 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. | Factorize `9z^3-27 z^2-100 z+300 ,`if it is given that `(3z+10)`is a factor of it. | 
| Answer» `9z^3-27z^2-100z+300=(3z+10)(Az^2+bz+c)` `=3AZ^3+3BZ^2+10AZ^2+3CZ+10NZ+10C` `=3AZ^3+Z^2(3B+10A)+Z(3C+10B)+10C` `3A=9` `A=3` `3B+10A=-27` `B=-19` `3C+10B=-100` `10C=300` `C=30` `(3Z+10)(3Z^2-19Z+30)=0` `3Z^2-9z-10z+30=0` `3z(z-3)-10(z-3)=0` `(3z-10)(z-3)=0` `(3z+10)(3z-10)(z-3)`. | |
| 2. | Use factor theorem to verify that `x+a`is a factor of `x^n+a^n`for any odd positive integer. | 
| Answer» `(-1)*(-1)=` `1*(-1)=(-1)` `(-1)*(-1)*(-1)=(-1)^3=(-1)` `(-1)^n=1` when n is even `(-1)^n=-1` when n is odd. `f(x)=x^n+a^n` `x=-a`and then Remainder=0 `f(-a)=(-a)^n+a^n` `=(-a)^n(a)^n+a^n` `=a^n[1-(-1)^n]=0` `1+(-1)^n=0` `(-1)^n=-1` It is possible only when n is odd. | |
| 3. | Write the degrees of each of the followingpolynomials:`7x^3+4x^2-3x+12`(ii) `12-x+2x^3`(iii) `5y-sqrt(2)`(iv) 7 (v) 0 | 
| Answer» degree= maximum power of variable 1) 3 degree 2) 3 degree 3) 1 degree 4) 0 degree 5) degree is not defined. | |
| 4. | If `x=4/3`is a root of the polynomial `f(x)=6x^3-11 x^2+k x-20 ,`find the value of `k` | 
| Answer» x=a is root of f(x) f(a)=0 f(4/3)=0 `6*(4/3)^3-11(4/3)^2+k(4/3)-20=0` `6*64/27-11*16/9+4/3k-20=0` `(384-176*3+9*4k-20*27)/27=0` `384-528+36k-540=0` `36k=1068-384` `k=19`. | |
| 5. | What must be added to `x^4+2x^3-2x^2+x-1`so that the result is exactly divisible by `x^2+2x-3.` | 
| Answer» Dividend=divisor*quotient+remainder p-(-x+2)=(divisor*quotient) p+(x-2)=D*Q (x-2) 2 should be added . | |
| 6. | Find the remainder when `f(x)=x^3-6x^2+2x-4`is divided by `g(x)=3x-1.` | 
| Answer» When f(x) is divided by then remainder =f(a) `g(x)=3x-1=3(x-1/3)` `a=1/3` Rem`=f(1/3)=(1/3)^3-6(1/3)^2+2(1/3)-4` `=1/27-6/9+2/3-4` `=1/27-4` `=-107/27`. | |
| 7. | If `x-2`is a factor of each of the following twopolynomials, find the values of `a`in each case.`x^3-2a x^2+a x-1``x^5-3x^4-a x^3+3a x^2+2a x+4` | 
| Answer» (x-a) is factor of f(x) f(a)=0 `f(x)=x^3-2ax^2+ax-1` `f(2)=0` `2^3-2a2^2+a*2-1=0` `8-8a+2a-1=0` `a=7/6` `g(x)=x^5-3x^4-ax^3+2ax+4` `g(2)=0` `32-48-8a-12a+4a+4=0` `-16a-12=0` `a=-3/4`. | |
| 8. | What must be added to `3x^3+x^2-22 x+9`so that the result is exactly divisible by `3x^2+7x-6?` | 
| Answer» `3x^3+x^2-22x+9=x(3x^2+7x-6)-2(3x^2+7x-6)-2x-3` `R=-2x-3` We need to add 2x+3. | |
| 9. | If the polynomials `a x^3+3x^2-13`and `2x^3-5x+a ,`when divided by `(x-2)`leave the same remainder, find the value of `a`. | 
| Answer» `f(x)=ax^3+3x^2-13` `g(x)=2x^3-5x+9` `x-2=0` `x=2` `a2^3+3*2^2-13=2*2^3-5*2+9` `8a+12-13=16-10+9` `7a=6+1` `7a=7` `a=1`. | |
| 10. | What must be subtracted from `4x^4-2x^3-6x^2+x-5`so that the result is exactly divisible by `2x^2+x-1` | 
| Answer» -6 should be subtracted, so that remainder will be 0. | |