Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

`underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(sqrt(n^(2)+r^(2)))` equalsA. `1+sqrt5`B. `-1+sqrt5`C. `-1+sqrt2`D. `1+sqrt2`

Answer» Correct Answer - B
Let `l=underset(nrarroo)(lim)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)-r^(2)))`
`=underset(nrarroo)(lim)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(1+((r)/(n))^(2)))`
`=underset(nrarroo)(lim)(1)/(n)sum_(r=1)^(2n)((r)/(n))/(sqrt(1+((r)/(n))^(2)))`
Put `(r)/(n)=x,(1)/(n)=dx, underset(nrarroo)(lim)sum_(r=1)^(2n)=int_(0)^(2)`
`therefore" "l=int_(0)^(2)(x)/(sqrt(1+x^(2)))dx=[sqrt(1+x^(2))]_(0)^(2)`
`=sqrt5-1`
52.

`lim_(n->oo)1/n[1/(n+1)+2/(n+2)+....+(3 n)/(4 n)]`A. log4B. `-log4`C. `1-log4`D. None of these

Answer» Correct Answer - D
`underset(nrarroo)(lim)(1)/(n)((1)/(n+1)+(2)/(n+2)+...+(3n)/(4n))`
`=underset(nrarroo)(lim)(1)/(n)(((1)/(n))/(1+(1)/(n))+((2)/(n))/(1+(2)/(n))+...+((3n)/(n))/(1+(3n)/(n)))`
`=underset(nrarroo)(lim)(1)/(n)sum_(r=1)^(3n)(((r)/(n))/(1+(r)/(n)))=int_(0)^(3)(x)/(1+x)dx`
`=int_(0)^(3)(x+1-1)/((1+x))dx=int_(0)^(3)dx-int_(0)^(3)(1)/(1+x)dx`
`=[x-log(x+1)]_(0)^(3)=3-log4`
53.

The value `overset(2)underset(-2)int {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}dx` depends on the value ofA. the value of pB. the value of qC. the value of rD. The values of p and q

Answer» Correct Answer - C
` l =int_(-2)^(2)[plog((1+x)/(1-x))+qlog((1-x)/(1+x))^(-2)+r]dx`
Since , log `((1+x)/(1-x))` is an odd function .
`rArrint_(-2)^(2)log((1+x)/(1-x))dx=0`
`therefore l = int_(-2)^(2)r dx =r (2+2)=4r`
54.

The value of ` int _(0)^(12a) (f(x))/(f(x)+f(12a-x))dx ` isA. aB. 2aC. 3aD. 6a

Answer» Correct Answer - D
Let `l =int_(0)^(12a)(f(x))/(f(x)+f(12a-x))dx` … (i)
`rArrl=int_(0)^(12a)(f(12a-x))/(f(12a-x)+f(x))dx` … (ii)
On adding Eqs . (i) and (ii) , we get
`2l=int_(0)^(12a)1dx=[x]_(0)^(12a)`
`rArrl=6a`
55.

If `2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx` is equal toA. `(3//5)log2`B. `(-3//5)(1+log2)`C. `(-3//5)log2`D. None of these

Answer» Correct Answer - B
Given , `2f(x)-3f((1)/(x))=x`
Put `x=(1)/(x)` Eq . (i) , we get
`2f((1)/(x))-3f(x)=(1)/(x)`
On solving Eqs . (i) and (ii) , we get
`f(x)=-(3+2x^(2))/(5x)`
Now , `int_(1)^(2)f(x)dx=-int_(1)^(2)(3+2x^(2))/(5x)dx`
`=-int_(1)^(2)((3)/(5x)+(2x)/(5))dx`
`=(1)/(5)[3logx+(2x^(2))/(2)]_(1)^(2)`
`=-(1)/(5)(3 log2+4-2log1-1)`
`=-(1)/(5)(3log2+4-0-1]`
`=-(3)/(5)(1+log2)`
56.

The value of `overset(pi)underset(-pi)int(1-x^(2)) sin x cos^(2) x" dx"`, is

Answer» Correct Answer - A
Let `f(x)=(1-x^(2)) sin x cos^(2)x`
`f(-x)=[1-(-x)^(2)][sin(-x)]cos^(2)(-x)`
`=-(1-x^(2))sin x cos^(2) x = - f(x)`
`rArr f(x)` in an odd function.
`therefore " " int_(-pi)^(pi)(1-x^(2))sin x cos^(2) x dx = 0`
57.

If ` int _(0)^(x^(2)) f(t) dt = x cos pix` , then the value of f(4) isA. 1B. `1/4`C. `-1`D. `(-1)/4`

Answer» Correct Answer - B
`int_(0)^(x^(2))f(t)dt=xcospix`
On differentiating both sides , we get
`2xf(x^(2))=(-xsinpix)/(pi)+cospix`
`rArrf(x^(2))=-(xsinpix)/(2pix)+(cospix)/(2x)`
`thereforef(4)=f(2^(2))=(-2sin2pi)/(4pi)+(cos^(2)pi)/(4)=(1)/(4)`
58.

`int_(-2)^1|2x+1|` dxA. `(5)/(2)`B. `(7)/(2)`C. `(9)/(2)`D. `4`

Answer» Put `2x+1=t` and `dx=(1)/(2)dt`.
`[x=-2impliest=-3]` and `[x=1impliest=3]`
`:.I=(1)/(2)int_(-3)^(3)|t|dt=(1)/(2){int_(-3)^(0)(-t)dt+int_(0)^(3)t dt}`
`=(1)/(2){[(-t^(2))/(2)]_(-3)^(0)+[(t^(2))/(2)]_(0)^(3)}=(1)/(2)[{0-((-9)/(2))}+((9)/(2)-0)]=(9)/(2)`.
59.

`l isum_(n-gtoo)sum_(r=1)^n1/(sqrt(4n^2-r^2))`A. `(pi)/(6)`B. `(pi)/(4)`C. `(pi)/(3)`D. `(pi)/(2)`

Answer» Correct Answer - A
`S=underset(nrarroo)(lim)sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))`
`rArr" "S=(1)/(n)underset(nrarroo)(lim)sum_(r=0)^(n-1)(1)/(sqrt(2^(2)-((r)/(n))^(2)))`
`rArr" "S=int_(0)^(1)(dx)/(sqrt(2^(2)-x^(2)))`
`rArr" "S=[sin^(-1).(x)/(2)]_(0)^(1)=sin^(-1).(1)/(2)-sin^(-1)`
`rArr" "S=(pi)/(6)`
60.

` lim _(n to oo) ( 1/(n^(2)+1^(2)) + 1/(n^(2)+2^(2)) +...1/(2n^(2)))` equalsA. `(pi)/(6)`B. `(pi)/(4)`C. `(pi)/(3)`D. `(pi)/(2)`

Answer» Correct Answer - B
Let `S=(1^(lim))/(n_(nrarroo))((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+n^(2)))`
`S=(1)/(n)underset(nrarroo)(lim)sum_(r=1)^(n)(1)/(1+((r)/(n))^(2))`
`S=int_(0)^(1)(dx)/(1=x^(2))=[tan^(-1)x]=(pi)/(4)`
61.

` int_(0)^(1) 1/(x+sqrt(x))` is equal toA. `log3`B. `log1`C. `log4`D. `log2`

Answer» Correct Answer - C
Let ` l = int _(0)^(1) (dx)/(x+sqrt(x))= int _(0)^(1) (dx)/(sqrt(x)(sqrt(x)+1))`
Put ` sqrt(x) = t rArr 1/(2sqrt(x)) dx = dt rArr 1/(sqrt(x)) dx = 2 dt `
` l = int _(0)^(1) (2dt)/(t+1) = 2 [ log (t+1)]_(0)^(1) = 2 ( log 2 - log 0 ) = log 4 `
62.

` int _(-1)^(1)| 1 - x| dx ` is equal toA. `-2`B. 0C. 2D. 4

Answer» Correct Answer - C
Let ` l = int _(-1)^(1) | 1-x| dx `
Here, ` -1 le xle 1 rArr 1 - x ge 0 ` ,
` :. l = int_(-1)^(1) (1-x) dx = [ x - (x^(2))/2 ] _(-1)^(1)`
` = 1- 1/2 + 1/2 +1 = 2`
63.

` int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx` is equal toA. `(e^(2))/2- 2e`B. ` e^(2) - 2e`C. ` (e^(2)-2e)`D. 0

Answer» Correct Answer - D
Let `f(x)=(e^(x^(3))+e^(-x^(3)))(e^(x)-e^(-x))`
`rArrf(-x)=(e^(-x^(3))+e^(x^(3)))(e^(-x)-e^(x))`
`=-(e^(x^(3))+e^(-x^(3)))(e^(x)-e^(-x))=-f(x)`
`rArr`f(x) is an odd function.
`thereforeint_(-1)^(1)f(x)dx=0`
64.

`underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n)` isA. eB. `e-1`C. `1-e`D. `e+1`

Answer» Correct Answer - B
`lim_(pitoinfty)sum_(r=1)^(n)(1)/(n)e^(r//n)=int_(0)^(1)e^(x)dx=[e^(x)]_(0)^(1)=e-1`
65.

The value of ` int _(-1)^(1) x|x| dx` isA. 2B. 1C. 0D. None of these

Answer» Correct Answer - C
Let `f(x) = x|x|`
`f(-x)=-x|x|=-f(x)`
`therefore f(x)` is an odd function.
Hence, l = 0
66.

`underset(n to oo)lim((1)/(n)+(1)/(n+1)+...+(1)/(3n))` is equal toA. log 2B. log3C. log5D. 0

Answer» Correct Answer - B
`lim_(ntoinfty)((1)/(n)+(1)/(n+1)+...+(1)/(n+2n))`
`=sum_(r=0)^(2n)(1)/(n+r)=(1)/(n)sum_(r=0)^(2n)(1)/(1+(r)/(n))`
`=int_(0)^(2)(1)/(1+x)dx=[log(1+x)]_(0)^(2)-log3-log1=log3`
67.

The value of ` int_(0)^(oo) (dx)/(a^(2)+x^(2))` is equal toA. `(pi)/(2)`B. `(pi)/(2a)`C. `(pi)/(a)`D. `(1)/(2a)`

Answer» Correct Answer - B
` int _(0)^(oo) (dx)/((a^(2)+x^(2))) = [ 1/a tan^(-1). x/a ] _(0)^(oo) = 1/a (pi/2 - 0) = pi/(2a) `
68.

`int_(-2)^(1)(|x|)/(x)dx=?`A. `3`B. `2.5`C. `1.5`D. none of these

Answer» `I=int_(-2)^(0)(-x)/(x)dx+int_(0)^(1)(x)/(x)dx=int_(-2)^(0)-dx+int_(0)^(1)dx=[-x]_(-2)^(0)+[x]_(0)^(1)=(-2+1)=-1`.
69.

`int_(-a)^(a)x|x|dx=?`A. `0`B. `2a`C. `(2a^(3))/(3)`D. none of these

Answer» `I=int_(-a)^(0)x(-x)dx+int_(0)^(a)x*xdx=int_(-a)^(0)-x^(2)dx+int_(0)^(a)x^(2)dx`
`=[(-x^(3))/(3)]_(-a)^(0)+[(x^(3))/(3)]_(0)^(a)=+(1)/(3)(-a)^(3)+(a^(3))/(3)=0`.
70.

The value of integral ` int _(1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=`A. 2B. `-1`C. 0D. 1

Answer» Correct Answer - D
Put `t=(1)/(x) rArr dt = -(1)/(x^(2))dx`
at `t=(pi)/(2)` and `pi`
`therefore int_(1//pi)^(2//pi)(sin((1)/(x)))/(x^(2))dx=-int_(pi)^(pi//2)sin t dt = [cos t]_(pi)^(pi//2)`
`=[cos. (pi)/(2)-cos (pi)]=1`
71.

Evaluate :`int_0^(pi/2)(sinx+cosx)dx`

Answer» `I = int_0^(pi/2) (sinx+cosx)dx`
`=>I = [-cosx+sinx]_0^(pi/2)`
`=>I = [-cos(pi/2)+sin(pi/2) + cos (0) - sin (0)]`
`=> I = [0+1+1 - 0]`
`=> I = 2`
72.

Evaluate :`int_(-2)^3 1/(x+7)dx`

Answer» `I = int_-2^3 1/(x+7)dx`
`=>I = [log |x+7|]_2^3`
`=>I = log 10 - log5`
`=>I = log(10/5)`
`=>I = log2`
73.

If `bgta,` then `int_(a)^(b)(dx)/(sqrt((x-a)(b-x)))` is equal toA. `(pi)/(2)`B. `pi`C. `(pi)/(2)(b-a)`D. `(pi)/(4)(b-a)`

Answer» Correct Answer - B
`int _(a)^(b) (dx)/(sqrt(x-a)(b-x))=int_(a)^(b) 1/(sqrt(-x^(2) + (a+b) x - ab))dx` ,
` = int _(a)^(b) 1/(sqrt(((b-a)/2)^(2) - (x-(a+b)/2)^(2)))dx = [ sin^(-1).(((x-(a+b))/2)/((b-2)/2))]_(a)^(b)`
` = sin^(-1) 1- sin^(-1) (-1)`
` = pi/2 + pi/2 = pi`
74.

Show that `int_(-pi//2)^(pi//2)sin^(7)xdx=0`.

Answer» Let `f(x)=sin^(7)x`. Then,
`f(-x)=[sin(-x)]^(7)=-sin^(7)x=-f(x)`.
`:.f(x)` is an odd function of `x`.
But, `int_(-a)^(a)f(x)dx=0`, when `f(x)` is odd
`:.int_(-pi//2)^(pi//2)sin^(7)xdx=0`.
75.

` int_(-1)^(1) (dx) / (x^(2)+2x+5)` is equal toA. `pi/2`B. `pi/4`C. `pi/8`D. `pi/3`

Answer» Correct Answer - C
` int _(-1)^(1) 1/(x^(2)+2x+5)dx= int_(-1)^(1)1/((x^(2)+2x+1)+4)dx`
` = int _(-1)^(1) 1/((x+1)^(2)+2^(2))dx=1/2[ tan^(-1).(x+1)/2]_(-1)^(1)`
` = 1/2 [ tan^(-1)(2/2)-tan^(-1)(0/2)]`
` = 1/2 [ tan^(-1)1] = 1/2 xx pi/4 = pi/8`
76.

` int _(0)^(pi//2) x sin^(2) x cos^(2) x dx ` is equal toA. `(pi^(2))/(32)`B. `(pi^(2))/(16)`C. `(pi)/(32)`D. None of these

Answer» Correct Answer - D
Let ` l = int _(0)^(pi//2) x sin^(2) x cos ^(2) x dx " "` …(i)
` rArr l = int _(0)^(pi//2)(pi/2-x) x sin^(2) x cos^(2) x dx " "` …(ii)
On adding Eqs . (i) and (ii) , we get
` 2l = pi/2 int_(0)^(pi//2) sin^(2) x cos ^(2) x dx `
` = pi/8 int _(0)^(pi//2) sin^(2) 2 x dx = pi/8 int _(0)^(pi//2) ((1-cos 4x)/2) dx`
` rArr 2l = pi/16 [ x - (sin 4x)/4]_(0)^(pi//2)`
` rArr 2l = pi/16 [ pi/2]`
` rArr l = (pi^(2))/64`
77.

`int_-2^2 |x| dx` is equal toA. `4`B. `3.5`C. `2`D. `0`

Answer» `I=int_(-2)^(0)|x|dx+int_(0)^(2)|x|dx=int_(-2)^(0)-xdx+int_(0)^(2)xdx`.
`=[-(x^(2))/(2)]_(-2)^(0)+[(x^(2))/(2)]_(0)^(2)=0-(-2)+(2-0)=4`.
78.

Examples: `int_(-pi/2) ^(pi/2) sin^2x dx`

Answer» Let `f(x)=sin^(2)x`.
Then, `f(-x)=[sin(-x)^(2)]=(-sinx)^(2)=sin^(2)x=f(x)`.
`:.f(x)` is an even function.
So, `int_(-pi//2)^(pi//2)sin^(2)xdx=2int_(0)^(pi//2)sin^(2)xdx=2int_(0)^(pi//2)((1-cos2x)/(2))dx`
`=int_(0)^(pi//2)(1-cos2x)dx=[x-(sin2x)/(2)]_(0)^(pi//2)=(pi)/(2)`.
79.

`int_0^1(cos^(- 1)x)^2dx`

Answer» Correct Answer - Put `x=cost`.
80.

` int_(-1)^(2)f(x)dx " where " f(x) = |x+1| +|x|+ |x-1|` is equal toA. `7/2`B. `9/2`C. `13/2`D. `19/2`

Answer» Correct Answer - D
We can redefine f as f as `f (x) = {:{(2-x,"if"-1 lt x le 0),(x+2,"if " 0 lt x le 1 ),(3x,"if " 1ltxle 2):}`
Therefore,
` int_(-1)^(2) f(x) dx = int_(-1)^(0) (2-x) dx + int _(0)^(1) (x+2) dx + int_(1)^(2)3x dx`
` = [ 2x - (x^(2))/2]_(1)^(0)+[ (x^(2))/2+2x] _(0)^(1) + [ (3x^(2))/2]_(1)^(2)`
` = { 0- (-2-1/2)}+(1/2 +2 )+3 (4/2-1/2)= 5/2 +5/2 +9/2 = 19/2 `
81.

Prove that `int_- 1^1log((2-x)/(2+x))^(20)dx=0`

Answer» Let `f(x)=log((2-x)/(2+x))`.
Then, `f(-x)=log((2+x)/(2-x))=log((2-x)/(2+x))^(-1)=-log((2-x)/(2+x))=-f(x)`.
`:.f(x)` is an odd function of `x`.
But , we know that `int_(-a)^(a)f(x)dx=0`, when `f(x)` I an odd function of `x`.
`:.int_(-1)^(1)log((2-x)/(2+x))dx=0`.
82.

`int_(0)^(sqrt(2))sqrt(2-x^(2))dx=?`A. `pi`B. `2pi`C. `(pi)/(2)`D. none of these

Answer» Put `x=sqrt(2)sint` and `dx=sqrt(2)cost dt`.
`[x=0impliest=0]` and `[x=sqrt(2)impliest=(pi)/(2)]`
`:.I=int_(0)^(pi//2)sqrt(2-2sin^(2)t)*sqrt(2)costdt=2int_(0)^(pi//2)cos^(2)tdt=2int_(0)^(pi//2)(1)/(2)(1+cos2t)dt`
`=[t+(sin2t)/(2)]_(0)^(pi//2)=(pi)/(2)`.
83.

If f(x) is defined on `[-2, 2]` by `f(x) = 4x^2 – 3x + 1 and g(x) = (f(-x)-f(x))/(x^2+3)` then `int_(-2)^2 g(x) dx` is equal toA. 64B. `-48`C. 0D. 24

Answer» Correct Answer - C
Given , ` f(x) = 4x^(2) - 3x + 1, g(x) = (f(-x)-f(x))/(x^(2)+3)`
` :. g(x) = ((4x^(2) +3x+1)-(4x^(2)-3x+1))/(x^(2)+3) = (6x)/(x^(2)+3)`
Now, ` g(-x) = - (6x)/(x^(2)+3) = - g(x)`
Which is an odd function
` :. int _(-2)^(2) g(x) dx = 0`
84.

`int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2)) dx`

Answer» `I=int_(pi//3)^(pi//2)(cos(x//2))/(sin^(5)(x//2))dx`. Put `sin.(x)/(2)=t`.
85.

` int_(-1)^(1)log(x+sqrt(x^(2)+1))` dx is equal to

Answer» Correct Answer - A
Let f(x) = log `(x+sqrt(1+x^(2)))`and replacing x by -x , we get
` f(-x) = log (sqrt(1+x^(2))-x)`
` = log [ (sqrt(1+x^(2))-x) ((sqrt(1+x^(2))+x))/((sqrt(1+x^(2))+x))]`
` = log. ([ (1+x^(2))-x^(2)])/((sqrt(1+x^(2))+x))= log 1 - log (sqrt(1+x^(2))+x)`
` = - log (sqrt(1+x^(2))+x)=f(x)`
Hence, f(x) is an odd function .
` :. int _(-1)^(1) log (x+sqrt(1+x^(2)))dx = 0 `
86.

` int_(0)^(4)|x-1| dx` is equal toA. `5/2`B. `3/2`C. `1/2`D. 5

Answer» Correct Answer - D
Let ` l = int _(0)^(4) | x-1| dx`
` :. l = int_(0)^(1)| x-1| dx + int _(1)^(4) (x-1) dx`
` = int _(0)^(1) (1-x) dx + int _(1)^(4) (x-1) dx `
` = [ x- (x^(2))/2]_(0)^(1) + [ (x^(2))/2 - x]_(1)^(4)`
` = (1- 1/2) - 0 + ((4^(2))/2-4)-(1/2-1)`
` = 1/2 + 4 + 1/2 =5`
87.

Evaluate: `int_(-a)^a sqrt((a-x)/(a+x)) dx `A. `api`B. `(api)/(2)`C. `2api`D. none of these

Answer» Put `x=acostheta` and `dx=-asintheta d theta`.
`[x=-aimpliestheta=pi]` and `[x=aimpliestheta=0]`.
`:.I=int_(pi)^(0)sqrt((1-costheta)/(1+costheta))*(-asintheta)d theta=aint_(0)^(pi){(2sin^(2)(theta//2))/(2cos^(2)(theta//2))}^(1//2)2sin((theta)/(2))cos((theta)/(2))d theta`
`=aint_(0)^(pi)2sin^(2).(theta)/(2)d theta=a int_(0)^(pi)(1-costheta)d theta=api`.
88.

Evaluate : `(i) int_(0)^(1//2)(dx)/(sqrt(1-x))` `(ii) int_(0)^(1)((1-x)/(1+x))dx`

Answer» `(i) int_(0)^(1//2)(dx)/(sqrt(1-x))=int_(0)^(1//2)(1-x)^(-1//2)dx=[(2sqrt(1-x))/(-1)]_(0)^(1//2)=(2-sqrt(2))`.
`(ii) int_(0)^(1)((1-x)/(1+x))dx=int_(0)^(1)(-1+(2)/(x+1))dx` [on dividing `(-x+1)` by `(x+1)`]
`=[-x+2log|x+1|]_(0)^(1)=[(2log2)-1]`.
89.

`int_0^a(dx)/(sqrt(a x-x^2))`

Answer» `(i) int_(0)^(a)(dx)/(sqrt(ax-x^(2)))=int_(0)^(a)(dx)/(sqrt(-(x^(2)-ax+(a^(2))/(4))+(a^(2))/(4)))`
`=int_(0)^(a)(dx)/(sqrt(((a)/(2))^(2)-(x-(a)/(2))^(2)))`
`=[sin^(-1).((x-(a)/(2)))/(((a)/(2)))]_(0)^(a)=[sin^(-1)((2x-a)/(a))]_(0)^(a)`
`=[sin^(-1)(1)-sin^(-1)(-1)]`
`=2sin^(-1)(1)=(2xx(pi)/(2))=pi`.
`(ii) int_(0)^(sqrt(2))sqrt(2-x^(2))dx=int_(0)^(sqrt(2))sqrt((sqrt(2))^(2)-x^(2))dx`
`=[(x)/(2)sqrt(2-x^(2))+((sqrt(2))^(2))/(2)*sin^(-1).(x)/(sqrt(2))]_(0)^(sqrt(2))`
`=[0+sin^(-1)(1)]-[0+sin^(-1)0]=(pi)/(2)`.
90.

` int_(-1)^(1)x^(17)cos^(4)` x dx is equal toA. `17/4`B. `13/2`C. 0D. -1

Answer» Correct Answer - C
Let `f(x) = x^(17) cos^(4) x`
f(x) is an odd function
` :. int _(-1)^(1) x^(17) cos^(4) x dx = 0 `
91.

`int_0^(pi//2)(sin2x)/(sin^4x+cos^4x) dx`

Answer» Divide num. and denom. By `cos^(4)x` and put `tan^(2)x=t`.
92.

` int _(-1)^(1)(x^(3)+|x|+1)/(x^(2)+2|x|+1)dx` is equal toA. log 2B. 2 log 2C. `1/2 log2`D. `4 log 2`

Answer» Correct Answer - B
Let ` l = int _(-1)^(1) (x^(3) + |x |+1)/(x^(2) +2|x|+1)`
`rArr l = int _(-1)^(1) (x^(3))/(x^(2)+2 |x| +1) + int _(-1)^(1) (|x|+1)/(x^(2) +2|x| +1)dx`
` = 0 +2 int _(0)^(1) (x+1)/((|x|+1)^(2))dx`
[ odd function + even function ]
` = 2 int _(0)^(1) (x+1)/(x+1)^(2)dx= 2 int _(0)^(1) 1/(x+1) dx`
` = 2 [ log |x+1|]_(0)^(1)= 2 log 2 `
93.

The value of `int_(1)^(2) (dx)/(x(1+x^(4))` isA. `(1)/(4)log.(17)/(32)`B. `(1)/(4)log.(32)/(17)`C. `log.(17)/(2)`D. `(1)/(4)log.(17)/(2)`

Answer» Correct Answer - B
Let ` l = int_(1)^(2) (dx)/(x(1+x^(4)) ) =int_(1)^(2) (x^(3))/(x^(4) (1+x^(4)))dx`
Put ` x^(4) = t rArr 4x^(3) dx = dt`
` :. l = 1/4 int_(1)^(16)(dt)/(t(1+t))= 1/4 int_(1)^(16) (1/t - 1/(1+t))dt`
` = 1/4 (log. t/(1+t))_(1)^(16) = 1/4 (log. 16/17 - log. 1/2 )`
` = 1/4 log. 32/17 `
94.

Evaluate `int_(1)^(4)f(x)dx`, where `f(x)={{:(4x+3,"if" 1 le x le 2),(3x+5,"if" 2 le x le 4.):}`

Answer» `int_(1)^(4)f(x)dx=int_(1)^(2)f(x)dx+int_(2)^(4)f(x)dx`
`=int_(1)^(2)(4x+3)dx+int_(2)^(4)(3x+5)dx`
`=[2x^(2)+3x]_(1)^(2)+[(3x^(2))/(2)+5x]_(2)^(4)=(9+28)=37`.
95.

Evaluate : `int_(0)^(4)(dx)/(sqrt(x^(2)+2x+3))`

Answer» `(i) int_(0)^(4)(dx)/(sqrt(x^(2)+2x+3))=int_(0)^(4)(dx)/(sqrt((x+1)^(2)+(sqrt(2))^(2)))`
`=[log|(x+1)+sqrt(x^(2)+2x+3)|]_(0)^(4)`
`={log|5+sqrt(27)|-log|1+sqrt(3)|}`.
`(ii) (dx)/((1+x+x^(2)))=int_(0)^(1)(dx)/([(x^(2)+x+(1)/(4))+(3)/(4)])=int_(0)^(1)(dx)/([(x+(1)/(2))^(2)+((sqrt(3))/(2))^(2)])`
`=[(2)/(sqrt(3))tan^(-1).((x+(1)/(2)))/((sqrt(3)//2))]_(0)^(1)=(2)/(sqrt(3))[tan^(-1)((2x+1)/(sqrt(3)))]_(0)^(1)`
`=(2)/(sqrt(3))[tan^(-1)(sqrt(3))-tan^(-1)((1)/(sqrt(3)))]`
`=(2)/(sqrt(3))*[(pi)/(3)-(pi)/(6)]=(pi)/(3sqrt(3))`.
96.

`int_(0)^(pi)(dx)/((3+2sinx+cosx))`

Answer» Write `sinx=(2tan(x//2))/(1+tan^(2)(x//2))`, `cosx=(1-tan^(2)(x//2))/(1+tan^(2)(x//2))` and put `tan.(x)/(2)=t`.
97.

`int(sin2x)/(cos^2x+3cosx+2)dx`

Answer» Correct Answer - Put `cosx=t`.
98.

` int_(-2)^(3)| x^(2)-1|dx` is equal toA. 3B. `1/3`C. `17/3`D. `28/3`

Answer» Correct Answer - D
`l = int _(-2)^(3) | x^(2) -1| dx `
` :. int _(0)^(2) | x^(2) -1| dx + int _(-1)^(1) | x^(2) -1| dx + int_(1)^(3) (x^(2)-1) dx `
[ Here , modulus function will change at the points , when `x^(2) - 1 = 0 " i.e ., at " x = pm 1] `
So , `l = int _(-2)^(-1) (x^(2) -1) dx + int _(-1)^(1)(1-x^(2)) dx + int _(1)^(3) (x^(2)-1)dx`
` = [ (x^(3))/3 -x] _(2)^(-1) + [ x- (x^(3))/3]_(-1)^(1) + [ (x^(3))/3 - x] _(1)^(3)`
` = (2/3 +2/3) + (2/3 +2/3) + (6+2/3)=28/3`
99.

Evaluate : `(i) int_(0)^(pi//4)sqrt(1+sin2x) dx` `(ii) int_(0)^(pi//2)sqrt(1+cos2x) dx`

Answer» `(i) int_(0)^(pi//4)sqrt(1+sin2x)dx=int_(0)^(pi//4)sqrt(cos^(2)x+sin^(2)x+2sinxcosx)dx`
`=int_(0)^(pi//4)(cosx+sinx)dx=[sinx-cosx]_(0)^(pi//4)=1`.
`(ii) int_(0)^(pi//2)sqrt(1+cos2x)dx=int_(0)^(pi//2)sqrt(2cos^(2)x)dx`
`=sqrt(2)int_(0)^(pi//2)cosxdx=sqrt(2)[sinx]_(0)^(pi//2)=sqrt(2)`.
100.

`int_(0)^(pi//4)(tan^(3)x)/((1+cos2x))dx`

Answer» Using `cos2x=(2cos^(2)x-1)`, we get `I=int_(0)^(pi//4)tan^(3)xsec^(2)xdx`. Now, put `tanx=t`.