Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

` int _(-2)^(2)|x cos pi x |dx` is equal toA. `8/pi`B. `4/pi`C. `2/pi`D. `1/pi`

Answer» Correct Answer - A
Let `l - int _(-2)^(2) | x cos pi x| dx = 2 = 2 int _(0)^(2) | x cos pix| dx `
`= 2 { int _(0)^(1/2) | x cos pi x | dx + int _(1/2)^(3/2) | x cos pi x | dx + int _(3/2)^(2)| x cos pi x | dx }`
` = 2 [ int _(0)^(1//2) cos pi xdx + int _(1//2)^(3/2) x cospi x dx + int _(3//2)^(2) x cos pi xdx]`
` = 2 [ [ (xsin pix)/pi + (cos pi x)/(pi^(2))]_(0)^(1//2) - [ (x sin pi x)/pi + (cos pi x)/(pi^(2))] _(1//2)^(3//2)`
` + [ (x sin pi x)/pi + (cos pix)/(pi^(2))]_(3//2)^(2)]`
` = 2 [ (1/(2pi)- 1/(pi^(2)))-((-3)/(2pi)-1/(2pi))+(1/(pi^(2))+3/(2pi)) ] ^(1//2) = 2 xx 8/(2pi) = 8/(pi)`
102.

Given function `f(x) ={:{(x^(2),"for " 0 lexlt1),(sqrt(x),"for "1 le x le2):}, "then" int_(0)^(2)f(x)dx` is equal toA. ` (4sqrt(2)-1)`B. `1/3(4sqrt(2)-1)`C. ` 1/3 (sqrt(2)-1)`D. None of these

Answer» Correct Answer - B
Here, ` int _(0)^(pi)f(x) dx = int _(0)^(1) f(x) dx + int _(1)^(2) f(x) dx `
` :. int _(0)^(2) f(x) dx = int_(0)^(1) x^(2) sqrt(x) dx`
` rArr int _(0)^(2) f(x) dx = [ (x^(3))/3]_(0)^(1)+ [ 2/3 x sqrt(x)]_(1)^(2)`
` = [ 1/3 - 0 ] +2/3 [ 2 sqrt(2)-1]`
` = 1/3 + (4sqrt(2))/2 - 2/3 = (4sqrt(2))/3 -1/3 `
103.

`int_(0)^(1)(dx)/(e^(x)+e^(-x))`A. `(1-(pi)/(4))`B. `tan^(-1)e`C. `tan^(-1)e+(pi)/(4)`D. `tan^(-1)e-(pi)/(4)`

Answer» Correct Answer - D
`I=int_(0)^(1)(dx)/((e^(x)+(1)/(e^(x))))=int_(0)^(1)(e^(x)dx)/((e^(2x)+1))=int_(0)^(e)(dt)/((t^(2)+1))`, where `e^(x)=t`.
`=[tan^(-1)t]_(1)^(e)=(tan^(-1)e-(pi)/(4))`.
104.

`int_(0)^(pi//2) x sin x dx ` is equal to

Answer» Correct Answer - B
` int _(0)^(pi//2) x sin x dx = [ x(-cos x)] _(0)^(pi//2) - int _(0)^(pi//2) 1 ( - cos x) dx` ,
` = 0 + [ sin x] _(0)^(pi//2) =1`
105.

` int_(0)^(pi) sqrt((cos2x+1)/2)dx` is equal to

Answer» Correct Answer - B
` int _(0)^(pi) sqrt((cos 2x +1)/2) dx = int _(0)^(pi) sqrt(cos^(2)x)dx = int _(0)^(pi) | cos x | dx `
` = int _(0)^(pi//2) cos x dx - int _(pi//2) ^(pi) cos x dx = [ sin x] _(0)^(pi//2) - [ sin x ] _(pi//2)^(pi) = 2 `
106.

`int_(0)^(pi)(sin2xcos3x)dx=?`A. `(4)/(5)`B. `-(4)/(5)`C. `(5)/(12)`D. `-(12)/(5)`

Answer» `2cosAsinB=sin(A+B)-sin(A-B)`
`:.I=(1)/(2)int_(0)^(pi)(sin5x-sinx)dx=(1)/(2)*[(-cos5x)/(5)+cosx]_(0)^(pi)=(-4)/(5)`.
107.

`int_(1)^(x) (logx^(2))/x dx` is equal toA. `(logx)^(2)`B. `(1)/(2)(logx)^(2)`C. `(logx^(2))/(2)`D. None of these

Answer» Correct Answer - A
Let ` l = int _(1)^(x) (2log x)/x dx`
Put log ` x= t rArr (dx)/x = dt `
` :. l = 2 int _(0)^(1ogx) t dt = 2 [(t^(2))/2]_(0)^(logx)=(log x)^(2)`
108.

` int_(-1)^(1) sin^(3) x cos^(2) x ` dx is equal toA. `-1`B. 1C. 0D. None of these

Answer» Correct Answer - C
Let ` l = int _(-1)^(1) sin^(3) x cos^(2) x dx` ,
Again , let f(x) `= sin^(3) x cos^(2) x`
` f(-x) = sin^(3) (-x) cos^(2) (-x) = - sin^(3) x cos^(2) x` ,
` :. F(x) ` is an odd function ,
Hence, ` int_(-1)^(1) sin^(3) x cos^(2) x dx = 0`
109.

`int_(-a)^(a)x^(3)sqrt(a^(2)-x^(2))dx=0`

Answer» `f(-x)=-f(x)impliesI=0`.
110.

`int_(0)^(pi//2)sinxsin2xdx=?`A. `(2)/(3)`B. `(3)/(4)`C. `(5)/(6)`D. `(3)/(5)`

Answer» `I=(1)/(2)int_(0)^(pi//2)[cos(2x-x)-cos(2x+x)]dx=(1)/(2)int_(0)^(pi//2)(cosx-cos3x)dx`
`=(1)/(2)[sinx-(sin3x)/(3)]_(0)^(pi//2)=(1)/(2)(1+(1)/(3))=(2)/(3)`.
111.

`int_(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)`

Answer» Put `x=a sin theta` and `dx=a cos theta d theta`.
112.

The value of `int_(1)^(e^(2)) (dx)/(x(1+logx)^(2))`isA. `(2)/(3)`B. `(1)/(3)`C. `(3)/(2)`D. `ln 2`

Answer» Correct Answer - A
Let ` l = int_(1)^(e^(2)) (dx)/(1+log x)^(2)`
Put ` 1+ log x = t`
` rArr 1/x dx = dt` ,
` :. L = int_(1)^(3) 1/(t^(2)) dt = [ -1/t]_(1)^(3) =2/3`
113.

`int_0^oo x/((1+x)(1+x^2)) dx`

Answer» Putting `x=tan theta`, we get `I=int_(0)^(pi//2)(sin theta)/((costheta+sintheta))d theta`.
114.

`int_(-pi)^(pi)(sin^(75)x+x^(125))dx=0`

Answer» `f(-x)=-f(x)impliesI=0`.
115.

`int_(0)^(a)(sqrt(x))/((sqrt(x)+sqrt(a-x)))dx=(a)/(2)`

Answer» Apply `int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx`.
116.

`int_0^(pi//6)cosxcos2x dx`A. `(1)/(4)`B. `(5)/(12)`C. `(1)/(3)`D. `(7)/(12)`

Answer» `I=(1)/(2)int_(0)^(pi//6)[cos3x+cosx]dx=(1)/(2)[(sin3x)/(3)+sinx]_(0)^(pi//6)=(15)/(12)`.
117.

`int_(0)^(2) (2x-2)/(2x-x^(2)) `dx is equal to

Answer» Correct Answer - A
Let ` l = int_(0)^(2) (2x-2)/(2x-x^(2)) dx` ,
Put ` 2x - x^(2) = t rArr (2- 2x) dx = dt`
` l = -int_(0)^(0) (dt)/t = 0` ,
118.

Evaluate `int_0^1 (1-x)/(1+x) dx`A. `(1)/(2)log2`B. `(2log2+1)`C. `(2log2-1)`D. `((1)/(2)log2-1)`

Answer» On dividing `(-x+1)` by `(x+1)` we get :
`I=int_(0)^(1){-1+(2)/((x+1))}dx=[-x+2log(x+1)]_(0)^(1)=(2log2-1)`.
119.

सिद्ध कीजिए की `int_(0)^(pi) (x dx)/(1+ sin^(2) x) = pi^(2)/(2sqrt(2))`.

Answer» `2I=2pi*int_(0)^(pi//2)(dx)/((1+sin^(2)x))`.
Divide num. and denom. by `cos^(2)x` and put `tanx=t`.
120.

`int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx` is equal toA. `log_(e)((2)/(3))`B. `log_(e)3`C. `(1)/(3)log_(e)((4)/(3))`D. `log_(e)((4)/(3))`

Answer» Correct Answer - D
Put `1+tanx=t rArr sec^(2)xdx=dt`
`therefore" "int_(0)^(pi//4)(sec^(2)x)/((1+tanx)(2+tanx))dx`
`=int_(1)^(2)(dt)/(t(1+t))=int_(1)^(2)(dt)/(t)-int_(1)^(2)(dt)/(1+t)`
`=[logt-log(1+t)]_(1)^(2)`
`=log_(2)2-log_(e)3+log_(e)2=log_(e).(4)/(3)`.
121.

`int_(-pi)^(pi)x^(12)sin^(9)xdx=0`

Answer» `f(-x)=-f(x)impliesI=0`.
122.

`int_(0)^(pi//2)sin^(2)xdx=?`A. `(pi)/(3)`B. `(pi)/(4)`C. `(pi)/(2)`D. `(2pi)/(3)`

Answer» `I=(1)/(2)*int_(0)^(pi//2)(1-cos2x)dx=(1)/(2)[x-(sin2x)/(2)]_(0)^(pi//2)=(pi)/(4)`.
123.

`int_(0)^(pi)sin^(2)xcos^(3)xdx=0`

Answer» Apply `int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx` to get `I=-I`.
124.

`int_(1)^(x) (log(x^(2)))/(x)` dx is equal toA. `(logx)^(2)`B. `(1)/(2)(logx)^(2)`C. `(logx^(2))/(2)`D. None of these

Answer» Correct Answer - A
Let ` l = int_(1)^(x) (log(x^(2)))/x dx = 2 int _(1)^(x) log x.1/x dx` ,
Put ` log x = t rArr 1/x dx = dt ` ,
` :. l = 2 int _(0)^(log x) t dt = 2 [ (t^(2))/2]_(0)^(logx) = (logx)^(2)`
125.

`int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)`

Answer» `2I=pi*int_(0)^(pi)(sinx)/((1+cosx))dx=pi*int_(0)^(pi)20(1-(1)/(1+sinx))dx`
`=pi^(2)-pi*int_(0)^(pi)((1-sinx)/(1-sin^(2)x))dx=pi^(2)-pi*int_(0)^(pi)((1-sinx))/(cos^(2)x)dx`
`pi^(2)-pi*int_(0)^(pi)(sec^(2)x-secxtanx)dx`.
126.

`int_(-1)^(0) (dx)/(x^(2) + 2x + 2 )` is equal to

Answer» Correct Answer - B
` int_(-1)^(0) (dx)/(x^(2)+2x + 2 ) = int _(-1)^(0) (dx)/((x+1)^(2)+1)`
` = [ tan^(-1) (x+1)] _(-1)^(0) = [ tan ^(-1) 1 - tan ^(-1) 0 ] = pi/4 `
127.

`int_(0)^(pi//2)(sinxcosx)/((1+sin^(4)x))dx`

Answer» Correct Answer - Put `sin^(2)x=t`.
128.

`int_(-a)^(a)log((a-x)/(a+x))dx=?`A. `2a`B. `a`C. `0`D. `1`

Answer» `f(x)=log((a-x)/(a+x))`.
`impliesf(-x)=log((a+x)/(a-x))=log{((a-x)/(a+x))^(-1)}=-log((a-x)/(a+x))=-f(x)`
`:.f(x)` is odd and hence `I=0`.
129.

`int_(-1)^(1)e^(|x|)dx=2(e-1)`

Answer» `I=int_(-1)^(0)e^(-x)dx+int_(0)^(1)e^(x)dx`.
130.

`int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)`

Answer» `I=int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx` and `I=int_(0)^(pi)((pi-x)sinx)/((1+cos^(2)x))dx`.
`:.2I=pi*int_(0)^(pi)(sinx)/((1+cos^(2)x))dx`. Now, put `cosx=t`.
131.

`int_(-pi)^(pi)x^(4)sinxdx=?`A. `2pi`B. `pi`C. `0`D. none of these

Answer» `f(x)=x^(4)sinx`.
`:.f(-x)=(-x)^(4)sin(-x)=-(x^(4)sinx)=-f(x)`
`:.f(x)` is odd and hence `I=0`.
132.

The value of `int _(0)^(2) (3^sqrt(x))/(sqrt(x)) ` dx isA. `(2)/(log3)(3^(sqrt2)-1)`B. 0C. `2(sqrt2)/(log3)`D. `(3^(sqrt2))/(sqrt2)`

Answer» Correct Answer - A
Put ` sqrt(x) = t rArr 1/(sqrt(x)) dx = 2 dt `
Also , as x = 0 to 2 so , `t = 0 "to" sqrt(2)`
` :. int _(0)^(2) (3^(sqrt(x)))/(sqrt(x)) dx = 2 int _(0)^(sqrt(2)) 3^(t) dt = 2 [ (3^(t))/(log 3)]_(0)^(sqrt(2)) = 2/(log 3 ) (3 ^(sqrt(2)) -1)`
133.

` int _(0)^(pi//4) sec^(7) theta sin^(3) theta d theta ` is equal toA. `(1)/(12)`B. `(3)/(12)`C. `(5)/(12)`D. None of these

Answer» Correct Answer - C
Let ` l = int _(0)^(pi//4) sec^(7) theta . d theta = int _(0)^(pi//4) (sin^(3) theta )/(cos^(3) theta ) theta d theta `
Put `tan theta = t rArr sec^(2) theta d theta = dt`
` :. l = int _(0)^(1) t^(3) (1+t^(2)) dt = [ (t^(4))/4+ (t^(6))/6 ] _(0)^(1) = 5/12 `
134.

`int_(-1)^(-2)x^(3)(1-x^(2))dx=?`A. `-(40)/(3)`B. `(40)/(3)`C. `(5)/(6)`D. `0`

Answer» `f(x)=x^(3)(1-x^(2))=(x^(3)-x^(5))`.
`f(-x)=(-x)^(3)-(-x)^(5)=-x^(3)-(-x^(5))=-x^(3)+x^(5)=-x^(3)(1-x^(2))=-f(x)`.
`:.f(x)` is odd and hence `I=0`.
135.

Prove that `int_(0)^(4){|x|+|x-2|+|x-4|dx}=20`.

Answer» `I=int_(0)^(2){|x|+|x-2|+|x-4|}dx+int_(2)^(4){|x|+|x-2|+|x-4|}dx`
`=int_(0)^(2){x-(x-2)-(x-4)}dx+int_(2)^(4){x+(x-2)-(x-4)}dx`
`=int_(0)^(2)(x-x+2-x+4)dx+int_(2)^(4)(x+x-2-x+4)dx`
`=int_(0)^(2)(-x+2)dx+int_(2)^(4)(x+2)dx`.
136.

`int_(0)^(sqrt(2))sqrt(2-x^(2))dx=?`

Answer» Put `x=sqrt(2)sint`.
137.

`int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)`

Answer» `I=int_(0)^(pi)xsin^(2)xdx` and `I=int_(0)^(pi)(pi-x)sin^(2)(pi-x)dx=int_(0)^(pi)(pi-x)sin^(2)xdx`.
`:.2I=pi*int_(0)^(pi)sin^(2)xdx=(pi)/(2)*int_(0)^(pi)/(2)(1-cos2x)dx`.
138.

` int _(0)^(a) (xdx)/(sqrt(a^(2)+x^(2)) )` is equal toA. `a(sqrt2-1)`B. `a(1-sqrt2)`C. `a(1+sqrt2)`D. `2asqrt3`

Answer» Correct Answer - A
Put ` t = a^(2) +x^(2) rArr 2xdx = dt`
` :. int _(0)^(a) (xdx)/(sqrt(a^(2)+x^(2)) )= 1/2 int _(a^(2))^(2a^(2)) 1/(sqrt(t)) dt `
` = [ ( 2a^(2) )^(1/2) - a^(2/2)]= a (sqrt(2)-1)`
139.

`int_(-pi)^(pi)x^(3)cos^(3)xdx=?`A. `pi`B. `(pi)/(4)`C. `2pi`D. `0`

Answer» `f(x)=x^(3)cos^(3)x`.
`:.f(-x)=(-x)^(3)[cos(-x)]^(3)=-x^(3)(cosx)^(3)=-(x^(3)cos^(3)x)=-f(x)`
`:.f(x)` is odd and hence `I=0`.
140.

`int_(-pi)^(pi)sin^(5)xdx=?`A. `(3pi)/(4)`B. `2pi`C. `(5pi)/(16)`D. `0`

Answer» `f(x)=sin^(5)x`.
`f(-x)=[sin(-x)]^(5)=(-sinx)^(5)=-(sin^(5)x)=-f(x)`.
`:.f(x)` is odd and hence `I=0`.
141.

`int_0^2sqrt(6x+4)dx`A. `(64)/(9)`B. `7`C. `(56)/(9)`D. `(60)/(9)`

Answer» Correct Answer - C
`I=int_(0)^(2)(6x+4)^(1//2)dx=[(2)/(3)*(6x+4)^(3//2)/(6)]_(0)^(2)=(56)/(9)`.
142.

`int_(0)^(a)(x)/(sqrt(a^(2)+x^(2)))dx`

Answer» Correct Answer - Put `x=atantheta`
143.

`int_(0)^(1)|3x-1|dx=`

Answer» `int_(0)^(1)|3x-1|=int_(0)^(1//3)(1-3x)dx+int_(1//3)^(1)(3x-1)dx=I_(1)+I_(2)`
144.

`int_(0)^(pi/4) (sec x)/(1+2 sin^(2)x)` is equal toA. `(1)/(3)[log(sqrt2+1)+(pi)/(2sqrt2)]`B. `(1)/(3)[log(sqrt2+1)-(pi)/(2sqrt2)]`C. `3[log(sqrt2+1)-(pi)/(2sqrt2)]`D. `3[log(sqrt2+1)+(pi)/(2sqrt2)]`

Answer» Correct Answer - A
Let `I=int_(0)^(pi//4)(cosx)/(cos^(2)x(1+2sin^(2)x))dx`
`=int_(0)^(pi//4)(cosxdx)/((1-sin^(2)x)(1+2sin^(2)x))`
Out `t=sin x rArr dt = cos x dx`
`therefore I=int_(0)^(1//sqrt2)(1)/((1-t^(2))(1+2t^(2)))dt`
`=(1)/(3)int_(0)^(1//sqrt2)((1)/(1-t^(2))+(2)/(1+2t^(2)))dt`
`=(1)/(3)[(1)/(2.1)log((1+t)/(1-t))+(2)/(sqrt2)tan^(-1)tsqrt2]_(0)^((1)/(sqrt2))`
`=(1)/(3)[(1)/(2)log((sqrt2+1)/(sqrt2-1))+sqrt2tan^(-1)1]`
`=(1)/(3)[(1)/(2)log(sqrt2+1)^(2)+sqrt2.(pi)/(4)]=(1)/(3)[log(sqrt2+1)+(pi)/(2sqrt2)]`
145.

`int_0^1sin^(- 1)((2x)/(1+x^2))dx`

Answer» Put `x=tant` and integrate by parts.
146.

`int_0^pi xsin^2x dx=(pi^2)/4`

Answer» `I=int_(0)^(pi)xcos^(2)xdx` and `I=int_(0)^(pi)(pi-x)cos^(2)(pi-x)dx=int_(0)^(pi)(pi-x)cos^(2)xdx`.
`:.2I=piint_(0)^(pi)cos^(2)xdx=(pi)/(2)*int_(0)^(pi)/(2)(1+cos2x)dximpliesI=(pi^(2))/(4)`.
147.

`int_(1)^(4)xsqrt(x)dx=?`A. `12.8`B. `12.4`C. `7`D. none of these

Answer» `I=int_(1)^(4)x^(3//2)dx=[(2)/(3)x^(5//2)]_(1)^(4)=(62)/(5)=12.4`.
148.

` int _(0)^(pi//6) (2+3x^(2))cos 3 xdx ` is equal toA. `(1)/(36)(pi+16)`B. `(1)/(36)(pi-16)`C. `(1)/(36)(pi^(2)-16)`D. `(1)/(36)(pi^(2)+16)`

Answer» Correct Answer - D
` int _(0)^(pi//6) (2+3x^(2) ) cos 3x`
` = [ (sin 3x)/3 (2+3x^(2)) ]_(0)^(pi/6) - int _(0)^(pi//6) (sin 3x)/3 . 6x dx `
` = 1/36 (pi^(2)+16)`
149.

`int_(0)^(2)xsqrt(2-x)dx`

Answer» `I=int_(0)^(2)(2-x)[2-(2-x)]^(1//2)dx=int_(0)^(2)(2-x)sqrt(x)dx=int_(0)^(2)(2sqrt(x)-x^(3//2))dx`.
150.

`int_(0)^(2)xsqrt(2+x)dx`

Answer» Correct Answer - Put `(x+2)=t^(2)`.