Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

Evaluate `int_(0)^(pi)(x)/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx`.

Answer» Let `I=int_(0)^(pi)(x)/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx`…….`(i)`
Then, `I=int_(0)^(pi)((pi-x))/((a^(2)cos^(2)(pi-x)+b^(2)sin^(2)(pi-x)])dx`
or `I=int_(0)^(pi)((pi-x))/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx`........`(ii)`
Adding `(i)` and `(ii)`, we get
`2I=int_(0)^(pi)((x+pi-x))/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx=piint_(0)^(pi)(dx)/((a^(2)cos^(2)x+b^(2)sin^(2)x))`
`=2piint_(0)^(pi//2)(dx)/((a^(2)cos^(2)x+b^(2)sin^(2)x))=2piint_(0)^(pi//2)(sec^(2)x)/((a^(2)+b^(2)tan^(2)x))dx`
[dividing num. and denom. by `cos^(2)x`]
`=2piint_(0)^(oo)(dt)/((a^(2)+b^(2)t^(2)))`, where `tanx=t`
`=(2pi)/(b^(2))int_(0)^(oo)(dt)/(((a^(2))/(b^(2))+t^(2)))=[(2pi)/(b^(2))*(b)/(a)tan^(-1)((bt)/(a))]_(0)^(oo)`
`=(2pi)/(ab)[tan^(-1)(oo)-tan^(-1)(0)]=(2pi)/(ab)((pi)/(2)-0)=((2pi)/(ab)xx(pi)/(2))=(pi^(2))/(ab)`.
`:.I=(pi^(2))/(2ab)impliesint_(0)^(pi)(x)/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx=(pi^(2))/(2ab)`.
202.

Evaluate `int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx`.

Answer» Let `I=int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx`…….`(i)`
Then, `I=int_(0)^(pi)((pi-x)sin(pi-x))/(1+cos^(2)(pi-x))dx`
or, `I=int_(0)^(pi)((pi-x)sinx)/((1+cos^(2)x))dx`……`(ii)`
Adding `(i)` and `(ii)` , we get
`2I=pi int_(0)^(pi)(sinx)/((1+cos^(2)x))dx=-piint_(1)^(-1)(dt)/((1+t^(2)))`, were `cosx=t`
`=pi int_(-1)^(1)(dt)/((1+t^(2)))=pi[tan^(-1)t]_(-1)^(1)`
`=pi[tan^(-1)-tan^(-1)]=pi[(pi)/(4)-(-(pi)/(4))]=(pi^(2))/(2)`.
`:.I=(pi^(2))/(4)`.
203.

Evaluate : `(i) int_(0)^(pi//2)(cosx)/((cos (x)/(2)+sin (x)/(2)))dx` `(ii) int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx`

Answer» `(i) int_(0)^(pi//2)(cosx)/((cos.(x)/(2)+sin.(x)/(2)))dx=int_(0)^(pi//2)((cos^(2).(x)/(2)-sin^(2).(x)/(2)))/((cos.(x)/(2)+sin.(x)/(2)))dx`
`=int_(0)^(pi//2)(2(cos.(x)/(2)-sin.(x)/(2)))/((cos.(x)/(2)+sin.(x)/(2))^(2))dx=2*int_(1)^(sqrt(2))(dt)/(t^(2))=[(-2)/(t)]_(1)^(sqrt(2))=sqrt(2)(sqrt(2)-1)`.
[putting `cos.(x)/(2)+sin.(x)/(2)=t` and `(1)/(2)(cos.(x)/(2)-sin(x)/(2))dx=dt`,
also, `x=0impliest=1` and `x=(pi//2)impliest=sqrt(2)]`
`(ii)int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx = int_(0)^(pi//2)(cosx)/((1+cosx)+sinx)dx`
`=int_(0)^(pi//2)(cos^(2)(x//2)-sin^(2)(x//2))/([2cos^(2)(x//2)+2sin(x//2)cos(x//2)])dx`
`=(1)/(2)int_(0)^(pi//2)(1-tan^(2)(x//2))/(1+tan(x//2))dx` [dividing num. and denom. by `cos^(2)(x//2)`]
`=(1)/(2)int_(0)^(pi//2)[1-tan(x//2)]dx=(1)/(2)int_(0)^(pi//2)dx-(1)/(2)int_(0)^(pi//2)(sin(x//2))/(cos(x//2))dx`
`=(1)/(2)*[x]_(0)^(pi//2)+[logcos(x//2)]_(0)^(pi//2)`
`=(pi)/(4)+logcos.(pi)/(4)=(pi)/(4)+log((1)/(sqrt(2)))=((pi)/(4)-(1)/(2)log2)`.
204.

Evaluate `int_(0)^(pi)(x)/((1+sinx))dx`.

Answer» Let `I=int_(0)^(pi)(x)/((1+sinx))dx`…..`(i)`
Then, `I=int_(0)^(pi)((pi-x))/(1+xsin(pi-x))dx=int_(0)^(pi)((pi-x))/((1+sinx))dx`…….`(ii)`
Adding `(i)` and `(ii)`, we get
`2I=pi int_(0)^(pi)(dx)/((1+sinx))=pi*int_(0)^(pi)(1)/((1+sinx))xx((1-sinx))/((1-sinx))dx`
or `2I=pi int_(0)^(pi)((1-sinx)/(cos^(2)x))dx=pi*[int_(0)^(pi)sec^(2)xdx-int_(0)^(pi)secxtanxdx]`
`=pi*{[tanx]_(0)^(pi)-[secx]_(0)^(pi)}=2pi`
`:.I=pi`, i.e, `int_(0)^(pi)(x)/((1+sinx))dx=pi`.
205.

`int_(0)^(1)sin^(-1)sqrt(x)dx`

Answer» Correct Answer - Put `x=sin^(2)t`.
206.

`int_(1//pi)^(2//pi)(sin(1//x))/(x^(2))dx=?`A. `1`B. `(1)/(2)`C. `(3)/(2)`D. none of these

Answer» Put `(1)/(x)=t` and `(1)/(x^(2))dx=-dt`.
`[x=(1)/(pi)impliest=pi]` and `[x=(2)/(pi)impliest=(pi)/(2)]`
`:. I=-int_(pi)^(pi//2)sintdt=int_(pi//2)^(pi)sintdt=[-cost]_(pi//2)^(pi)=1`.
207.

`int_(1)^(2)|x^(2)-3x+2|dx=?`A. `(-1)/(6)`B. `(1)/(6)`C. `(1)/(3)`D. `(2)/(3)`

Answer» `(x^(2)-3x+2)=(x-1)(x-2)`
`1 le x lt 2 implies (x^(2)-3x+2) le 0`
`implies |x^(2)-3x+2|=-(x^(2)-3x+2)`
`:. I=int_(1)^(2)-(x^(2)-3x+1)dx=int_(1)^(2)(-x^(2)+3x-2)dx`
`=[(-x^(3))/(3)+(3x^(2))/(2)-2x]_(1)^(2)=((-2)/(3)+(5)/(6))=(1)/(6)`.
208.

Let `f (x) = x – [x],` for every real number x, where `[x]` is the greatest integer less than or equal to x. Then, evaluate `int_-1^1 f(x) dx.`A. 1B. 2C. 3D. 0

Answer» Correct Answer - A
`int_(-1)^(1)(x-[x])dx=int_(-1)^(0)(x+1)dx+int_(0)^(1)(x-0)dx`
`=[(x^(2))/(2)+x]_(-1)^(0)+[(x^(2))/(2)]_(0)^(1)=(1)/(2)+(1)/(2)=1`
209.

`int_0^(pi/4)sin^(- 1)sqrt(x/(a+x))dx`

Answer» Put `x=a tan^(2)theta`.
210.

Prove:`int_0^(pi//2) log|tanx| dx=0`

Answer» Let `I=int_(0)^(pi//2)log(tanx)dx`…….`(i)`
Then, `I=int_(0)^(pi//2)log[tan((pi)/(2)-x)]dx` `[:.int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx]`
or `I=int_(0)^(pi//2)log(cotx)dx=int_(0)^(pi//2)log((1)/(tanx))dx=-int_(0)^(pi//2)logtanxdx=-I`.
`:.I=-I` or `2I=0` or `I=0`.
Hence, `int_(0)^(pi//2)log(tanx)dx=0`.
211.

`int_(0)^(pi)(dx)/((1+sinx))=?`A. `(1)/(2)`B. `1`C. `2`D. `0`

Answer» `I=int_(0)^(pi)((1-sinx))/((1-sin^(2)x))dx=int_(0)^(pi)((1-sinx))/(cos^(2)x)dx`
`=int_(0)^(pi)[sec^(2)x-secxtanx]dx=[tanx-secx]_(0)^(pi)=2`.
212.

Let `[x]` denote the greatest integer less than or equal to `x`. Then, `int_(1)^(-1)[x]dx=?`A. `-1`B. `0`C. `(1)/(2)`D. `2`

Answer» `{-1 le x lt 0implies[x]=-1}` and `{0 le x lt 1implies[x]=0}`
`:. I=int_(-1)^(0)[x]dx+int_(0)^(1)[x]dx=int_(-1)^(0)(-1)dx+int_(0)^(1)0*dx`
`=[-x]_(-1)^(0)=0-[-(-1)]=-1`.
213.

`int_0 ^(pi/4) sqrt(1+ sin 2x) dx`A. `0`B. `1`C. `2`D. `sqrt(2)`

Answer» `I=int_(0)^(pi//4)sqrt(cos^(2)x+sin^(2)x+2sinxcosx)dx=int_(0)^(pi//4)(cosx+sinx)dx`
`=[sinx-cosx]_(0)^(pi//4)=1`.
214.

`int_(0)^(pi//2)(sqrt(cosx))/((sqrt(cosx)+sqrt(sinx)))dx=?`

Answer» Let `I=int_(0)^(pi//2)(sqrt(cosx))/((sqrt(sinx)+sqrt(cosx)))dx`………..`(i)`
Using the result `int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx` in `(i)`, we get
`I=int_(0)^(pi//2)(sqrt(cos[(pi//2)-x]))/(sqrt(sin[(pi//2)-x])+sqrt(cos[(pi//2)-x]))dx`
or `I=int_(0)^(pi//2)(sqrt(sinx))/(sqrt(cosx)+sqrt(sinx))dx=int_(0)^(pi//2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx`.........`(ii)`
Adding `(i)` and `(ii)` we get
`2I=int_(0)^(pi//2)(sqrt(cosx))/((sqrt(sinx)+sqrt(cosx)))dx+int_(0)^(pi//2)(sqrt(sinx))/((sqrt(sinx)+sqrt(cosx)))dx`
`=int_(0)^(pi//2)((sqrt(sinx)+sqrt(cosx)))/((sqrt(sinx)+sqrt(cosx)))dx=int_(0)^(pi//2)dx=[x]_(0)^(pi//2)=(pi)/(2)`.
`:.I=(pi)/(4)`, i.e., `int_(0)^(pi//2)(sqrt(cosx))/((sqrt(sinx)+sqrt(cosx)))dx=(pi)/(4)`.
215.

The value of `int_(1)^(4) |x-3|dx` is equal toA. 2B. `(5)/(2)`C. `(1)/(2)`D. `(3)/(2)`

Answer» Correct Answer - B
` int _(1)^(4) | x- 3| dx = int _(1)^(3) (3-x) dx + int _(3)^(4) (x-3) dx`
` = [ 3x - (x^(2))/2 ] _(1)^(3) + [ (x^(2))/2 - 3x ] _(3)^(4)`
` = (9- 9/2) - (3 - 1/2 ) + (16/2 - 12 ) - ( 9/2 - 9) = 5/2 `
216.

`int_(0)^(pi//2)(sqrt(sinx)cosx)^(3)dx=?`A. `(2)/(9)`B. `(2)/(15)`C. `(8)/(45)`D. `(5)/(2)`

Answer» `I=int_(0)^(pi//2)(sinx)^(3//2)cos^(2)xcosxdx=int_(0)^(1)t^(3//2)(1-t^(2))dt`, where `sinx=t`
`int_(0)^(1)(t^(3//2)-t^(7//2))dt=[(2)/(5)t^(5//2)-(2)/(9)t^(9//2)]_(0)^(1)=((2)/(5)-(2)/(9))=(8)/(45)`.
217.

`int_(0)^(pi//2)(cosx)/((1+sinx)(2+sinx))dx` is equal toA. `log.(4)/(3)`B. `log.(1)/(3)`C. `log.(3)/(4)`D. None of these

Answer» Correct Answer - A
Let ` l = int_(0)^(pi//2) (cos x)/((1+sin x) (2+ sin x) )dx` ,
Put `sin x = t rArr cos x dx = dt`
` :. l = int_(0)^(1) (dt)/((1+t)(2+t) )= int_(0)^(1) 1/((1+t))dt - int _(0)^(1) 1/((2+t))dt `
` = [ log (1+t) - log (2+t) ]_(0)^(t)`
` = (log 2 - log 3) - (0 - log 2) = log. 4/3`
218.

`int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?`A. `pi`B. `(pi)/(2)`C. `0`D. `(pi)/(4)`

Answer» `I=int_(0)^(pi//2)(sinx)/((sinx+cosx))dx` ………`(i)`
`I=int_(0)^(pi//2)(sin((pi)/(2)-x))/({sin((pi)/(2)-x)+cos((pi)/(2)-x)})dx=int_(0)^(pi//2)(cosx)/((sinx+cosx))dx` ………`(ii)`
`:.2I=int_(0)^(pi//2)intdx=[x]_(0)^(pi//2)=(pi)/(2)impliesI=(pi)/(4)`.
219.

Property 8: If f(x) is a continuous function defined on `[-a; a]` then `int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx`A. `2int_(0)^(a){f(x)+f(-x)}dx`B. `2int_(0)^(a){f(x)-f(-x)}dx`C. `int_(0)^(a){f(x)+f(-x)}dx`D. none of these

Answer» We have `int_(-a)^(a)f(x)dx=int_(0)^(a){f(x)+f(-x)}dx`.
220.

` int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx ` is equal toA. `pi//4`B. `tan^(-1)e-(pi)/(4)`C. `tan^(-1)e`D. `(pi)/(4)tan^(-1)e`

Answer» Correct Answer - B
Let ` int _(0)^(1) (dx)/(e^(x)+e^(-x))=int _(0)^(1) (e^(x))/(e^(2x)+1) dx`
Put ` t = e^(x) `
` rArr dt = e^(x) dx`
Also at `x = 0 , t = e^(0) = 1 `
at ` x = 1, t = e^(1) = e`
` l = int _(1)^(e) (dt)/(t^(2)+1) = [ tan ^(-1) t] _(1)^(e)`
` tan ^(-1) e - tan ^(-1) (1)`
` = tan ^(-1) e - pi/4`
221.

`int _(0)^(pi//2) (cosx)/(1+sinx)dx` is equal toA. log 2B. 2 log 2C. `(log 2)^(2)`D. `1/2 log2`

Answer» Correct Answer - A
Let ` I = int _(0)^(pi//2)(cosx)/(1+sinx)dx`
` = [ log (1+sin x)]_(0)^(pi//2)= log 2- log 1 = log 2`
222.

`int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0`

Answer» Apply `int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx` to get `I=-I`.
223.

The value of `overset(pi)underset(-pi)int(cos^(2)x)/(1+a^(2))dx,a gt 0`, isA. `2pi`B. `(pi)/(a)`C. `(pi)/(2)`D. `api`

Answer» Correct Answer - C
Let ` l = int _(-pi)^(pi) (cos^(2)x)/(1+a^(x)) dx, a gt 0 " "` …(i)
` rArr l = int _(-pi)^(pi) (cos^(2)x)/(1+a^(-x))dx " "` …(ii)
On adding Eqs. (i) and (ii), we get
` 2l = int _(-pi)^(pi) cos^(2) x dx = int _(-pi)^(pi) ((cos 2x+1))/2 dx `
` rArr 2l = 1/2 [ ((sin2x)/2+x)]_(-pi)^(pi) = 1/2 (pi+pi) rArr l = pi/2 `
224.

` int _(0)^(1) (dx)/(1+x+x^(2))` is equal toA. `(pi)/(sqrt3)`B. `(pi)/(2sqrt3)`C. `(2pi)/(3sqrt3)`D. `(pi)/(3sqrt3)`

Answer» Correct Answer - D
`int_(0)^(1) (dx)/(1+x+x^(2)) = int_(0)^(1) (dx)/(x^(2) + x + 1/4 - 1/4 +1 )`
` = int _(0)^(1) (dx)/((x+1/2)^(2)+ ((sqrt(3))/2)^(2))` ,
` = 2/(sqrt(3)) [ tan^(-1). ((x+1/2))/(sqrt(3)/2)]_(0)^(1)`
` = 2/(sqrt(3)) [ tan^(-1) ((3/2)/(sqrt(3)/2))-tan^(-1) ((1/2)/(sqrt(3)/2))]`
` = 2/(sqrt(3)) [ tan^(-1) sqrt(3) - tan ^(-1). 1/(sqrt(3))]`
` =2/(sqrt(3)) (pi/3 - pi/6) = (2pi)/(6sqrt(3)) = pi/(3sqrt(3))`
225.

` int _(0)^(2pi) (sin x + |sin x|)dx` is equal to

Answer» Correct Answer - B
` int _(0)^(2pi) ( sin x + | sin x| ) dx `
` int _(0)^(pi) ( sin x + sin x) dx + int _(pi)^(2pi) (sin x - sin x) dx `
` = int _(0)^(pi) 2 sin x dx + int _(pi)^(2pi) 0 dx = 2 [ - cos x] _(0)^(pi) +0`
` = int _(0)^(pi) 2 sin x dx + int _(pi)^(2pi) 0 dx = 2 [ - cos x ] _(0)^(pi) + 0 `
` = - 2 ( cos pi - cos 0) = -2 (-1-1) = 4`
226.

` int _(pi//4)^(pi//2) "cosec"^(2)dx` is equal toA. `-1`B. 1C. 0D. `(1)/(2)`

Answer» Correct Answer - B
` int _(pi//4)^(pi//2) "cosec"^(2) x dx = [ -cotx ] _(pi//4)^(pi//2) = ( -cot. pi/2 + cot .pi/2 ) = 1 `
227.

` int _(0)^(pi//4) log ((sin x+ cos x)/(cosx))dx ` is equal toA. `(pi)/(8)log2`B. `(pi)/(4)log2`C. `log2`D. `(pi)/(2)log2`

Answer» Correct Answer - A
Let ` l = int _(0)^(pi//4) log ((sin x + cos x)/(cos x)) dx`
` l =- int _(0)^(pi//4) log (1+tan x ) dx" " `
` = int _(0)^(pi//4) log [ 1 + tan (pi/4 -x) ] dx`
` = int _(0)^(pi//4) log (1+ (tan pi//4-tan x)/(1+tan pi //4 tanx))dx`
` = int _(0)^(pi//4) log (1+ (1-tanx)/(1+tan x)) dx`
` rArr l = int _(0)^(pi//4) log (2/(1+tan x))dx" "` ...(ii)
On adding Eqs. (i) and (ii) , we get
` 2l = int _(0)^(pi//4) log 2 dx = log 2 (pi/4)`
` rArr l = pi/8 log 2 `
228.

The value of the integral `overset(pi//4)underset(0)int sin^(-4)x dx`, isA. `-(8)/(3)`B. `(3)/(2)`C. `(8)/(3)`D. None of these

Answer» Correct Answer - A
Let ` l = int_(-pi//4)^(pi//4) sin^(-4) x dx = int _(-pi//4)^(pi//4) x^(4) dx`
Put ` cot x = t rArr - 1^(2) x dx = dt`
` :. l = int_(-1)^(1) (1+t^(2)) dt = -2 int_(0)^(1) (1+ t^(2))dt`
` = - 2 [ t+(t^(3))/3]_(0)^(1) = - 2 [ 1+1/3] = - 8/3`
229.

If `int _(a)^(b) x^(3) dx = 0 ` and if ` int _(a)^(b) x^(2) dx = 2/3 ,` then the values of a and b respectively areA. 1,1B. `-1,-1`C. `1,-1`D. `-1,1`

Answer» Correct Answer - D
Given , ` int _(a)^(b) x^(3) dx = 0 and int _(a)^(b) x^(2) dx = 2/3 `
If we take `a=-1` and b= 1 , then it will satisfy the given integration .
230.

`int _(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx = k log 2 , ` then k equals

Answer» Correct Answer - A
`cosx log((1+x)/(1-x))dx` is an odd function .
`thereforeint_(-1//2)^(1//2)cosx log((1+x)/(1-x))dx=0`
Then k = 0
231.

Let `f : (-1,1) to R ` be continous function , if ` int _(0)^(sinx) f(t) dt = (sqrt(3))/2 x , "then " f ((sqrt(3))/2 )` is equal toA. `(1)/(2)`B. `(sqrt3)/(2)`C. `sqrt((3)/(2))`D. `sqrt3`

Answer» Correct Answer - D
Given , ` int _(0)^(sin x) f(t) dt = (sqrt(3))/2 x`
On differentiating w.r.t x , we get
`f(sin) cos x = (sqrt(3))/2 ` [ Using Leibnitz theorem ]
If ` sin x = (sqrt(3))/2 rArr x = pi/3 `
` :. f (sin pi/3) cos.pi/3 = (sqrt(3))/2 rArr f (sqrt(3)/2) . 1/2 = (sqrt(3))/2 `
` rArr f((sqrt(3))/2) = sqrt(3)`
232.

If `f(t)`is an odd function, then `varphi(x)=int_a^xf(t)dx`is an even function.A. an odd functionB. an even functionC. neither even nor oddD. 0

Answer» Correct Answer - B
if f(t) is an odd function , then `int_(0)^(x)f(t)` dt is even function .
233.

Let `F (x) = f(x) + f ((1)/(x)),` where `f (x) = int _(1) ^(x ) (log t)/(1+t) dt.` Then F (e) equalsA. `1//2`B. 0C. 1D. 2

Answer» Correct Answer - A
`F(e)=f(e)+f((1)/(e))`
`rArrF(e)=int_(1)^(e)(logt)/(1+t)dt+int_(1)^(1//e)(logt)/(1+t)dt[becausef(x)=int_(1)^(x)(logt)/(1+t)dt]`
On putting t `=(1)/(t)` in second integration , we get
`F(e)=int_(1)^(e)(logt)/(1+t)dt+int_(1)^(e)(logt)/(t(1+t))`
`=int_(1)^(e)(logt)/(t)dt=[((logt)^(2))/(2)]_(1)^(e)`
`=(1)/(2)[(loge)^(2)-(log1)^(2)]=(1)/(2)`
234.

If `kint_(0)^(1)xf(3x)dx=int_(0)^(3)tf(t)dt`, then the value of k isA. 9B. 3C. `1/9`D. `1/3`

Answer» Correct Answer - A
Let `l=kint_(0)^(1)xf(3x)dx`
Put 3x=t
`rArrdx=(dt)/(3)`
`thereforel=kint_(0)^(3)(t)/(3)*f(t)*(dt)/(3)=(k)/(9)int_(0)^(3)t*f(t)dt`
Now `(k)/(9)int_(0)^(3)t*f(t)dt=int_(0)^(3)t*f(t)dt` [ Given]
`rArr(k)/(9)=1rArrk=9`
235.

Evaluate :`int_0^1sqrt(x(1-x))dx`

Answer» `I=intsqrt({((1)/(2))^(2)-(x-(1)/(2))^(2)})dx`.
236.

`int_1^3(dx)/(x^2(x+1))`

Answer» Let `(1)/(x^(2)(x+1))=(A)/(x)+(B)/(x^(2))+(C )/(x+1)`. Then `Ax(x+1)+B(x+1)+Cx^(2)-=1`.
This, gives `A=-1`, `B=1`, `C=1`.
237.

`int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)`

Answer» Correct Answer - Put `x= sin theta`
238.

`int_(0)^(1)((sin^(-1)x)/(x))dx=(pi)/(2)(log2)`

Answer» Put `x=sin theta` and integrate by parts.
239.

`int_(0)^(pi)log(1+cosx)dx=-pi(log2)`

Answer» `2I=int_(0)^(pi)log(1-cos^(2)x)dx=2int_(0)^(pi)log(sinx)dx=4int_(0)^(pi//2)log(sinx)dx`.
240.

`int_1^2 (5x^2)/(x^2+4x+3) dx`

Answer» Let `(5x^(2))/((x^(2)+4x+3))=5+(A)/((x+1))+(B)/((x+3))`.
241.

`int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)`

Answer» `I=int_(0)^(pi//2)log((sinx)/(cosx)+(cosx)/(sinx))dx=int_(0)^(pi//2)log((1)/(sinxcosx))dx`
`=-[int_(0)^(pi//2)log(sinx)dx+int_(0)^(pi//2)log(cosx)dx]`.
242.

`int_(pi//3)^(pi//4)(tanx+cotx)^(2)dx`

Answer» `I=int(tan^(2)x+cot^(2)x+2)dx=int{(sec^(2)x-1)+(cosec^(2)x-1)+2}dx`
`=int(sec^(2)x+cosec^(2)x)dx`.
243.

`int_(1)^(2)(dx)/((x+1)sqrt(x^(2)-1))`

Answer» Put `(x+1)=(1)/(t)`.
244.

`int_(0)^(pi//2)(1)/((1+sqrt(cotx)))dx=?`A. `0`B. `(pi)/(4)`C. `(pi)/(2)`D. `pi`

Answer» `I=int_(0)^(pi//2)(sqrt(sinx))/((sqrt(sinx)+sqrt(cosx)))dx`.
245.

`int_2^3(2-x)/(sqrt(5x-6-x^2))`

Answer» Let `(2-x)=A*(d)/(dx)(5x-6-x^(2))+B`.
246.

` int_(0)^(lambda) (ydy)/(sqrt(y+lambda))` is equal toA. `(2)/(3)(2-sqrt2)lambda sqrt(lambda)`B. `(2)/(3)(2+sqrt2)lambda sqrt(lambda)`C. `(1)/(3)(2-sqrt2)lambdasqrt(lambda)`D. `(1)/(3)(2+sqrt2)lambdasqrt(lambda)`

Answer» Correct Answer - A
Let ` l = int_(0)^(lambda) (ydy)/(sqrt(y+lambda))` ,
` = int_(0)^(lambda) [ sqrt(y+lambda) - lambda/(sqrt(y+lambda))]dy` ,
` = [ (y+lambda)^(3//2)/(3//2)]_(0)^(lambda) - [ (lambda sqrt(y+lambda))/(1//2) ] _(0)^(lambda)`
` = 2/3 [ (2 lambda )^(3//2) - lambda ^(3//2) ] - 2lambda[(2 lambda )^(1//2) - (lambda)^(1//2)] `
` = 2lambda sqrt(lambda) [ (2 sqrt(2)-1)/3 - (sqrt(2)-1) ] = 2/3 lambda sqrt(lambda) (2 - sqrt(2))` ,
247.

`int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)`

Answer» `I=int_(0)^(pi//2)sqrt((sinx)/(cosx))/((1+sqrt((sinx)/(cosx))))dx=int_(0)^(pi//2)(sqrt(sinx))/((sqrt(sinx)+sqrt(cosx)))dx`
248.

`int_(8)^(15)(dx)/((x-3)sqrt(x+1))` is equal toA. `(1)/(2)log.(5)/(3)`B. `(1)/(3)log.(5)/(3)`C. `(1)/(5)log.(3)/(5)`D. `(1)/(2)log.(3)/(5)`

Answer» Correct Answer - A
Put `x +1 = t^(2) rArr dx = 2t dt `
At x= 8, t=3 and x=15 , t =4
` :. l = int_(3)^(4) (2t dt)/((t^(2)-1-3)t)` ,
` = int _(3) ^(4) (2dt)/((t^(2)-4))= 2. 1/4 [log. (t-2)/(t+2)]_(3)^(4)`
` = 1/2 [ log. 1/3 - log. 1/5] =1/2 log. 5/3`
249.

`int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx)) dx`

Answer» `I=int_(0)^(pi//2)(sqrt(2)(sinx+cosx))/(sqrt(2sinxcosx))dx=sqrt(2)*int_(0)^(pi//2)((sinx+cosx))/(sqrt(1-(1-sin2x)))dx`
`=sqrt(2)*int_(0)^(pi//2)((sinx+cosx))/(sqrt(1-(sinx-cosx)^(2)))dx`. Put `(sinx-cosx)=t`.
250.

If `f(x) = tanx-tan ^(3) x + tan^(5) x - tan ^(7) x + ... infty` for `olt x lt pi/4 , "than" int_(0)^(pi//4) f (x) dx=`A. 1B. 0C. `1/4`D. `1/2`

Answer» Correct Answer - C
`f(x)=tanx-tan^(3)x+tan^(5)x-...infty` [ it is a Gp]
`rArrf(x)=(tanx)/(1+tan^(2)x)=(tanx)/(sec^(2)x)=(sin2x)/(2)`
`thereforeint_(0)^(pi//4)f(x)dx=int_(0)^(pi//4)(sin2x)/(2)dx=[-(cos2x)/(4)]_(0)^(pi//4)=(1)/(4)`