + "....." + 78a_(39)`
`:. a_(1) + 3a_(3) + "....." + 39a_(39) = 40`
353.

The remainder when `27^(10)+7^(51)` is divided by `10`A. `4`B. `6`C. `9`D. `2`

Answer» Correct Answer - D
`(d)` `(27)^(10)+7^(51)=(30-3)^(10)+(10-3)^(51)`
`=3^(10)-3^(51)+10lambda`
`=(10-1)^(5)-3(10-1)^(25)+10lambda`
`=-1+3+10lambda_(1)`
`=2+10lambda_(1)`
`:.` Remainder is `2`
354.

The coefficient of `x^4` in the expansion of `(1+x+x^2+x^3)^n` is `.^n C_4+^n C_2+^n C_1xx^n C_2`A. `""^(n)C_(4)`B. `""^(n)C_(4) + ""^(n)C_(2)`C. `""^(n)C_(4) + ""^(n)C_(1) + ""^(n)C_(4) xx""^(n)C_(2) `D. `""^(n)C_(4) + ""^(n)C_(1) + ""^(n)C_(1) xx""^(n)C_(2)`

Answer» Correct Answer - D
355.

If `x^n`occurs in the expansion `(x+1//x^2)^n`, then the coefficient of `x^m`is`((2n)!)/((m)!(2n-m)!)`b. `((2n)!3!3!)/((2n-m)!)`c. `((2n)!)/(((2n-m)/3)!((4n+m)/3)!)`d. none of theseA. `((2n)!)/(m!(2n-m)!)`B. `((2n)!3!3!)/((2n-m)!)`C. `((2n)!)/(((2n-m)/(3))!((4n-m)/(3))!)`D. none of these

Answer» Correct Answer - C
356.

Find the remainder when `32^(32^32)` is divided by 7A. 1B. 2C. 3D. 4

Answer» Correct Answer - D
357.

If `(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n)`. The remainder obtained when `a_(1)+5a_(2)+9a_(3)+13a_(4)+…+(8n-3)a_(2n)` is divided by `(p+2)` isA. `1`B. `2`C. `3`D. `0`

Answer» Correct Answer - C
`(c )` `a_(1)+5a_(2)+9a_(3)+…+(8n-3)a_(2n)=sum_(r=1)^(2n)(4r-3)a_(r )`
`=4sum_(r=1)^(2n)ra_(r )-3sum_(r=1)^(2n)a_(r )`
`(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+….+a_(2n)X^(2n)`
so, `sum_(r=1)^(2n)a_(r )=(p+2)^(n)-1`
Differentiating the expansion and substituting `x=1`
`sum_(r=1)^(2n)rar_(r)=n(p+2)^(n)`
`:.sum_(r=1)^(2n)(4r-3)a_(r )=4n(p+2)^(n)-3((p+2)^(n)-1)`
`=(4n-3)(p+2)^(n)+3`
358.

Write the coefficient of `x^(7) y^(2)` in the expansion of `(x+2y)^(9)`.A. Least value `-1/4`B. Least value `-9/4`C. Greatest value `1/4`D. Greatest value `9/4`

Answer» Correct Answer - 144
`T_(r+1)= .^(9) C _(r)x^(9-r) * (2y)^(r) = .^(9)C_(r) xx 2^(r) xx x^((9-r)) xx y^(r).`
Putting ` r = 2, " we get the coefficient of " x^(7) y^(2) " as " .^(9) C_(2) xx 2^(2) = 144.`
359.

The remainder when `1!+2!+3!+4!+......+1000!` is divided by `10` is

Answer» Given expression is = `1!+2!+3!+4!+5!...+1000!`
`1! = 1`
`2! = 2**1=2`
`3! = 3**2**1 = 6`
`4! = 4**3**2**1 = 24`
`5! = 5**4**3**2**1 = 120`
So, `5!` is divisible by `10`.
Now, `6! = 6**5!`
So, `6!` will also be divisible by `10`.Similarly, every term greater than `5!` in the given expression will be divisible by `10`.
So, sum of the terms that are not divisible by `10` is,
`1!+2!+3!+4! = 1+2+6+24 = 33`
`:.` Remainder of `33` when divided by `10` will be `3` which is the required answer.
360.

Which is larger,`(1.01)^(1000000) or 10000`?

Answer» We have
`(1.01)^(1000000)-10000`
`(1.01)^(p)-10000, " where " 1000000 =p`
`(1+0.01)^(p)-10000`
`=.^(p)C_(0) + ^(p) C_(1) xx 0.01 + .^(p)C_(2) xx (0.01)^(2)+ ...+ .^(p)C_(p) xx(0.01)^(p)-10000`
`=1+ (p xx 0.01)+[.^(p)C_(2) xx(0.01)^(2) +...+(1.01)^(p)]-10000`
`1+(1000000 xx0.01) +[.^(1000000)C_(2) xx(0.01)^(2)+...+(1.01)^(1000000)]-10000`
`1+ 10000 + " [a positive real number] "-10000`
`1+" (1 positive real number) "gt0`
Hence, `(1.01)^(1000000) gt 10000`.
361.

Write the coefficient of the middle term in the expansion of `(1+x)^(2n)`.

Answer» Correct Answer - `.^(2n)C_(n)`
Middle term `=((2n)/2 +1)th " term " = (n+1)th " term " = T_(n+1).`
Now , `T_(r+1) = .^(2n)C_(r)x^(r) rArr T_(n+1) = .^(2n)C_(n)x^(n). " It coefficient is " .^(2n)C_(n).`
362.

The sum of the coefficients of the first three terms in the expansion of`(x-3/(x^2))^m ,x!=0,`m being a natural number, is 559. Find the term of the expansion containing `x^3`.

Answer» representing as sum of first three terms
`.^mC_0(-3)^0 + .^mC_1(-3)^1 + .^mC_2(-3)^2 = 559`
`1 + m(-3) + (m(m-1))/2*9 = 559`
`-3m + (9m^2-9m)/2 = 558`
`3m^2/2- 5m/2 = 186`
`3m^2 - 5m -372 = 0`
`m = (5+- sqrt(25+12*372))/6`
`= (5 + sqrt(4464+25))/6`
`= (5+67)/6 72/6 = 12`
to find the term for `x^3`
so,`m-3r=3`
`r=3`
so fourth term will be taken`t_4 = .^12C_3(-3)x^3`
`= 12*11*10/(3*2)* (-27x^3)`
`= -5940x^3`
363.

Using binomial theorem, indicate which number is larger `(1. 1)^(10000)`or 1000.

Answer» Using Binomial theorem,`(1.1)^10000 = (1+0.1)^100000`
` = 10000_(C_0)*1*(0.1)^0+10000_(C_1)*1*(0.1)^1+....`Here, we can see that first two terms are more than 1000. and rest are all positive values.
So, we can say that ,
`(1.1)^10000 > 1000`
364.

If the coefficient of the middle term in the expansion of `(1+x)^(2n+2)i salpha`and the coefficients of middle terms in the expansion of `(1+x)^(2n+1)`are `beta`and `gamma`then relate `alpha,betaa n dgammadot`

Answer» Since `(n+2)` th term is the middle term in the expansion of `(1+x)^(2n+n)`, we have `alpha = .^(2n+2)C_(n+1)`. Since `(n+1)` th and `(n+)` th terms are middle term in the expansion of `(1+x)^(2n+1)`. We have
`beta = .^(2n+1)C_(n)` and `gamma = .^(2n+1)C_(n+1)`
But `.^(2n+1)C_(n) + .^(2n+1)C_(n+1) = .^(2n+2)C_(n+1)` or `beta + gamma = alpha`
365.

Find the term independent of x in the expansion of `(3/2x^2-1/(3x))^6`.

Answer» `(r+1)^(th)` term in given expression,
`T_(r+1) = C(6,r)((3x^2)/2)^(6-r)(-1/(3x))^r`
`= C(6,r)(3/2)^(6-r)(-3)^(-r)(x^2)^((6-r)-r)`
`T_(r+1)= C(6,r)(3/2)^(6-r)(-3)^(-r)(x)^(12-3r)->(1)`
For `T_(r+1)` to be independent of `x`,`(12-3r) = 0`
`=>r = 4`
So, fifth term of given expression is independent of `x`.
`:. T_5 = C(6,4)(3/2)^2(-3)^(-4)` (putting value of r in (1))
` = 15**9/4**1/81 = 5/12`
366.

Find the `r^(t h)`term from the end in the expansion of `(x+a)^n`.

Answer» We have to find `r^(th)` term from end in the expansion of `(x+a)^n`
It wil be same as `r^(th)` term from beginning in the expansion of `(a+x)^n`
From Binomial theorem, we have,
`T_r = n_(C_(r-1))*a^(n-(r-1))*x^(r-1)`
`T_r = n_(C_(r-1))*a^(n-r+1)*x^(r-1)`
367.

Show that the coefficient of the middle term in the expansion of `(1+x)^(2n)`is equal to the sum of the coefficients of two middle terms in the expansion of `(1+x)^(2n-1)`.

Answer» Middle terms in expansion `(1+x)^(2n-1)` are `T_n` and `T_(n+1).`
So, sum of coefficients of these two middle terms will be,
`C(2n-1,n-1)+C(2n-1,n) = ((2n-1)!)/((n-1)!n!) + ((2n-1)!)/(n!(n-1)!)`
`=2((2n-1)!)/(n!(n-1)!) = (2n((2n-1)!))/(n(n-1)!(n!))`
`=(2n!)/((n!)(n!))->(1)`
Now, we will find the coefficient of middle term `T_(n+1)` in expansion `(1+x)^(2n)`.
Coefficient of `T_(n+1)` in `(1+x)^(2n)`
`= C(2n,n) = (2n!)/((n!)(n!))->(2)`
From `(1)` and `(2)`, we can see that both values are equal.
368.

Find the middle term (terms) in the expansion of (i) `((x)/(a) - (a)/(x))^(10)` (ii) `(3x - (x^(3))/(6))^(9)`

Answer» (i) Given expansion is `((x)/(a) - (a)/(x))^(10)`
Here, the power of Binomial i.e., `n = 10` is even
Since, it has one middle term `((10)/(2) + 1)` th terms i.e., 6 th term
`:. T_(6) = T_(5 + 1) = .^(10)C_(5) ((x)/(a))^(10 - 5) ((-a)/(x))^(5)`
`= -.^(10)C_(5) ((x)/(a))^(5) ((a)/(x))^(5)`
`= - (10 xx 9 xx 8 xx 7 xx 6 xx 5!)/(5! xx 5 xx 4 xx 3 xx 2 xx 1) ((x)/(a))^(5) ((x)/(a))^(-5)`
`= - 9 xx 4 xx 7 = - 252`
(ii) given expansion is `(3x - (x^(3))/(6))^(9)`
Here, `n = 9`
Since, the Binomial expansion has two middle terms i.e., `((9 + 1)/(2)) th` and `((9 + 1)/(2) + 1)th` i.e., 5th term and 6th term.
`:. T_(5) = T_((4 + 1)) = .^(9)C_(4) (3x)^(9 - 4) (-(x^(3))/(6))^(4)`
`= (9 xx 8 xx 7 xx 6 xx 5!)/(4 xx 3 xx 2 xx 1 xx 5!) 3^(5) x^(5) x^(12) 6^(-4)`
`= (7 xx 6 xx 3 xx 3^(1))/(2^(4)) x^(17) = (189)/(8) x^(17)`
`:. T_(6) = T_(5) = .^(9)C_(5) (3x)^(9 - 5) (- (x^(3))/(6))^(5)`
`= - (9 xx 8 xx 7 xx 6 xx 5!)/(5! xx 4 xx 3 xx 2 xx 1) . 3^(4). x^(4). x^(15). 6^(-5)`
`= (-21 xx 6)/(3 xx 2^(5)) x^(19) = (-21)/(16) x^(19)`
369.

If `(1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n)`, then `C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+"….."(-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1))` is (where n is even integer and `C_(r) = .^(n)C_(r)`)A. a positive valueB. a negative valueC. divisible by `2^(n-1)`D. divisible by `2^(n)`

Answer» Correct Answer - B::C
For `n = 2m`, the given expression is
`C_(0)-(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))-(C_(0)+C_(1)+C_(2)+C_(3))+"....."(-1)^(n-1)(C_(0)+C_(1)+"....."+C_(n-1))`
`= C_(0)-(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))-(C_(0)+C_(1)+C_(2)+C_(3))+"....."-(C_(0)+C_(1)+"...."+C_(2m-1))`
`= - (C_(1)+C_(3)+C_(5)+"...."+C_(2m-1))`
`= - (C_(1)+C_(3)+C_(5)+"......."+C_(n-1)) = -2^(n-1)`
370.

In the expansion of `(a+b)^(n)`, if two consecutive terms are equal, then which of the following is/are always integer ?A. `((n+1)b)/(a+b)`B. `((n+1)a)/(a+b)`C. `(na)/(a-b)`D. `(na)/(a+b)`

Answer» Correct Answer - A::B
We have `(a+b)^(n)`
`(T_(r+1))/(T_(r)) = (n-r+1)/(r ) . b/a = 1`
`:. (n+1)b-r = ar`
`:. r = -((n+1)b)/(a+b)` is integer
Also, considering `(b+a)^(n)`.
`(T_(r+1))/(T_(r)) = (n-r+1)/(r ) . a/b = 1`
`:. R = ((n+1)a)/(a+b)` is integer
371.

Find the value of `^20 C_0-(^(20)C_1)/2+(^(20)C_2)/3-(^(20)C_3)/4+dot`

Answer» Correct Answer - `1/21`
`.^(20)C_(0) - (.^(20)C_(1))/(2) + (.^(20)C_(2))/(3) - (.^(20)C_(3))/(4) + "....."`
`= underset(r=0)overset(20)sum(.^(20)C_(r))/(r+1)(-1)^(r)`
`= underset(r=0)overset(20)sum(.^(21)C_(r+1))/(20+1)(-1)^(r)`
` = -1/21 underset(r=0)overset(20)sum.^(21)C_(r+1)(-1)^(r+1)`
`= - 1/21[-.^(21)C_(1) + .^(21)C_(2)-.^(21)C_(3) + "...."]`
`= - 1/(21)[(.^(21)C_(0) - .^(21)C_(1) + .^(21)C_(2) - .^(21)C_(3) + ".....")-.^(21)C_(0) ]`
`= -(1)/(21) [(1-1)^(21) - 1]`
`= 1/21`
372.

If `f(m) = sum_(i=0)_(m) ({:(30),(30-i):})({:(20),(m-i):})` where `({:(p),(q):})= ""^(p)C_(q)`, thenA. maximum value of `f(m)` is `.^(50)C_(25)`B. `f(0) + f(1)+"….."+f(50) = 2^(50)`C. `f(m)` is always divisible by `50(1 le m le 49)`D. The value of `underset(m=0)overset(50)sum(f(m))^(2) = .^(100)C_(50)`

Answer» Correct Answer - A::B::D
`f(m)= underset(i=0)overset(m)sum({:(" "30 ),(30-i):})({:(" "30 ),(m-i):})= underset(i=0)overset(m)sum({:(" "30 ),(" "i):})({:(" "20 ),(m-i):})= .^(50)C_(m)`
`f(m)` is greatest when `m = 25`. Also,
`f(0)+f(1)+"….." +f(50)= .^(50)C_(0) + .^(50)C_(1)+.^(50)C_(2)+"....."+.^(50)C_(50) = 2^(50)`
Also, `.^(50)C_(m)`is not divisible by 50 for all m as 50 is not a prime number
`underset(m=0)overset(50)sum(f(m))^(2)=(.^(50)C_(0))^(2)+(.^(50)C_(1))^(2)+(.^(50)C_(2))^(2)+"......."+(.^(50)C_(50))^(2)`
`= .^(100)C_(50)`
373.

If for `z`as real or complex, `(1+z^2+z^4)^8=C_0+C1z2+C2z4++C_(16)z^(32)t h e n``C_0-C_1+C_2-C_3++C_(16)=1``C_0+C_3+C_6+C_9+C_(12)+C_(15)=3^7``C_2+C_5+C_6+C_(11)+C_(14)=3^6``C_1+C_4+C_7+C_(10)+C_(13)+C_(16)=3^7`A. `C_(0) - C_(1) + C_(2) - C_(3) + "….." + C_(16) = 1`B. `C_(0) + C_(3) + C_(6) + C_(12) + C_(15) = 3^(7)`C. `C_(2) + C_(5) + C_(8) + C_(11) + C_(14) = 3^(6)`D. `C_(1) + C_(4) + C_(7) + C_(10) + C_(13) + C_(16) = 3^(7)`

Answer» Correct Answer - A::B::D
`(1+z^(2)+z^(4))^(8) = C_(0) + C_(1)z^(2) + X_(2)z^(4) + "….." + C_(16)z^(32) " "(1)`
Putting `x = i`, where `i = sqrt(-1)`.
`(1-1+1)^(8) = C_(0) - C_(1) + C_(2) - C_(3) + "….." + C_(16)`
or `C_(0) - C_(1) + C_(2) - C_(3) + "……" + C_(16) = 1`
Also, putting `z = omega`
`(1+omega^(2)+omega^(4))^(8)= C_(0) + C_(1)omega^(2) + C_(2)omega^(4) + "....." + C_(16)omega^(32)`
or `C_(0) + C_(1)omega^(2) + C_(2)omega + C_(3) + "...." + C_(16)omega^(2) = 0 " "(3)`
Putting `x = omega^(2)`.
`(1+omega^(4)+omega^(8))^(8) = C_(0) + C_(1)omega^(4) + C_(2)omega^(8) + "......" + C_(16)omega^(64)`
or `C_(0) + C_(1)omega + C_(2)omega^(2) + "....." + C_(16)omega = 0 " "(3)`
Putting `x = 1`,
`3^(8) = C_(0) + C_(1) + C_(2) + "....."+C_(16) " "(4)`
Adding (2), (3) and (4), we have
`3(C_(0) + C_(3) + "......" + C_(15)) = 3^(8)`
or `C_(0) + C_(3) + "......" + C_(15) = 3^(7)`
Similarly, first multiplying (1) by x and then putting `1 omega, omega^(2)` and adding, we get
`C_(1) + C_(4) + C_(7) + C_(10) + C_(13)+ C_(16) = 3^(7)`
Multiplying (1) by `z^(2)` and then putting `1, omega, omega^(2)` and adding, we get
`C_(2)+C_(5)+C_(8)+C_(11)+C_(14)= 3^(7)`
374.

Find `(x+1)^6+(x-1)^6`. Hence or otherwise evaluate `(sqrt(2)+1)^6+(sqrt(2)-1)^6`.A. 184B. 192C. 198D. 202

Answer» Correct Answer - C
N/a
375.

Find the sum of the series `sum_(r=0)^(n) (-1)^(r ) ""^(n)C_(r ) [(1)/(2^(r )) + (3^(r ))/(2^(2r)) + (7^(r ))/(2^(3 r)) + (15^(r ))/(2^(4r)) …. "upto m terms"]`

Answer» `underset (r=0)overset(n)Sigma (-1)^(n) C_(r)[(1)/(2^(r ))+(3^(r ))/(2^(2r))+(7^(r ))/(2^(3r))+(15^(r ))/(2^(4r))+…"upto m terms"]`
`=underset(r=0)overset(n)Sigma(-1)^(r ) C_(r)(1/2)^(r )+ underset(r=0)overset(n)Sigma^(r )C_(r )(3/4)^(r )+underset(r=0)overset(n)Sigma(-1)^(r )C_(r )(7/8)^(r )+....` upto m terms
`=(1-1/2)^(n)+(1-3/4)^(n)+(1-7/8)^(r) +...` up to m terms
`[using underset(r=0)overset(n)Sigma (-1)^(r )C_(r )x^(r )=(1-x)^(n)]`
`=(1/2)^(n)+(1/4)^(n)+(1/8)^(n)+...` up to m terms
`=(1/2)^(n)[(1=-(1/2)^(m))/(1-1/2)]=(2^(mn)-1)/(2^(mn)(2^(n)-1)`.
376.

If `f(x) = x^100-2x+1` is divided by `x^2-1` then the remainder is equal toA. `0`B. `2x+2`C. `2x-2`D. `-2x+2`

Answer» Correct Answer - D
377.

Using binomial theorem, evaluate : `(96)^3`

Answer» `(96)^3=(100-4)^3`
`(x+a)^n=sum_(r=0)^(n).^nC_ra^rr^(n-r)`
`(100-4)^3= .^3C_0(100)^3+.^3C_1(100)^2(-4)^(1).+^3C_2(100)^1(-4)^(2)+.^3C_3(100)^0(-4)^(3)`
=>`1000000-120000+4800-64`
=>`884736`.
378.

In the expansion of `(1+ x + 7/x)^11`find the term not containing x.A. `underset(r=0)overset(5)sum.^(11)C_(r).^(11-r)C_(2r)7^(r)`B. `underset(r=0)overset(5)sum.^(11)C_(r).^(11-r)C_(11-2r)7^(r)`C. `underset(r=0)overset(5)sum.^(11)C_(r).^(11-r)C_(11-2r)7^(r)`D. none of these

Answer» Correct Answer - C
`(1+x+7/x)^(11) = ((7+x+x^(2))/(x))^(11)`
So, we have to find the coefficient of `x^(11)` in `(7+x+x^(2))^(11)`
Now, `(7+x+x^(2))^(11)`
`=[((7+x)+x^(2))]^(11)`
`= .^(11)C_(0)(7+x)^(11)+.^(11)C_(1)(7+x)^(10)x^(2)+.^(11)C_(2)(7+x)^(9)x^(4)"....."+"...."`
`:.` Required coefficient `= .^(11)C_(0)+.^(11)C_(1)xx.^(10)C_(9)xx7+.^(11)C_(2)xx.^(9)C_(7)`
`xx7^(2)+.^(11)C_(3)xx.^(8)C_(5) xx7^(3)+.^(11)C_(4)`
`xx.^(7)C_(3)xx7^(4)+.^(11)C_(5)xx.^(6)C_(1)xx7^(5)`
`= underset(r=0)overset(5)sum.^(11)C_(r).^(11-r)C_(11-2r)7^(r)`
379.

Prove that there is no term containing `x^(10)` in the expansion of `(x^(2) - 2/x)^(18).`

Answer» The general term in the given expansion is given by
`T _(r+1)= (-1)^(r) xx.^(18)C_(r) xx (x^(2))^((18-r)) xx (2/x)^(r)`
`rArr T_((r+1))=(-1)^(r) xx.^(18)C_(r) xx 2^ (r) xxx^((36-3r))`.
Let `T_(r+1)" contain " x^(10)`. Then,
`36-3r = 10 rArr 3r = 26 rArr r=26/3`
Since the value of r cannot be a fraction , so there is no term containing `x^(10)`.
380.

Find the coefficient of (i) `x^(5)" in the expansion of "(x+3)^(8)` (ii) `x^(6) " in the expansion of "(3x^(2) - a/(3x))^(9)` (iii) `x^(-15) " in the expansion of " (3x^(2) - a/(3x^(3)))^(10).` (iv) `a^(7)b^(5)" in the expansion of "(a-2b)^(12)`.

Answer» Correct Answer - (i) 1512 (ii) 378 (iii) `(-40)/27a^(7)` (iv)-25344
(iii) `T_(r+1)= ( - 1)^(r) xx .^(10)C_(r) ( 3x^(2))^((10-r)) xx (a/(3x^(3)))^(r)`
`rArr T_(r+1) = ( -1)^(r) xx . ^(10)C_(r) xx 3 ^((10-r)) xx x^((20 xx 5r)) xx a^(r).`
Now, `20 - 5r = -15 rArr 5r = -15 rArr 5r = 35 rArr r = 7.`
(iv) `T_(r+1) =(-1)^(r) xx .^(12) C _(r) xxa^((12-r)) xx ( 2b)^(r)`
` rArr T_(r+1) = (-1)^(r) xx .^(12)C_(r) xx 2^(r) xx a^((12-r)) b^(r).`
Put`r=5 and " get " T_(6).`
381.

Show that the term containing to does not exist in the expansion of `(3x-1/(2x))^8`

Answer» `T_(r+1) = (-1)^(r)*^(8)C_(r)*(3x)^((8-r)) .(1/(2x))^(r)`
`rArr T_(r+1) = (-1)^(r)*^(8) C_(r)*3^(8-r)*1/2^(r) *x ^((8-2r)).`
Now, `8-2r = 3 rArr r=5/2`, which is a fraction.
382.

Write the general term in the expansion of `(x^(2)-y)^(6)`.

Answer» Correct Answer - `T_(r+1) = (-1)^(r)xx.^(6)C_(r) xx x^(12-2r)xxy^(r)`
`T_(r+1)=(-1)^(r) xx .^(6)C_(r) xx x^((12-2r)) xx y^(r).`
383.

Write the general term in the expansion of `(x^2-y)^6`

Answer» General term in `(a+b)^n` is given by,
`T_(r+1) = C(n,r)a^(n-r)b^r`
So, in given expression,
`(x^2-y)^6)`
`T_(r+1) = C(6,r)(x^2)^(6-r)(-y)^r`
`T_(r+1)=(-1)^r*C(6,r)(x)^(12-2r)(y)^r`
384.

Using binomial theorem, evaluate : `(101)^4`

Answer» `(101)^4 = (100+1)^4`
`=4_(C_0)(100^4)+4_(C_1)(100^3)+4_(C_2)(100^2)+4_(C_3)(100^1)+4_(C_4)(100^0)`
`100000000+4000000+60000+400+1 = 104060401`