InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 751. |
There are some benches in a classroom. If 4 students sit on each bench, then 3 benches are left unoccupied. However, if 3 students sit on each bench, 3 students are left standing. How many students are there in the class?1. 362. 483. 564. 64 |
|
Answer» Correct Answer - Option 2 : 48 Given: If 4 students sit on each bench, then 3 benches are left unoccupied 3 students sit on each bench, 3 students are left standing Calculation: Let the total number of students be x. According to the question, (x/4) = Number of benches needed for all the students When 4 students sit on one bench, number of benches left = 3 Then, according to the first condition, the total number of benches = (x/4) + 3 ----(1) According to the question, (x/3) = number of benches needed for all - 1 When 3 students sit on one bench, number of benches needed extra = 1 Then, according to the second condition, the total number of benches available = (x/3) - 1 ----(2) Equating (1) and (2), (x/3) - 1 = (x/4) + 3 ⇒ (x/12) = 4 ⇒ x = 48 ∴ The total number of students present in the class is 48. |
|
| 752. |
If a = 3 + 2√2, then find the value of (a6 – a4 – a2 + 1)/a3.1. 1982. 2043. 1924. 210 |
|
Answer» Correct Answer - Option 3 : 192 Given: a = 3 + 2√2 Concept Used: a2 – b2 = (a – b)(a + b) a3 + b3 = (a + b)3 – 3ab(a + b) Calculation: a = 3 + 2√2 1/a = 1/(3 + 2√2) ⇒ 1/a = (3 – 2√2)/{(3 + 2√2) × (3 – 2√2)} ⇒ 1/a = (3 – 2√2)/{32 – (2√2)2} ⇒ 1/a = (3 – 2√2)/(9 – 8) ⇒ 1/a = (3 – 2√2) Now, a + 1/a = 3 + 2√2 + 3 – 2√2 ⇒ a + 1/a = 6 (a6 – a4 – a2 + 1)/a3 ⇒ a3 – a – 1/a + 1/a3 ⇒ (a3 + 1/a3) – (a + 1/a) ⇒ {(a + 1/a)3 – 3(a + 1/a)} – (a + 1/a) ⇒ (63 – 3 × 6) – 6 ⇒ 216 – 18 – 6 ⇒ 192 ∴ The required value of (a6 – a4 – a2 + 1)/a3 is 192 |
|
| 753. |
The difference between the two numbers is 47.364. If the smaller number is 31.855, then the bigger number is1. 15.5092. 79.1193. 79.2194. 79.129 |
|
Answer» Correct Answer - Option 3 : 79.219 Given Smaller number = 31.855 Difference of numbers = 47.364 Calculation Let the numbers be 'x' and 'y' Then, y = 31.855 And x - y = 47.364 ⇒ x - 31.855 = 47.364 ⇒ x = 47.364 + 31.855 = 79.219 ∴ The bigger number is 79.219 |
|
| 754. |
If x + y + z = 24 and xy + yz + zx = 36, then what is the value of (x – y)2 + (y – z)2 + (z – x)2 + 3?1. 9392. 6763. 5764. 869 |
|
Answer» Correct Answer - Option 1 : 939 Given: x + y + z = 24 and xy + yz + zx = 36 Formula used: (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx Calculations: (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx ⇒ (24)2 = x2 + y2 + z2 + 2 × 36 ⇒ 576 = x2 + y2 + z2 + 72 ⇒ x2 + y2 + z2 = 576 – 72 ⇒ x2 + y2 + z2 = 504 Now, (x – y)2 + (y – z)2 + (z – x)2 + 3 ⇒ x2 + y2 – 2xy + y2 + z2 – 2yz + z2 + x2 – 2zx + 3 ⇒ 2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx + 3 ⇒ 2(x2 + y2 + z2 – xy – yz – zx) + 3 ⇒ 2(504 – 36) + 3 ⇒ 2 × 468 + 3 ⇒ 936 + 3 = 939 ∴ The value of (x – y)2 + (y – z)2 + (z – x)2 + 3 is 939. |
|
| 755. |
यदि `x!=0, y!=0` और `z!=0` और `1/(x^(2))+1/(y^(2))+1/(z^(2))=1/(xy)+1/(yz)+1/(zx)` है तो `x, y, z` के बीच का संबंध क्या है?A. `x+y+z=0`B. `x+y=z`C. `1/x+1/y+1/z=0`D. `x=y=z` |
|
Answer» Correct Answer - D `1/(x^(2))+1/(y^(2))+1/(z^(2))+1/(xy)+1/(yz)+1/(zx)` Go through options `d` take `x=y=z` `1/(x^(2))+1/(x^(2))+1/(x^(2))=1/(x^(2))+1/(x^(2))+1/(x^(2))` `:.` option d is right |
|
| 756. |
यदि `a/b=4/5` और `b/c=15/16` है तो `(18c^(2)-7a^(2))/(45c^(2)-20a^(2))` किसके बराबर है?A. `1/3`B. `5/2`C. `3/4`D. `1/4` |
|
Answer» Correct Answer - D `a/b=4/5` and `b/c=15/16` `implies a/bxxb/c=4/5xx15/16=3/4` `:. a/c=3/4` `:. (18c^(2)-7a^(2))/(45c^(2)+20a^(2))=(c^(2)(18-7(a^(2))/(c^(2))))/(c^(2)(45+20(a^(2))/(c^(2))))` `=(18-7(a/c)^(2))/(45+20(a/c)^(2))=(18-7xx9/16)/(45+20xx9/16)` `= (18-63/16)/(45+45/4)=(225xx4)/(16xx225)=1/4` |
|
| 757. |
दो समीकरण `4x-y=2` और `2x-8y+4=0` के कितने हल हो सकते है?A. zeroB. oneC. twoD. infinitely many |
|
Answer» Correct Answer - B `4x-y=2` `2x-8y+4=0` `a_(1)x+b_(1)y+c_(1)=0` `a_(2)x+b_(2)y+c_(2)=0` where `x` and `y` are variable. i `(a_(1))/(a_(2))!=(b_(1))/(b_(2))` then there will be unique solution. ltbr ii. `(a_(1))/(a_(2))=(b_(1))/(b_(2))=(c_(1))/(c_(2))`, then infinite solution iii `(a_(1))/(a_(2))=(b_(1))/(b_(2))!=(c_(1))/(c_(2))` then no solution `:. 4/2!=(-1)/(-8)` So the equations have only one solution. |
|
| 758. |
यदि `(x-a^(2))/(b+c)+(x-b^(2))/(c+a)+(x-c^(2))/(a+b)=4(a+b+c)`, then `x` किसके बराबर है ?A. `(a+b+c)^(2)`B. `a^(2)+b^(2)+c^(2)`C. `ab+bc+ca`D. `a^(2)+b^(2)+c^(2)-ab-bc-ca` |
|
Answer» Correct Answer - A `(x-a^(2))/(b+c)=(x-b^(2))/(c+a)+(x-c^(2))/(a+b)` `=4(a+b+c)` assume `a=1, b=0, c=1` Make sure thre will no `(0/0)` form `: (x-1)/(1+0)+(x-0)/(1+1)+(x-1)/(1+0)=4` `implies x-1+x/2+x-1=4xx2` `x+x/2+x=8+2` `(5x)/2=10` `x=4` Now put values in options take option. `(a)(a+b+c)^(2)-(1+0+1)^(2)=4` |
|