InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If the remainder when 2x3 + 3x2 – 5kx + 15 is divided by x – k is 2k3, then find the value of k.1. ±√(15/2)2. ±√(5/2)3. ±√154. ±√2 |
|
Answer» Correct Answer - Option 1 : ±√(15/2) Given: P(x) = Dividend = 2x3 + 3x2 – 5kx + 15 Divisor = x – k Remainder = 2k3 Calculation: As the remainder is 2k3 when divided by x – k For x – k = 0 , x = k P(k) = 2k3 2k3 + 3k2 – 5k2 + 15 = 2k3 ⇒ –2k2 + 15 = 0 ⇒ 2k2 = 15 ⇒ k2 = 15/2 ⇒ k = ±√(15/2) ∴ Value of k is ±√(15/2) |
|
| 2. |
Find the value of k for which the roots are real and equal in the following equation:Kx2 – 2√5x + 4 = 0 1. 5/42. √53. 2√34. 4/5 |
|
Answer» Correct Answer - Option 1 : 5/4 Given: Kx2 – 2√5x + 4 = 0 Concept used: If the roots of the equation ax2 + bx + c = 0 are real and equal, Then b2 – 4ac = 0 Calculation: Kx2 – 2√5x + 4 = 0 If roots are real and equal, then b2 – 4ac = 0 ⇒ (-2√5)2 – 4 × k × 4 = 0 ⇒ 20 – 16k = 0 ⇒ 16k = 20 ⇒ k = 5/4 ∴ The value of k is 5/4. |
|
| 3. |
If x2 - 5x + 1 = 0, then the value of \(\left(x^4 + \frac 1 {x^2}\right) \div \left(x^2 + 1\right)\) is:1. 252. 213. 224. 24 |
|
Answer» Correct Answer - Option 3 : 22 Given: x2 - 5x + 1 = 0 Formula used: (a + b)3 = a3 + b3 + 3ab(a + b) Calculations: x2 - 5x + 1 = 0 ⇒ x(x - 5 + 1/x) = 0 ⇒ (x - 5 + 1/x) = 0 ⇒ (x + 1/x) = 5 Taking cube both sides, ⇒ (x + 1/x)3 = (5)3 ⇒ x3 + 1/x3 + 3(x)(1/x)(x + 1/x) = 125 ⇒ x3 + 1/x3 + 3(5) = 125 ⇒ x3 + 1/x3 + 15 = 125 ⇒ x3 + 1/x3 = 125 - 15 ⇒ x3 + 1/x3 = 110 (x4 + 1/x2)/(x2 + 1) Dividing the numerator and denominator by x, (1/x)(x4 + 1/x2)/(x2 + 1)(1/x) ⇒ (x3 + 1/x3)/(x + 1/x) ⇒ 110/5 ⇒ 22 ∴ The value of \(\left(x^4 + \frac 1 {x^2}\right) \div \left(x^2 + 1\right)\) is 22. |
|
| 4. |
यदि `x=3+2sqrt(2)` और `xy=1` है तो `(x^(2)+3xy+y^(2))/(x^(2)-3xy+y^(2))` का मान ज्ञात करें।A. `30/31`B. `70/31`C. `35/31`D. `37/31` |
|
Answer» Correct Answer - D `x=3+2sqrt(2),xy=1,y^(2)=1/(x^(2))` `y=1/x=1/(3+2sqrt(2))=3-2sqrt(2)` `:. x+1/x=3+2sqrt(2)+3-2sqrt(2)=6` `:. x^(2)+1/(x^(2))=36-2=34` `= (x^(2)+3xy+y^(2))/(x^(2)-3xy+y^(2))=(x^(2)+1/(x^(2))+3)/(x^(2)+1/(x^(2))-3)` `=(34+3)/(34-3)=37/31` |
|
| 5. |
Salary of 2 teachers and 4 peons is 28000 rupees, whereas salary of 2 teacher and 7 peon is 34000 rupees, then find out the salary of a teacher.1. 80002. 90003. 100004. 11000 |
|
Answer» Correct Answer - Option 3 : 10000 Given : The salary of 2 teachers and 4 peons is 28000 rupees The salary of 2 teachers and 7 peons is 34000 rupees Calculations : Let the salary of the teacher be 'T' Let the salary of the peon be 'P' According to the question 2T + 4P = 28000 ....(1) 2T + 7P = 34000 ....(2) Solve equ (1) and (2) T = 10000 and P = 2000 ∴ The salary of the teacher will be 10000 rupees
|
|
| 6. |
If a2x + b2y + c2z = 9x + 121y + 81z, where a, b, c are positive integers, then find the value of c + a - b1. 12. -313. -14. 5 |
|
Answer» Correct Answer - Option 1 : 1 Given- a2x + b2y + c2z = 9x + 121y + 81z Concept Used- Comparison of both sides of an equation. Calculation- a2x + b2y + c2z = 9x + 121y + 81z Comparing both sides of the above equation we get, a = 3, b = 11, c = 9 c + a - b = 9 + 3 - 11 ∴ c + a - b = 1 |
|
| 7. |
If x + y = 5 and xy = 6, find the value of x - y. Given that x > y1. 12. 213. -14. 13 |
|
Answer» Correct Answer - Option 1 : 1 Given- x + y = 5 xy = 6 Formula Used- (a + b)2 = (a - b)2 + 4ab Calculation- x + y = 5 ⇒ (x + y)2 = 25 ⇒ (x - y)2 + 4xy = 25 ⇒ (x - y)2 = 25 - 4 × 6 ⇒ (x - y)2 = 1 ⇒ x - y = 1 [∵ x > y] ∴ The value of x - y is 1 |
|
| 8. |
A spends Rs. 56,000 to purchase a certain number of laptops. The price of one laptop is Rs. 2,000. If the price of a laptop rises by 75%. Then find how many laptops should be purchased less so that the expenditure should remain constant.1. 102. 123. 254. 15 |
|
Answer» Correct Answer - Option 2 : 12 Given: The total amount which spends by A = Rs. 56,000 Price of one laptop = Rs. 2,000 Price increase = 75% Concepts used: Expenditure = Price × Quantity Calculation: The initial quantity of laptops purchased by the individual at price Rs.2000 per unit is - Price × Quantity = Expenditure ⇒ Rs. 2,000 × Quantity = Rs. 56,000 ⇒ Quantity = Rs. 56,000 ÷ Rs.2,000 ⇒ 28 units of laptops According to the question The new price of a laptop = Old price × (1 + 75%) ⇒ Rs. 2,000 × (1 + 0.75) ⇒ Rs. 2,000 × 1.75 ⇒ Rs. 3,500 New Price × New Quantity = Expenditure ⇒ Rs.3500 × Quantity = Rs.56000 ⇒ Quantity = Rs.56000 ÷ Rs.3500 ⇒ 16 units of laptops Fall in the number of laptops purchased = Old quantity – new quantity ⇒ (28 – 16) units ⇒ 12 units of laptops ∴ Quantity purchased of laptops has to be decreased by 12 units when the price of laptops rise by 75%, keeping the expenditure constant. |
|
| 9. |
A kurta cost Rs. 12 more than the cost of a shirt. The total cost of 2 such Kurtas and 5 such shirts is Rs. 234. The cost of 3 shirts is: 1. Rs. 902. Rs. 423. Rs. 304. Rs. 60 |
|
Answer» Correct Answer - Option 1 : Rs. 90 Given: The total cost of 2 Kurtas and 5 shirts = Rs. 234 The cost of kurta is more than cost of shirt = Rs. 12 Calculation: Let assume that cost of a shirt is Rs. x So, cost of Kurta = Rs. x + 12 ⇒ Cost of 5 shirts = 5 × x = Rs. 5x ⇒ Cost of 2 kurtas = 2 × (x + 12) = Rs. 2x + 24 According to the question ⇒ 5x + 2x + 24 = 234 ⇒ 7x = 234 -24 ⇒ 7x = 210 ⇒ x = 210/7 ⇒ x = 30 ⇒ Cost of 1 Shirt = Rs. 30 ⇒ Cost of 1 Kurta = Rs.30 + Rs. 12 = Rs. 42 ∴ Cost of 3 shirts = Rs. 30 × 3 = Rs. 90 The correct option is 1 i.e. Rs. 90 |
|
| 10. |
In the given question, two equations numbered I and II are given. Solve both the equations and mark the appropriate answer.I. x2 - 7x + 12 = 0II. y2 - 5y + 6 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y can not be established. |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : x ≥ y I. x2 - 7x + 12 = 0 ⇒ x2 - 4x - 3x + 12 = 0 ⇒ (x - 4)(x - 3) = 0 ⇒ x = 4, 3 II. y2 - 5y + 6 = 0 ⇒ y2 - 3y - 2y + 6 = 0 ⇒ (y - 3)(y - 2) = 0 ⇒ y = 3, 2
Hence, x ≥ y |
||||||||||||||||
| 11. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. x2 - 7x + 12 = 0II.y2 + 8x + 12 = 0 1. x ≤ y 2. x ≥ y3. x > y4. x |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : x > y I. x2 - 7x + 12 = 0 ⇒ x2 - 4x - 3x + 12 = 0 ⇒ x(x - 4) - 3( x - 4) = 0 ⇒ (x - 3)(x - 4) = 0 ⇒ x = 3, 4 y2 + 8x + 12 = 0 ⇒ y2 + 6y + 2y + 12 = 0 ⇒ y(y + 6) + 2(y + 6) = 0 ⇒ (y + 6)(y + 2) = 0 ⇒ y = -6, -2
∴ x > y |
||||||||||||||||
| 12. |
जब `f(x)=12x^(3)-13x^(2)-5x+7` में `(3x+2)` से भाग दिया जाता है तो शेषफल क्या होगा?A. 2B. 0C. -1D. 1 |
|
Answer» Correct Answer - D `f(x)=12x^(2)-13x^(2)-5x+7` If we divide `f(x)` by `implies (3x+2)` then `3x+2=0` `x=-2/3` `:. f((-2)/3)=12((-2)/3)^(3)-13((-2)/3)^(2)-5((-2)/3)+7` `=-12xx8/27-52/9+10/3+7` `=(-96-156+90+189)/27` `=(-252+279)/27=27/27=1` |
|
| 13. |
If x = 9 – 4√5, then value of √x + 1/√x.1. 42. 53. 2√54. 7 |
|
Answer» Correct Answer - Option 3 : 2√5 GIVEN: x = 9 – 4√5 CONCEPT USED: a2 - b2 = (a + b) × (a - b) CALCULATION: x = 9 – 4√5 So, 1/x = 1/(9 – 4√5) = (9 + 4√5)/(9 – 4√5) × (9 + 4√5) ⇒ 1/x = (9 + 4√5)/(81 - 80) = 9 + 4√5 1/x = 9 + 4√5 ⇒ x + 1/x = (9 – 4√5) + (9 + 4√5) = 18 We know that, if x + 1/x = a, then √x + 1/√x = √(a + 2) Now, √x + 1/√x = √(18 + 2) = √20 ∴ 2√5 |
|
| 14. |
If `a=2.361, b=3.263` and `c=c^(3)+3abc` isA. `(p-q)(q-r)^(3)+(r-p)^(3)`B. `3(p-q)(q-r)(r-p)`C. 0D. 1 |
|
Answer» Correct Answer - C `a=2.361` `c=5.624` `a+b-c=0` `2.361+3.263=5.624=0` `:. a^(3)+b^(3)-c^(3)+3abcimplies0` |
|
| 15. |
If the cost of 2 tables and 3 chairs is Rs. 500, then find the cost of 8 tables and 12 chairs?1. Rs. 22002. Rs. 20003. Rs. 30004. Rs. 1800 |
|
Answer» Correct Answer - Option 2 : Rs. 2000 Given: The cost of 2 tables and 3 chairs is Rs. 500 Concept Used: If we have a linear equation in two variable and the required answer will be the multiple of the value of equation and a constant term then we don't need any other linear equation to find the answer Calculation: Let the cost of a table and a chair be Rs. x and Rs. y respectively Now, according to question 2x + 3y = 500 ----(i) and we have to find the value of 8x + 12y Now, if we do (i) × 4, we get 4 × (2x + 3y) = 4 × 500 ⇒ 8x + 12y = 2000 Hence, the price of 8 tables and 12 chairs is Rs. 2000 |
|
| 16. |
यदि `a/b=1/2,` तो समीकरण `((2a-5b))/((5a+3b))` का मान ज्ञात करें।A. -32B. 11C. `(-8)/11`D. 17 |
|
Answer» Correct Answer - C `a/b=1/2` Let `a=x,b=2x` then `((2a-5b))/(5a+3b)=(2x-10x)/(5x+6x)` `=(-8x)/(11x)=(-8)/11` |
|
| 17. |
`x^(3)+y^(3)=72` और `xy=8` दिया गया जहां `xgty, x-y` का मान क्या होगा?A. 4B. 2C. -2D. -4 |
|
Answer» Correct Answer - B Given `x^(3)+y^(3)=72` `xy=8` `(xgty)` If we take `x=4` and `y=2` `4^(3)+2^(3)=72` `(72=72)` and `xy=8` so `x-y=?` `4-2=2` |
|
| 18. |
यदि `x+y=4, x^(2)+y^(2)=14` और `xgty`, तो `x` और `y` का सही मान क्या होगा?A. `2-sqrt(2),sqrt(3)`B. `3,1`C. `2+sqrt(3),2-sqrt(3)`D. `2+sqrt(3),2sqrt(2)` |
|
Answer» Correct Answer - C `x^(2)+y^(2)=14` `x+y=4`…………..i Squaring both sides `x^(2)+y^(2)+2xy=16` `14+2xy=16` `2xy=2` `xy=1` `x^(2)+y^(2)=14` Substracting `(2xy)` from both sides `x^(2)+y^(2)-2xy=14-2xy` `(x-y)^(2)=14-2xx1` `x=y=sqrt(12)` `x-y=2sqrt(3)`..............ii `y=2-sqrt(3)` `x=2+sqrt(3)` |
|
| 19. |
यदि `x^(2)+y^(2)=29` और `xy=10` जहां `xgt0,ygt0,xgty` हो तो `(x+y)/(x-y)` का मान ज्ञात कीजिये?A. `-7//3`B. `7//3`C. `3//7`D. `-3//7` |
|
Answer» Correct Answer - B `(x+y)^(2)=x^(2)+y^(2)+2xy` `=29+2xx10` `=49` `x+y=7` `(x-y)^(2)=x^(2)+y^(2)-2xy` `=29-2xx10=9` `(x-y)=3` `(x+y)/(x-y)=7/3` |
|
| 20. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 – 3x – 4 = 0ll. y2 – 5y – 6 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y OR relation between x and y can not be established. |
|||||||||||||||
|
Answer» Correct Answer - Option 5 : x = y OR relation between x and y can not be established. Calculation: l. x2 – 3x – 4 = 0 ⇒ x2 – 4x + x – 4 = 0 ⇒ x(x – 4) + 1(x – 4) = 0 ⇒ (x – 4) (x + 1) = 0 ⇒ x = 4, -1. ll. y2 – 5y – 6 = 0 ⇒ y2 – 6y + y – 6 = 0 ⇒ y(y – 6) + 1(y – 6) = 0 ⇒ (y + 1) (y – 6) = 0 ⇒ y = 6, -1. Comparison between x and y (via Tabulation):
|
||||||||||||||||
| 21. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 – 9x + 14 = 0ll. y2 + y – 42 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relation between x and y can not be determine. |
|||||||||||||||
|
Answer» Correct Answer - Option 5 : x = y or relation between x and y can not be determine. Calculation: x2 – 9x + 14 = 0 ⇒ x2 - 7x - 2x + 14 = 0 ⇒ x(x - 7) - 2(x - 7) = 0 ⇒ (x - 2) (x - 7) ⇒ x = 2, 7. y2 + y – 42 = 0 ⇒ y2 + 7y - 6y - 42 = 0 ⇒ y(y + 7) - 6(y + 7) = 0 ⇒ (y - 6) (y + 7) = 0 ⇒ y = 6, -7. Comparison between x and y (via Tabulation):
∴ The relation between x and y can not be determined. |
||||||||||||||||
| 22. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 + 3x – 28 = 0ll. y2 – 7y + 10 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relation between x and y can not be determine. |
|||||||||||||||
|
Answer» Correct Answer - Option 5 : x = y or relation between x and y can not be determine. Given: x2 + 3x – 28 = 0 ⇒ x2 + 7x – 4x – 28 = 0 ⇒ x(x + 7) – 4 (x + 7) = 0 ⇒ (x – 4) (x + 7) = 0 ⇒ x = 4, -7. y2 – 7y + 10 = 0 ⇒ y2 – 5y – 2y + 10 = 0 ⇒ y(y – 5) – 2(y – 5) = 0 ⇒ (y – 5) (y – 2) = 0 ⇒ y = 5, 2. Comparison between x and y (via Tabulation):
|
||||||||||||||||
| 23. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 – 50x + 225 = 0ll. y2 + 32y – 105 = 01. x > y2. x < y3.x ≥ y4. x ≤ y5. x = y or relation between x and y can not be determine. |
|||||||||||||||
|
Answer» Correct Answer - Option 1 : x > y Calculation: l. x2 – 50x + 225 = 0 ⇒ x2 – 45x – 5x + 225 = 0 ⇒ x(x - 45) – 5(x - 45) = 0 ⇒ (x - 5) (x - 45) = 0 ⇒ x = 5, 45 ll. y2 + 32y – 105 = 0 ⇒ y2 + 35y – 3y – 105 = 0 ⇒ y(y + 35) – 3(y + 35) = 0 ⇒ (y - 3) (y + 35) ⇒ y = 3, -35 Comparison between x and y (via Tabulation):
∴ The result is x > y |
||||||||||||||||
| 24. |
If a3 + 4a2 + 16a = 192, then what is the value of a3 + 8/a ?1. 652. 633. 684. 66 |
|
Answer» Correct Answer - Option 4 : 66 Given: a3 + 4a2 + 16a = 192 Calculations: a3 + 4a2 + 16a = 192 When a = 4 L.H.S = 64 + 64 + 64 = 192 L.H.S. = R.H.S. So, a3 + 8/a = 43 + 8/4 = 64 + 2 = 66 ∴ The value of a3 + 8/a is 66. |
|
| 25. |
x, y and z are real numbers. If x3 + y3 + z3 = 17, x + y + z = 2 and xyz = 1, then what is the value of 2(xy + yz + zx) ?1. 32. -23. 24. -3 |
|
Answer» Correct Answer - Option 2 : -2 Given: x3 + y3 + z3 = 17, x + y + z = 2 and xyz = 1 Formula used: x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx Calculations: x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) ⇒ 17 – 3 × 1 = 2 × (x2 + y2 + z2 – xy – yz – zx) ⇒ 7 = x2 + y2 + z2 – xy – yz – zx ⇒ x2 + y2 + z2 = xy + yz + zx + 7 (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx ⇒ (2)2 = xy + yz + zx + 7 + 2xy + 2yz + 2zx ⇒ 3(xy + yz + zx) = -3 ⇒ xy + yz + zx = -1 ⇒ 2(xy + yz + zx) = -2 ∴ The value of 2(xy + yz + zx) is -2. |
|
| 26. |
If a + 1/(a + 7) = (-5); find the value of (a + 7)11 + 1/(a + 7)12?1. 42. 13. 04. 2 |
|
Answer» Correct Answer - Option 4 : 2 Given: [a + 1/(a + 7)] = (-5) Concept: If the value of the equation x + (1/x) is given as 2, then the value of x = 1. Calculation: ∵ [a + 1/(a + 7)] = (-5) Adding (7) on both sides; ⇒ [(a + 7) + 1/(a + 7)] = (-5) + 7 ⇒ [(a + 7) + 1/(a + 7)] = 2 Now, this is in the form ‘x + (1/x) = 2’ ∴ a + 7 = 1 ⇒ [(a + 7)11 + 1/(a + 7)12] = (1)11 + 1/(1)12 = 1 + 1 = 2 |
|
| 27. |
If 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (Ax + By – Cz)(3x2 + 2y2 + 4z2 – √2Axy + 2Byz + 2√3Zx), find the value of A2 + B2 – C2?1. 42. 13. 94. 5 |
|
Answer» Correct Answer - Option 2 : 1 Given: 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (Ax + By – Cz)(3x2 + 2y2 + 4z2 – √2Axy + 2Byz + 2√3Zx) Concept: Compare the unknown values of the given equation with the actual values of the equation after expansion. Formula used: a3 + b3 + c3 – 3abc = (a + b + c)[a2 + b2 + c2 – (ab + bc + ca)] Calculation: ∵ 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (√3x)3 + (√2y)3 + (–2z)3 – 3(√3x)(√2y)( –2z) ∴ (√3x)3 + (√2y)3 + (-2z)3 – 3(√3x)(√2y)(-2z) = (√3x + √2y – 2z)[3x2 + 2y2 + 4z2 – (√3x)(√2y) – (√2y)( –2z) – (√3x)(–2z)] ⇒ (√3x)3 + (√2y)3 + (-2z)3 – 3(√3x)(√2y)(-2z) = (√3x + √2y – 2z)[3x2 + 2y2 + 4z2 – (√3x)(√2y) + (√2y)(2z) + (√3x)(2z)] ∴ If we compare the values of the equations; We get A = √3 B = √2 C = 2 ∴ A2 + B2 – C2 = (√3)2 + (√2)2 – (2)2 = 3 + 2 – 4 = 5 – 4 = 1 |
|
| 28. |
In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I.2y2 - 13y -34 =0II. 7x2 + 25x + 12 =01. x ≥ y2. x ≤ y3. x < y4. x > y5. No relation or x = y |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : x < y I.2y2 - 13y - 34 =0 ⇒ 2y2 + 4y - 17y - 34 = 0 ⇒ 2y(y + 2) - 17 ( y + 2) = 0 ⇒ (2y - 17) ( y + 2) = 0 ⇒ y = 17/2, -2 II. 7x2 + 25x + 12 =0 ⇒ 7x2 + 21x + 4x + 12 = 0 ⇒ 7x ( x + 3) + 4 ( x+ 3) = 0 ⇒ (7x + 4) (x + 3) = 0 ⇒ x = -4/3, -3
∴ x < y
|
||||||||||||||||
| 29. |
In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I.16x2 -1 =0II. y2 = 4/161.x < y2. x ≥ y3. x ≤ y4. No relation or x =y5. x > y |
||||||||||||||||||||
|
Answer» Correct Answer - Option 4 : No relation or x =y I.16x2 -1 =0 ⇒ 16x2 = 1 ⇒ (x) = + 1/4 , - 1/4
II. y2 = 1/4 ⇒ y2 = (1/2)2 ⇒ y = + 1/2 , - 1/2
∴ No relation can be established |
|||||||||||||||||||||
| 30. |
In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 – 10x + 21 = 0II. y2 + 6y – 27 = 01. x > y2. x ≤ y3. No relation in x and y or x = y4. x ≥ y5. x < y |
|||||||||||||||
|
Answer» Correct Answer - Option 4 : x ≥ y Calculations: From I, x2 – 10x + 21 = 0 ⇒ x2 – 7x – 3x + 21 = 0 ⇒ x(x – 7) – 3(x – 7) = 0 ⇒ (x – 7)(x – 3) = 0 Taking, ⇒ x – 7 = 0 or x – 3 = 0 ⇒ x = 7 or x = 3
From II, y2 + 6y – 27 = 0 ⇒ y2 + 9y – 3y – 27 = 0 ⇒ y(y + 9) – 3(y + 9) = 0 ⇒ (y + 9)(y – 3) = 0 Taking, ⇒ y + 9 = 0 or y – 3 = 0 ⇒ y = –9 or y = 3 Comparison between x and y (via Tabulation):
∴ x ≥ y |
||||||||||||||||
| 31. |
In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 + 10x - 24 = 0II. 3y2 - 12y - 15 = 01. x ≥ y2.x ≤ y3. No relation or x = y4. x > y5. x < y |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : No relation or x = y I.x2 + 10x -24 = 0 ⇒ x2 +12x -2x - 24 =0 ⇒ x(x + 6) -2(x + 6) = 0 ⇒ (x + 6) (x - 2) = 0 ⇒ x = -6, 2 II. 3y2 - 12y - 15 = 0 ⇒ 3y2 - 15y + 3y - 15 =0 ⇒ 3y(y - 5) + 3(y - 3) = 0 ⇒ (3y + 5) (3y + 3) =0 ⇒ y = 5/3, -1 Comparison between x and y (via Tabulation):
∴ There is no relation between x and y
|
||||||||||||||||
| 32. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I: x2 + 10x – 299 = 0II: y2 + 22y + 117 = 01.x > y2.x ≤ y3.x = y or relation between x and y can not be determined.4.x ≥ y5. x < y |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : x = y or relation between x and y can not be determined. Calculation: I: x2 + 10x – 299 = 0 ⇒ x2 + 23x – 13x – 299 = 0 ⇒ x (x + 23) – 13(x + 23) = 0 ⇒ (x + 23) × (x – 13) = 0 ⇒ x = 13, (-23) II: y2 + 22y + 117 = 0 ⇒ y2 + 9y + 13y + 117 = 0 ⇒ y × (y + 9) + 13 × (y + 9) = 0 ⇒ (y + 9) × (y + 13) = 0 ⇒ y = (-13), (-9) Comparison between x and y (via Tabulation):
∴ From the table, we can conclude that x = y or relation cannot be established. |
||||||||||||||||
| 33. |
In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.l. x2 + 10x – 75 = 0II. 2y2 – y – 136 = 0 1. x > y2. x ≤ y3. No relation in x and y or x = y4. x ≥ y5. x < y |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : No relation in x and y or x = y Calculation: l. x2 + 10x – 75 = 0 ⇒ x2 + (15 – 5)x – 75 = 0 ⇒ x2 + 15x – 5x – 75 = 0 ⇒ x(x + 15) – 5(x + 15) = 0 ⇒ (x + 15) (x – 5) = 0 ⇒ x = -15, 5
II. 2y2 – y – 136 = 0 ⇒ 2y2 – (17 – 16)y – 136 = 0 ⇒ 2y2 – 17y + 16y – 136 = 0 ⇒ y(2y – 17) + 8(2y – 17) = 0 ⇒ (2y – 17) (y + 8) = 0 ⇒ y = 17/2, -8
∴ No relation in x and y or x = y |
||||||||||||||||
| 34. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 6x2 – 19x + 14 = 0II. y2 + 14y + 48 = 01. x > y2. x < y 3. x ≤ y4. x ≥ y5. x = y or the relationship between x and y cannot be established. |
|||||||||||||||
|
Answer» Correct Answer - Option 1 : x > y Calculation: I. 6x2 – 19x + 14 = 0 ⇒ 6x2 – 12x – 7x + 14 = 0 ⇒ 6x(x – 2) – 7(x – 2) = 0 ⇒ (x – 2)(6x – 7) = 0 ⇒ x = 2, 7/6 II. y2 + 14y + 48 = 0 ⇒ y2 + 6y + 8y + 48 = 0 ⇒ y(y + 6) + 8(y + 6) = 0 ⇒ (y + 6)(y + 8) = 0 ⇒ y = – 6, – 8
∴ The relation between x and y is, x > y |
||||||||||||||||
| 35. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 3x2 + 19x + 20 = 0II. 6y2 + 19y +15 = 01. x ˃ y2. x ˂ y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established. |
|
Answer» Correct Answer - Option 5 : x = y or the relationship between x and y cannot be established. From equation I) we get, 3x2 + 19x + 20 = 0 ⇒ 3x2 + 15x+ 4x + 20 = 0 ⇒ 3x (x+ 5) + 4(x+5) + 20 = 0 ⇒ (x+5) (3x + 4) = 0 ∴ x = -5, - 4/3 From equation II) we get, 6y2 + 19y + 15 = 0 ⇒ 6y2 + 10y + 9y + 15 = 0 ⇒ 2y (3y + 5) + 3(3y + 5) = 0 ⇒ (2y + 3) (3y + 5) = 0 ∴ y = -3/2, -5/3 Comparison between x and y (via Tabulation):
∴ The relationship between x and y cannot be established. |
|
| 36. |
What is the minimum or maximum value of 3x2 + 30x + 7?1. -762. -673. -894. -68 |
|
Answer» Correct Answer - Option 4 : -68 Given: Our given equation is 3x2 + 30x + 7 Concept used: For maximum and minimum value, we can put dy/dx = 0 And if d2y/dx2 > 0 then the value of x obtained from dy/dx will give minimum value when substituted in equation And if d2y/dx2 < 0 then the value of x obtained from dy/dx will give maximum value when substituted in equation Calculation: Let y = 3x2 + 30x + 7 ⇒ dy/dx = 6x + 30 = 0 ⇒ x = -5 Now, d2y/dx2 = 6 > 0, y will give minimum value at x = -5 ymin = 3(-5)2 + 30 × (-5) + 7 = -68 ∴ The minimum value of given expression is -68
|
|
| 37. |
If α and β are roots of equation x2 - 15x + 56 = 0 then find the value of (α2 – β2) where α > β?1. 152. 123. 184. 20 |
|
Answer» Correct Answer - Option 1 : 15 Given: The given quadratic equation = x2 - 15x + 56 Calculation: x2 - 15x + 56 = 0 ⇒ x2 - 8x – 7x + 56 = 0 ⇒ x(x - 8) - 7(x - 8) = 0 ⇒ (x - 8)(x - 7) = 0 ⇒ x = 7 and 8 So, α and β are 8 and 7 respectively. ∴ (α2 – β2) = (8)2 – (7)2 = 15 |
|
| 38. |
If ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0, then find the value of 1/β2 – 1/α2.1. 10/812. 8/813. 4/94. 22/27 |
|
Answer» Correct Answer - Option 2 : 8/81 GIVEN: ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0 FORMULA USED: (α – β)2 = (α + β)2 – 4αβ (α2 – β2) = (α – β)(α + β) CALCULATION: Since ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0. α + β = -b/a = 12 ---- (1) αβ = c/a = 27 ---- (2) From (1) and (2): (α – β)2 = (α + β)2 – 4αβ ⇒ (α – β)2 = 144 – 108 = 36 ⇒ α – β = 6 Now, 1/β2 – 1/α2 ⇒ (α2 – β2)/α2β2 ⇒ [(α – β)(α + β)]/α2β2 ⇒ [(6 × 12)/272] ⇒ 8/81 ∴ The value of 1/β2 – 1/α2 is 8/81. |
|
| 39. |
If α and β are the roots of equation 7x2 + 4x – 1 = 0, then find the value of (α2 + β2)?1. 15/492. 30/493. 16/494. 25/49 |
|
Answer» Correct Answer - Option 2 : 30/49 Given: The given quadratic equation is 7x2 + 4x – 1 = 0 Concept Used: Sum of roots (α + β) = -b/a And product of roots (α × β) = c/a Calculation: By comparing the given quadratic equation 7x2 + 4x - 1 with standard equation ax2 + bx + c we can find the value of coefficient a, b and c ∴ a = 7, b = 4 and c = -1 Sum of roots (α + β) = -b/a = - (4)/7 = -4/7 And, product of roots (α × β) = c/a = -1/7 We know that, α2 + β2 = (α + β) 2 - 2(α × β) ⇒ α2 + β2 = (-4/7) 2 - 2(-1/7) = 30/49 |
|
| 40. |
The coefficient of a2 in the sum of -5a2 + 8ab, -3a2, 14a2 – 11ab is :1. -52. -223. 64. -3 |
|
Answer» Correct Answer - Option 3 : 6 Given: Equation = -5a2 + 8ab – 3a2 and 14a2 – 11ab Sum = -5a2 + 8ab – 3a2 + 14a2 – 11ab ⇒ 6a2 – 3ab ∴ The coefficient of a2 is 6 |
|
| 41. |
If α and β are the roots of the equation ax2 + bx + c = 0 then the value of 1/α2 + 1/β2 is: 1. (a2 - 2cb)c22. (b2 – 2ca)/c23. (b2 + 2ca)/c24. (a2 + 2bc)/c2 |
|
Answer» Correct Answer - Option 2 : (b2 – 2ca)/c2 Given: Our given quadratic equation is ax2 + bx + c = 0 Concept used: General quadratic equation in terms of roots is x2 – (α + β)x + αβ = 0 Formula used: a2 + b2 = (a + b)2 – 2ab Calculation: By comparing given quadratic equation with general quadratic equation, we get (α + β) = –b/a and αβ = c/a Now, 1/α2 + 1/β2 ⇒ (α2 + β2)/(α2β2) ⇒ ((–b/a)2 – 2(c/a))/(c/a)2 ⇒ (b2 – 2ca)/c2 ∴ The required value of given expression is (b2 – 2ca)/c2 |
|
| 42. |
If the equation 12x2 – ax + 7 = ax2 + 9x + 3 has only one solution (repeated), then what is the positive internal solution of 'a'?1. 32. 43. 54. 2 |
|
Answer» Correct Answer - Option 1 : 3 Given: The equation 12x2 – ax + 7 = ax2 + 9x + 3 Formula used: To have only one solution D = 0 D = b2 – 4ac Calculation: 12x2 – ax + 7 = ax2 + 9x + 3 ⇒ x2(12 – a) – x(9 + a) + 4 = 0 According to the question: ⇒ (9 + a)2 – 4(12 – a)(4) = 0 ⇒ 81 + a2 + 18a – 192 + 16a = 0 ⇒ a2 + 34a – 111 = 0 ⇒ a2 + 37a – 3a – 111 = 0 ⇒ a(a + 37) – 3(a + 37) = 0 ⇒ (a – 3)(a + 37) = 0 If, (a – 3) = 0 ⇒ a = 3 Either, (a + 37) = ⇒ a = – 37 ⇒ a = – 37 is not positive. ∴ The positive internal solution of 'a' is 3. |
|
| 43. |
In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answerI. 4x2 – 72x + 224 = 0II. y2 – 19y + 60 = 01. x > y2. x ≤ y3. x = y or the relationship cannot be established.4. x ≥ y5. x < y |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : x = y or the relationship cannot be established. I. 4x2 – 72x + 224 = 0 ⇒ 4x2 – 56x – 16x + 224 = 0 ⇒ 4x(x – 14) – 16(x – 14) = 0 ⇒ (x – 14)(4x – 16) = 0 ⇒ x = 14 or 4 II. y2 – 19y + 60 = 0 ⇒ y2 – 15y – 4y + 60 = 0 ⇒ y(y – 15) – 4(y – 15) = 0 ⇒ (y – 15)(y – 4) = 0 ⇒ y = 15 or 4 Comparison between x and y (via Tabulation):
∴ x = y or the relationship cannot be established. |
||||||||||||||||
| 44. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 4x2 + 13x + 9 = 0II. 4y2 + 20y + 25 =01. x ˃ y2. x ˂ y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established. |
|
Answer» Correct Answer - Option 1 : x ˃ y From equation I) we get, 4x2 + 13x + 9 = 0 ⇒ 4x2 + 4x +9x + 9 ⇒ 4x (x +1) +9(x + 1) ⇒ (x +1)(4x + 9) x = -1, -9/4 From equation II) we get, 4y2 + 20y + 25 =0 ⇒ 4y2 +10y +10Y +25 ⇒ 2y(2y + 5) + 5(2y + 5) ⇒ (2y + 5) (2y + 5) ∴ y = -5/2, -5/2 Comparison between x and y (via Tabulation):
∴ x > y |
|
| 45. |
If x = 1 and x = -1/3 are roots of the equation mx2 – nx – 1 = 0. Determine the value of m and n. 1. m = -3 and n = 2 2. m = 3 and n = -23. m = 2 and n = 2 4. m = 3 and n = 2 |
|
Answer» Correct Answer - Option 4 : m = 3 and n = 2 Given: Roots of quadratic equation are -1/3 and 1 Calculation: x = 1 m(1)2 – n(1) – 1 = 0 ⇒ m – n -1 = 0 ⇒ m – n = 1 …………………….. (1) x = -1/3 m(-1/3)2 – n(-1/3) – 1 = 0 ⇒ m/9 + n/3 = 1 ⇒ m + 3n = 9 ………………………. (2) From equation (1) and (2) -4n = -8 ⇒ n = 2 Now, ⇒ m – 2 = 1 ⇒ m = 3 ∴ m = 3 and n = 2 The correct option is 4 i.e. m = 3 and n = 2 |
|
| 46. |
In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 4x2 - 7x + 3 = 0II. 16y2 - 9 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relationship between x and y cannot be established. |
|||||||||||||||
|
Answer» Correct Answer - Option 3 : x ≥ y Given∶ I. 4x2 - 7x + 3 = 0, ⇒ 4x2 - 4x - 3x + 3 = 0, ⇒ 4x (x - 1) -3 (x - 1) = 0, ⇒ (4x - 3) (x - 1) = 0, ⇒ x = 3 / 4, 1 II. 16y2 - 9 = 0, ⇒ 16y2 = 9, ⇒ y2 = 9 / 16, ⇒ y = ± 3 / 4
Hence, x ≥ y |
||||||||||||||||
| 47. |
If a + b + c = 6, a2 + b2 + c2 = 30 and a3 + b3 + c3 = 165, then the value of 4abc is:1. -12. -43. 14. 4 |
|
Answer» Correct Answer - Option 4 : 4 Given: If a + b + c = 6, a2 + b2 + c2 = 30 and a3 + b3 + c3 = 165 Concept used: (a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca) a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca) Calculation: ⇒ (a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca) ⇒ 62 = 30 + 2 (ab + bc + ca) ⇒ (ab + bc + ca) = 6/2 = 3 ⇒ a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca) ⇒ 165 - 3abc = 6 × (30 - 3) ⇒ 165 - 3abc = 6 × 27 ⇒ 3abc = 165 - 162 ⇒ abc = 1 ∴ 4abc = 4 × 1 = 4 |
|
| 48. |
If x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0, then what is the value of x3 + 8y3?1. 852. 653. 764. 95 |
|
Answer» Correct Answer - Option 2 : 65 Given - x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0 Formula used - a3 + b3 = (a + b) (a2 - ab + b2) (a + b)2 = a2 + b2 + 2ab Solution - x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0 ⇒ xy = 2 then, 4xy = 8 ⇒ (x + 2y)2 = x2 + 4y2 + 4xy = 17 + 8 = 25 ⇒ (x + 2y) = 5 ⇒ x3 + 8y3 = (x + 2y) (x2 + 4y2 - 2xy) ⇒ x3 + 8y3 = (5) × (17 - 4) = 65 ∴ x3 + 8y3 = 65. Short trick - ⇒ put x = 1, y = 2 ⇒ it satisfy both the given expression. ⇒x3 + 8y3 = 13 + 8 × 23 = 65 |
|
| 49. |
यदि `x=2015, y=2014` और `z=2013` है तो `x^(2)+y^(2)+z^(2)-xy-yz-xz` का मान क्या है?A. 3B. 4C. 6D. 2 |
|
Answer» Correct Answer - A `x=2015` `y=2014` `z=2013` `=x^(2)+y^(2)+z^(2)-xy-yz-zx=` `1/2[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]` `= 1/2[(2015-2014)^(2)+(2014` `-2013)^(2)+(2013-2015)^(2)]` `=1/2(1+1+4)=3` |
|
| 50. |
यदि `(xy)/(x+y)=a,(xz)/(x+z)=b` और `(yz)/(y+z)=c` है जहां `a,b,c` सभी अशून्य संख्याऐं है तो `x` का मान किसके बराबर है?A. `(2abc)/(ab+bc-ac)`B. `(2abc)/(ab+ac-bc)`C. `(2abc)/(ac+bc-ab)`D. `(2abc)/(ab+bc-ac)` |
|
Answer» Correct Answer - C `(xy)/(x+y)=a, (xz)/(x+z)=b, (yz)/(y+z)=c` Now `implies (x+y)/(xy)=1/a` `(x+z)/(xz)=1/b,(y+z)/(yz)=1/c` `implies 1/y+1/x=1/a,1/z+1/x=1/b`, `1/z+1/y=1/c` Now we have to findthe value of `x` `:. 1/a+1/b-1/c=1/y+1/x+1/z` `+1/x-1/y-1/z` `:. 1/a+1/b=1/c=2/x` `(bc+ac-ab)/(abc)=2/x` `x=(2abc)/(bc+ac-ab)` |
|