Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

If the remainder when 2x3 + 3x2 – 5kx + 15 is divided by x – k is 2k3, then find the value of k.1. ±√(15/2)2. ±√(5/2)3. ±√154. ±√2

Answer» Correct Answer - Option 1 : ±√(15/2)

Given:

P(x) = Dividend = 2x3 + 3x2 – 5kx + 15

Divisor = x – k

Remainder = 2k3

Calculation:

As the remainder is 2k3 when divided by x – k

For x – k = 0 , x = k

P(k) = 2k3

2k3 + 3k2 – 5k2 + 15 = 2k3

⇒ –2k2 + 15 = 0

⇒ 2k2 = 15

⇒ k2 = 15/2

⇒ k = ±√(15/2)

Value of k is ±√(15/2)

2.

Find the value of k for which the roots are real and equal in the following equation:Kx2 – 2√5x + 4 = 0 1. 5/42. √53. 2√34. 4/5

Answer» Correct Answer - Option 1 : 5/4

Given:

Kx2 – 2√5x + 4 = 0

Concept used:

If the roots of the equation ax2 + bx + c = 0 are real and equal,

Then b2 – 4ac = 0

Calculation:

Kx2 – 2√5x + 4 = 0

If roots are real and equal, then

b2 – 4ac = 0

⇒ (-2√5)2 – 4 × k × 4 = 0

⇒ 20 – 16k = 0

⇒ 16k = 20

⇒ k = 5/4

The value of k is 5/4.

3.

If x2 - 5x + 1 = 0, then the value of \(\left(x^4 + \frac 1 {x^2}\right) \div \left(x^2 + 1\right)\) is:1. 252. 213. 224. 24

Answer» Correct Answer - Option 3 : 22

Given:

x2 - 5x + 1 = 0

Formula used:

(a + b)3 = a3 + b3 + 3ab(a + b)

Calculations:

x2 - 5x + 1 = 0

⇒ x(x - 5 + 1/x) = 0

⇒ (x - 5 + 1/x) = 0

⇒ (x + 1/x) = 5

Taking cube both sides,

⇒ (x + 1/x)3 = (5)3

⇒ x3 + 1/x3 + 3(x)(1/x)(x + 1/x) = 125

⇒ x3 + 1/x3 + 3(5) = 125

⇒ x3 + 1/x3 + 15 = 125

⇒ x3 + 1/x3 = 125 - 15

⇒ x3 + 1/x3 = 110

(x4 + 1/x2)/(x2 + 1)

Dividing the numerator and denominator by x,

(1/x)(x4 + 1/x2)/(x2 + 1)(1/x)

⇒ (x3 + 1/x3)/(x + 1/x)

⇒ 110/5

⇒ 22

∴ The value of \(\left(x^4 + \frac 1 {x^2}\right) \div \left(x^2 + 1\right)\) is 22.

4.

यदि `x=3+2sqrt(2)` और `xy=1` है तो `(x^(2)+3xy+y^(2))/(x^(2)-3xy+y^(2))` का मान ज्ञात करें।A. `30/31`B. `70/31`C. `35/31`D. `37/31`

Answer» Correct Answer - D
`x=3+2sqrt(2),xy=1,y^(2)=1/(x^(2))`
`y=1/x=1/(3+2sqrt(2))=3-2sqrt(2)`
`:. x+1/x=3+2sqrt(2)+3-2sqrt(2)=6`
`:. x^(2)+1/(x^(2))=36-2=34`
`= (x^(2)+3xy+y^(2))/(x^(2)-3xy+y^(2))=(x^(2)+1/(x^(2))+3)/(x^(2)+1/(x^(2))-3)`
`=(34+3)/(34-3)=37/31`
5.

Salary of 2 teachers and 4 peons is 28000 rupees, whereas salary of 2 teacher and 7 peon is 34000 rupees, then find out the salary of a teacher.1. 80002. 90003. 100004. 11000

Answer» Correct Answer - Option 3 : 10000

Given :

The salary of 2 teachers and 4 peons is 28000 rupees 

The salary of 2 teachers and 7 peons is 34000 rupees 

Calculations :

Let the salary of the teacher be 'T'

Let the salary of the peon be 'P'

According to the question 

2T + 4P = 28000      ....(1)

2T + 7P = 34000      ....(2)

Solve equ (1) and (2) 

T = 10000 and P = 2000

∴ The salary of the teacher will be 10000 rupees

 

6.

If a2x + b2y + c2z = 9x + 121y + 81z, where a, b, c are positive integers, then find the value of c + a - b1. 12. -313. -14. 5

Answer» Correct Answer - Option 1 : 1

Given-

a2x + b2y + c2z = 9x + 121y + 81z

Concept Used-

Comparison of both sides of an equation.

Calculation-

a2x + b2y + c2z = 9x + 121y + 81z

Comparing both sides of the above equation we get,

a = 3, b = 11, c = 9

c + a - b = 9 + 3 - 11

∴ c + a - b = 1

7.

If x + y = 5 and xy = 6, find the value of x - y. Given that x > y1. 12. 213. -14. 13

Answer» Correct Answer - Option 1 : 1

Given-

x + y = 5

xy = 6

Formula Used-

(a + b)2 = (a - b)2 + 4ab

Calculation-

x + y = 5

⇒ (x + y)2 = 25

⇒ (x - y)2 + 4xy = 25

⇒ (x - y)2 = 25 - 4 × 6 

⇒ (x - y)2 = 1

⇒ x - y = 1    [∵ x > y]

∴ The value of x - y is 1

8.

A spends Rs. 56,000 to purchase a certain number of laptops. The price of one laptop is Rs. 2,000. If the price of a laptop rises by 75%. Then find how many laptops should be purchased less so that the expenditure should remain constant.1. 102. 123. 254. 15

Answer» Correct Answer - Option 2 : 12

Given:

The total amount which spends by A = Rs. 56,000

Price of one laptop = Rs. 2,000

Price increase = 75% 

Concepts used:

Expenditure = Price × Quantity

Calculation:

The initial quantity of laptops purchased by the individual at price Rs.2000 per unit is -

Price × Quantity = Expenditure

⇒ Rs. 2,000 × Quantity = Rs. 56,000

⇒ Quantity = Rs. 56,000 ÷ Rs.2,000

⇒ 28 units of laptops

According to the question

The new price of a laptop = Old price × (1 + 75%)

⇒ Rs. 2,000 × (1 + 0.75) 

⇒ Rs. 2,000 × 1.75

⇒ Rs. 3,500

New Price × New Quantity = Expenditure

⇒ Rs.3500 × Quantity = Rs.56000

⇒ Quantity = Rs.56000 ÷ Rs.3500

⇒ 16 units of laptops

Fall in the number of laptops purchased = Old quantity – new quantity 

⇒ (28 – 16) units

⇒ 12 units of laptops

∴ Quantity purchased of laptops has to be decreased by 12 units when the price of laptops rise by 75%, keeping the expenditure constant.

9.

A kurta cost Rs. 12 more than the cost of a shirt. The total cost of 2 such Kurtas and 5 such shirts is Rs. 234. The cost of 3 shirts is: 1. Rs. 902.  Rs. 423. Rs. 304. Rs. 60

Answer» Correct Answer - Option 1 : Rs. 90

Given:

The total cost of 2 Kurtas and 5 shirts = Rs. 234

The cost of kurta is more than cost of shirt = Rs. 12

Calculation:

Let assume that cost of a shirt is Rs. x

So, cost of Kurta = Rs. x + 12

⇒ Cost of 5 shirts = 5 × x = Rs. 5x

⇒ Cost of 2 kurtas = 2 × (x + 12) = Rs. 2x + 24

According to the question

⇒ 5x + 2x + 24 = 234

⇒ 7x = 234 -24

⇒ 7x = 210

⇒ x = 210/7

⇒ x = 30

⇒ Cost of 1 Shirt = Rs. 30

⇒ Cost of 1 Kurta = Rs.30 + Rs. 12 = Rs. 42

∴ Cost of 3 shirts = Rs. 30 × 3 = Rs. 90

The correct option is 1 i.e. Rs. 90

10.

In the given question, two equations numbered I and II are given. Solve both the equations and mark the appropriate answer.I. x2 - 7x + 12 = 0II. y2 - 5y + 6 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y can not be established.

Answer» Correct Answer - Option 3 : x ≥ y

I. x2 - 7x + 12 = 0

⇒ x2 - 4x - 3x + 12 = 0

⇒ (x - 4)(x - 3) = 0

⇒ x = 4, 3

II. y2 - 5y + 6 = 0

⇒ y2 - 3y - 2y + 6 = 0

⇒ (y - 3)(y - 2) = 0

⇒ y = 3, 2

Value of x

Value of y

Relation

4

3

x > y

4

2

x > y

3

3

x = y

3

2

x > y

 

Hence, x ≥ y

11.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. x2 - 7x + 12 = 0II.y2 + 8x + 12 = 0 1.  x ≤ y 2. x ≥ y3. x > y4. x 

Answer» Correct Answer - Option 3 : x > y

I. x- 7x + 12 = 0

⇒ x2 - 4x - 3x + 12 = 0

⇒ x(x - 4) - 3( x - 4) = 0

⇒ (x - 3)(x - 4) = 0

⇒ x = 3, 4

y2 + 8x + 12 = 0 

⇒ y2 + 6y + 2y + 12 = 0

⇒ y(y + 6) + 2(y + 6) = 0

⇒ (y + 6)(y + 2) = 0

⇒ y = -6, -2

value of xvalue of yrelation x,y
3-6 x > y
3-2 x > y
4-6 x > y
4-2 x > y

 

∴ x > y

12.

जब `f(x)=12x^(3)-13x^(2)-5x+7` में `(3x+2)` से भाग दिया जाता है तो शेषफल क्या होगा?A. 2B. 0C. -1D. 1

Answer» Correct Answer - D
`f(x)=12x^(2)-13x^(2)-5x+7`
If we divide `f(x)` by
`implies (3x+2)` then
`3x+2=0`
`x=-2/3`
`:. f((-2)/3)=12((-2)/3)^(3)-13((-2)/3)^(2)-5((-2)/3)+7`
`=-12xx8/27-52/9+10/3+7`
`=(-96-156+90+189)/27`
`=(-252+279)/27=27/27=1`
13.

If x = 9 – 4√5, then value of √x + 1/√x.1. 42. 53. 2√54. 7

Answer» Correct Answer - Option 3 : 2√5

GIVEN:

x = 9 – 4√5

CONCEPT USED:

a2 - b2 = (a + b) × (a - b)

CALCULATION:

x = 9 – 4√5

So,

1/x = 1/(9 – 4√5) = (9 + 4√5)/(9 – 4√5) × (9 + 4√5)

⇒ 1/x = (9 + 4√5)/(81 - 80) = 9 + 4√5

1/x = 9 + 4√5

⇒ x + 1/x = (9 – 4√5) + (9 + 4√5) = 18

We know that, if x + 1/x = a, then √x + 1/√x = √(a + 2)

Now,

√x + 1/√x = √(18 + 2) = √20

∴ 2√5

14.

If `a=2.361, b=3.263` and `c=c^(3)+3abc` isA. `(p-q)(q-r)^(3)+(r-p)^(3)`B. `3(p-q)(q-r)(r-p)`C. 0D. 1

Answer» Correct Answer - C
`a=2.361`
`c=5.624`
`a+b-c=0`
`2.361+3.263=5.624=0`
`:. a^(3)+b^(3)-c^(3)+3abcimplies0`
15.

If the cost of 2 tables and 3 chairs is Rs. 500, then find the cost of 8 tables and 12 chairs?1. Rs. 22002. Rs. 20003. Rs. 30004. Rs. 1800

Answer» Correct Answer - Option 2 : Rs. 2000

Given:

The cost of 2 tables and 3 chairs is Rs. 500

Concept Used:

If we have a linear equation in two variable and the required answer will be the multiple of the value of equation and a constant term then we don't need any other linear equation to find the answer

Calculation:

Let the cost of a table and a chair be Rs. x and Rs. y respectively

Now, according to question

2x + 3y = 500 ----(i)

and we have to find the value of 

8x + 12y

Now, if we do (i) × 4, we get 

4 × (2x + 3y) = 4 × 500

⇒ 8x + 12y = 2000

Hence, the price of 8 tables and 12 chairs is Rs. 2000

16.

यदि `a/b=1/2,` तो समीकरण `((2a-5b))/((5a+3b))` का मान ज्ञात करें।A. -32B. 11C. `(-8)/11`D. 17

Answer» Correct Answer - C
`a/b=1/2` Let `a=x,b=2x`
then `((2a-5b))/(5a+3b)=(2x-10x)/(5x+6x)`
`=(-8x)/(11x)=(-8)/11`
17.

`x^(3)+y^(3)=72` और `xy=8` दिया गया जहां `xgty, x-y` का मान क्या होगा?A. 4B. 2C. -2D. -4

Answer» Correct Answer - B
Given `x^(3)+y^(3)=72`
`xy=8`
`(xgty)`
If we take `x=4` and `y=2`
`4^(3)+2^(3)=72`
`(72=72)`
and `xy=8`
so `x-y=?`
`4-2=2`
18.

यदि `x+y=4, x^(2)+y^(2)=14` और `xgty`, तो `x` और `y` का सही मान क्या होगा?A. `2-sqrt(2),sqrt(3)`B. `3,1`C. `2+sqrt(3),2-sqrt(3)`D. `2+sqrt(3),2sqrt(2)`

Answer» Correct Answer - C
`x^(2)+y^(2)=14`
`x+y=4`…………..i
Squaring both sides
`x^(2)+y^(2)+2xy=16`
`14+2xy=16`
`2xy=2`
`xy=1`
`x^(2)+y^(2)=14`
Substracting `(2xy)` from both sides
`x^(2)+y^(2)-2xy=14-2xy`
`(x-y)^(2)=14-2xx1`
`x=y=sqrt(12)`
`x-y=2sqrt(3)`..............ii
`y=2-sqrt(3)`
`x=2+sqrt(3)`
19.

यदि `x^(2)+y^(2)=29` और `xy=10` जहां `xgt0,ygt0,xgty` हो तो `(x+y)/(x-y)` का मान ज्ञात कीजिये?A. `-7//3`B. `7//3`C. `3//7`D. `-3//7`

Answer» Correct Answer - B
`(x+y)^(2)=x^(2)+y^(2)+2xy`
`=29+2xx10`
`=49`
`x+y=7`
`(x-y)^(2)=x^(2)+y^(2)-2xy`
`=29-2xx10=9`
`(x-y)=3`
`(x+y)/(x-y)=7/3`
20.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 – 3x – 4 = 0ll. y2 – 5y – 6 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y OR relation between x and y can not be established.

Answer» Correct Answer - Option 5 : x = y OR relation between x and y can not be established.

Calculation:

l. x2 – 3x – 4 = 0

⇒ x2 – 4x + x – 4 = 0

⇒ x(x – 4) + 1(x – 4) = 0

⇒ (x – 4) (x + 1) = 0

⇒ x = 4, -1.

ll. y2 – 5y – 6 = 0

⇒ y2 – 6y + y – 6 = 0

⇒ y(y – 6) + 1(y – 6) = 0

⇒ (y + 1) (y – 6) = 0

⇒ y = 6, -1.

Comparison between x and y (via Tabulation):

Value of x

Value of y

Relation

4

6

x < y

4

-1

x > y

-1

6

x < y

-1

-1

x = y


∴ The relation between x and y can not be established.

21.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 – 9x + 14 = 0ll. y2 + y – 42 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relation between x and y can not be determine.

Answer» Correct Answer - Option 5 : x = y or relation between x and y can not be determine.

Calculation:

x2 – 9x + 14 = 0

⇒ x2 - 7x - 2x + 14 = 0

⇒ x(x - 7) - 2(x - 7) = 0

⇒ (x - 2) (x - 7)

⇒ x = 2, 7.

y2 + y – 42 = 0

⇒ y2 + 7y - 6y - 42 = 0

⇒ y(y + 7) - 6(y + 7) = 0

⇒ (y - 6) (y + 7) = 0

⇒ y = 6, -7.

Comparison between x and y (via Tabulation):

Value of xValue of yRelation
26x < y
2-7x > y
76x > y
7-7x > y

 

∴ The relation between x and y can not be determined.

22.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 + 3x – 28  = 0ll. y2 – 7y + 10 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relation between x and y can not be determine.

Answer» Correct Answer - Option 5 : x = y or relation between x and y can not be determine.

Given:

x2 + 3x – 28  = 0

⇒ x2 + 7x – 4x – 28 = 0

⇒ x(x + 7) – 4 (x + 7) = 0

⇒ (x – 4) (x + 7) = 0

⇒ x = 4, -7.

y2 – 7y + 10 = 0

⇒ y2 – 5y – 2y + 10 = 0

⇒ y(y – 5) – 2(y – 5) = 0

⇒ (y – 5) (y – 2) = 0

⇒ y = 5, 2.

Comparison between x and y (via Tabulation):

Value of x

Value of y

Relation

4

5

x < y

4

2

x > y

-7

5

x < y

-7

2

x < y


∴ The relation between x and y can not be determine.

23.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. x2 – 50x + 225 = 0ll. y2 + 32y – 105 = 01. x > y2. x < y3.x ≥ y4. x ≤  y5. x = y or relation between x and y can not be determine.

Answer» Correct Answer - Option 1 : x > y

Calculation:

l. x2 – 50x + 225 = 0

⇒ x2 – 45x – 5x + 225 = 0                                                       

⇒ x(x - 45) – 5(x - 45) = 0

⇒ (x - 5) (x - 45) = 0

x = 5, 45

ll. y2 + 32y – 105 = 0

⇒ y2 + 35y – 3y – 105 = 0

⇒ y(y + 35) – 3(y + 35) = 0

⇒ (y - 3) (y + 35)

y = 3, -35

Comparison between x and y (via Tabulation):

Value of x

Value of y

Relation

5

3

x > y

5

-35

x > y

45

3

x > y

45

-35

x > y

 

∴ The result is x > y

24.

If a3 + 4a2 + 16a = 192, then what is the value of a3 + 8/a ?1. 652. 633. 684. 66

Answer» Correct Answer - Option 4 : 66

Given:

a3 + 4a2 + 16a = 192

Calculations:

a3 + 4a2 + 16a = 192

When a = 4

L.H.S = 64 + 64 + 64 = 192

L.H.S. = R.H.S.

So, a3 + 8/a = 43 + 8/4 = 64 + 2 = 66

∴ The value of a3 + 8/a is 66.

25.

x, y and z are real numbers. If x3 + y3 + z3 = 17, x + y + z = 2 and xyz = 1, then what is the value of 2(xy + yz + zx) ?1. 32. -23. 24. -3

Answer» Correct Answer - Option 2 : -2

Given:

x3 + y3 + z3 = 17, x + y + z = 2 and xyz = 1

Formula used:

x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)

(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx

Calculations:

x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)

⇒ 17 – 3 × 1 = 2 × (x2 + y2 + z2 – xy – yz – zx)

⇒ 7 = x2 + y2 + z2 – xy – yz – zx

⇒ x2 + y2 + z2 = xy + yz + zx + 7

(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx

⇒ (2)2 = xy + yz + zx + 7 + 2xy + 2yz + 2zx

⇒ 3(xy + yz + zx) = -3

⇒ xy + yz + zx = -1

⇒ 2(xy + yz + zx) = -2

∴ The value of 2(xy + yz + zx) is -2.

26.

If a + 1/(a + 7) = (-5); find the value of (a + 7)11 + 1/(a + 7)12?1. 42. 13. 04. 2

Answer» Correct Answer - Option 4 : 2

Given:

[a + 1/(a + 7)] = (-5)

Concept:

If the value of the equation x + (1/x) is given as 2, then the value of x = 1.

Calculation:

∵ [a + 1/(a + 7)] = (-5)

Adding (7) on both sides;

⇒ [(a + 7) + 1/(a + 7)] = (-5) + 7

⇒ [(a + 7) + 1/(a + 7)] = 2

Now, this is in the form ‘x + (1/x) = 2’

a + 7 = 1

[(a + 7)11 + 1/(a + 7)12] = (1)11 + 1/(1)12

= 1 + 1

= 2

27.

If 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (Ax + By – Cz)(3x2 + 2y2 + 4z2 – √2Axy + 2Byz + 2√3Zx), find the value of A2 + B2 – C2?1. 42. 13. 94. 5

Answer» Correct Answer - Option 2 : 1

Given:

3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (Ax + By – Cz)(3x2 + 2y2 + 4z2 – √2Axy + 2Byz + 2√3Zx)

Concept:

Compare the unknown values of the given equation with the actual values of the equation after expansion.

Formula used:

a3 + b3 + c3 – 3abc = (a + b + c)[a2 + b2 + c2 – (ab + bc + ca)]

Calculation:

∵ 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (√3x)3 + (√2y)3 + (–2z)3 – 3(√3x)(√2y)( –2z)

∴ (√3x)3 + (√2y)3 + (-2z)3 – 3(√3x)(√2y)(-2z) = (√3x + √2y – 2z)[3x2 + 2y2 + 4z2 – (√3x)(√2y) – (√2y)( –2z) – (√3x)(–2z)]

⇒ (√3x)3 + (√2y)3 + (-2z)3 – 3(√3x)(√2y)(-2z) = (√3x + √2y – 2z)[3x2 + 2y2 + 4z2 – (√3x)(√2y) + (√2y)(2z) + (√3x)(2z)]

∴ If we compare the values of the equations;

We get

A = √3

B = √2

C = 2

∴ A2 + B2 – C2 = (√3)2 + (√2)2 – (2)2

= 3 + 2 – 4

= 5 – 4

= 1

28.

In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I.2y2 - 13y -34 =0II. 7x2 + 25x + 12 =01. x ≥ y2. x ≤ y3. x < y4. x > y5. No relation or x = y

Answer» Correct Answer - Option 3 : x < y

I.2y- 13y - 34 =0

⇒ 2y2 + 4y - 17y - 34 = 0

⇒ 2y(y + 2) - 17 ( y + 2) = 0

⇒ (2y - 17) ( y + 2) = 0

y = 17/2, -2

II. 7x+ 25x + 12 =0

⇒ 7x2 + 21x + 4x + 12 = 0

⇒ 7x ( x  + 3) + 4 ( x+ 3) = 0 

⇒ (7x + 4) (x + 3) = 0

x = -4/3, -3

value of xvalue of y relation x,y
 -4/3 17/2 x < y
 -3 -2 x < y
 -4/3 17/2 x < y
  -3 - 2 x < y

 

∴ x < y

 

29.

In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I.16x2 -1 =0II. y2 = 4/161.x &lt; y2. x ≥ y3. x ≤ y4. No relation or x =y5. x > y

Answer» Correct Answer - Option 4 : No relation or x =y

I.16x2 -1 =0

⇒ 16x2 = 1

⇒ (x) = + 1/4 , - 1/4

 

II. y2 = 1/4

⇒ y2 = (1/2)2

⇒ y =  + 1/2 , - 1/2

 

value of xvalue of yrelation x,y 
+ 1/4  + 1/2x < y 
+ 1/4  - 1/2x > y 
-  1/4   + 1/2x < y 
-  1/4  - 1/2x < y 
 

∴ No relation can be established

30.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 – 10x + 21 = 0II. y2 + 6y – 27 = 01. x > y2. x ≤ y3. No relation in x and y or x = y4. x ≥ y5. x < y

Answer» Correct Answer - Option 4 : x ≥ y

Calculations:

From I,

x2 – 10x + 21 = 0

⇒ x2 – 7x – 3x + 21 = 0

⇒ x(x – 7) – 3(x – 7) = 0

⇒ (x – 7)(x – 3) = 0

Taking,

⇒ x – 7 = 0 or x – 3 = 0

⇒ x = 7 or x = 3

 

From II,

y2 + 6y – 27 = 0

⇒ y2 + 9y – 3y  – 27 = 0

⇒ y(y + 9) – 3(y + 9) = 0

⇒ (y + 9)(y – 3) = 0

Taking,

⇒ y + 9 = 0 or y – 3 = 0

⇒ y = –9 or y = 3

Comparison between x and y (via Tabulation):

x

y

Relation

7

–9

x > y

7

3

x > y

3

–9

x > y

3

3

x = y

 

x ≥ y

31.

In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 + 10x - 24 = 0II. 3y2 - 12y - 15 = 01. x ≥ y2.x ≤ y3. No relation or x = y4. x > y5. x < y

Answer» Correct Answer - Option 3 : No relation or x = y

I.x+ 10x -24 = 0

⇒ x2 +12x -2x - 24 =0

⇒ x(x + 6) -2(x + 6) = 0

⇒ (x + 6) (x - 2) = 0

⇒ x = -6, 2 

II. 3y- 12y - 15 = 0

⇒ 3y2 - 15y + 3y - 15 =0

⇒ 3y(y - 5) + 3(y - 3) = 0

⇒ (3y + 5) (3y + 3) =0

⇒ y = 5/3, -1

Comparison between x and y (via Tabulation):

Value of xValue of yRelation between x,y
-65/3x < y
-6-1x > y
2-5/3x > y
2-3x > y

 

∴ There is no relation between x and y

 

32.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I: x2 + 10x – 299 = 0II: y2 + 22y + 117 = 01.x &gt; y2.x ≤ y3.x = y or relation between x and y can not be determined.4.x ≥ y5. x < y

Answer» Correct Answer - Option 3 :

x = y or relation between x and y can not be determined.


 Calculation:

I: x2 + 10x – 299 = 0

⇒ x2 + 23x – 13x – 299 = 0

⇒ x (x + 23) – 13(x + 23) = 0

⇒ (x + 23) × (x – 13) = 0

⇒ x = 13, (-23)

II: y2 + 22y + 117 = 0

⇒ y2 + 9y + 13y + 117 = 0

⇒ y × (y + 9) + 13 × (y + 9) = 0

⇒ (y + 9) × (y + 13) = 0

⇒ y = (-13), (-9)

Comparison between x and y (via Tabulation):

Value of x

Relation

Value of y

13

-13

13

-9

-23

-13

-23

-9

 

From the table, we can conclude that x = y or relation cannot be established.

33.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.l. x2 + 10x – 75 = 0II. 2y2 – y – 136 = 0 1. x &gt; y2. x ≤ y3. No relation in x and y or x = y4. x ≥ y5. x &lt; y 

Answer» Correct Answer - Option 3 : No relation in x and y or x = y

Calculation:

l. x2 + 10x – 75 = 0

⇒ x2 + (15 – 5)x – 75 = 0

⇒ x2 + 15x – 5x – 75 = 0

⇒ x(x + 15) – 5(x + 15) = 0

⇒ (x + 15) (x – 5) = 0

⇒ x = -15, 5

 

II. 2y2 – y – 136 = 0

⇒ 2y2 – (17 – 16)y – 136 = 0

⇒ 2y2 – 17y + 16y – 136 = 0

⇒ y(2y – 17) + 8(2y – 17) = 0

⇒ (2y – 17) (y + 8) = 0

⇒ y = 17/2, -8

Value of x

Value of y

Relation between x and y

-15

17/2

x < y

-15

-8

x < y

5

17/2

x < y

5

-8

x > y

 

∴ No relation in x and y or x = y

34.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 6x2 – 19x + 14 = 0II. y2 + 14y + 48 = 01. x > y2. x < y 3. x ≤ y4. x ≥ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 1 : x > y
Calculation:

I. 6x2 – 19x + 14 = 0

⇒ 6x2 – 12x – 7x + 14 = 0

⇒ 6x(x – 2) – 7(x – 2) = 0

⇒ (x – 2)(6x – 7) = 0

x = 2, 7/6

II. y2 + 14y + 48 = 0

⇒ y2 + 6y + 8y + 48 = 0

⇒ y(y + 6) + 8(y + 6) = 0

⇒ (y + 6)(y + 8) = 0

y = – 6, – 8

Value of x

Value of y

Relation

2

– 6

x > y

2

– 6

x > y

7/6

– 8

x > y

7/6

– 8

x > y

 

∴ The relation between x and y is, x > y

35.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 3x2 + 19x + 20 = 0II. 6y2 + 19y +15 = 01. x ˃ y2. x ˂ y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 5 : x = y or the relationship between x and y cannot be established.

From equation I) we get,

3x2 + 19x + 20 = 0

⇒  3x2 + 15x+ 4x + 20 = 0

⇒ 3x (x+ 5) + 4(x+5) + 20 = 0

⇒ (x+5) (3x + 4) = 0

∴ x = -5, - 4/3

From equation II) we get,

6y2 + 19y + 15 = 0

⇒ 6y2 + 10y + 9y + 15 = 0

⇒ 2y (3y + 5) + 3(3y + 5) = 0

⇒ (2y + 3) (3y + 5) = 0

∴  y = -3/2, -5/3

Comparison between x and y (via Tabulation):

Value of xValue of yRelation
-5-3/2x < y
-5-5/3x < y
-4/3-3/2x > y
-4/3-5/3x > y

 

∴ The relationship between x and y cannot be established.

36.

What is the minimum or maximum value of 3x2 + 30x + 7?1. -762. -673. -894. -68

Answer» Correct Answer - Option 4 : -68

Given:

Our given equation is 3x2 + 30x + 7

Concept used:

For maximum and minimum value, we can put

dy/dx = 0

And if d2y/dx2 > 0 then the value of x obtained from dy/dx will give minimum value when substituted in equation

And if d2y/dx2 < 0 then the value of x obtained from dy/dx will give maximum value when substituted in equation

Calculation:

Let y = 3x2 + 30x + 7

⇒ dy/dx = 6x + 30 = 0

⇒ x = -5

Now,  d2y/dx2 = 6 > 0,

y will give minimum value at x = -5

ymin = 3(-5)2 + 30 × (-5) + 7 = -68

∴ The minimum value of given expression is -68

 

37.

If α and β are roots of equation x2 - 15x + 56 = 0 then find the value of (α2 – β2) where α > β?1. 152. 123. 184. 20

Answer» Correct Answer - Option 1 : 15

Given:

The given quadratic equation = x2 - 15x + 56

Calculation:

x2 - 15x + 56 = 0

⇒ x2 - 8x – 7x + 56 = 0

⇒ x(x - 8) - 7(x - 8) = 0

⇒ (x - 8)(x - 7) = 0

⇒ x = 7 and 8

So, α and β are 8 and 7 respectively.

∴ (α2 – β2) = (8)2 – (7)2 = 15
38.

If ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0, then find the value of 1/β2 – 1/α2.1. 10/812. 8/813. 4/94. 22/27

Answer» Correct Answer - Option 2 : 8/81

GIVEN:

‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0

FORMULA USED:

(α – β)2 = (α + β)2 – 4αβ

2 – β2) = (α – β)(α + β)

CALCULATION:

Since ‘α’ and ‘β’ are the roots of expression x2 – 12x + 27 = 0.

α + β = -b/a = 12      ---- (1)

αβ = c/a = 27      ---- (2)

From (1) and (2):

(α – β)2 = (α + β)2 – 4αβ

⇒ (α – β)2 = 144 – 108 = 36

⇒ α – β = 6

Now,

1/β2 – 1/α2

⇒ (α2 – β2)/α2β2

⇒ [(α – β)(α + β)]/α2β2

⇒ [(6 × 12)/272]

⇒ 8/81

∴  The value of 1/β2 – 1/α2 is 8/81.

39.

If α and β are the roots of equation 7x2 + 4x – 1 = 0, then find the value of (α2 + β2)?1. 15/492. 30/493. 16/494. 25/49

Answer» Correct Answer - Option 2 : 30/49

Given:

The given quadratic equation is 7x2 + 4x – 1 = 0

Concept Used:

Sum of roots (α + β) = -b/a                                                  

And product of roots (α × β) = c/a

Calculation:

By comparing the given quadratic equation 7x2 + 4x - 1 with standard equation ax2 + bx + c we can find the value of coefficient a, b and c

∴ a = 7, b = 4 and c = -1

Sum of roots (α + β) = -b/a = - (4)/7 = -4/7

And, product of roots (α × β) = c/a = -1/7

We know that,

α2 + β2 = (α + β) 2 - 2(α × β)

⇒ α2 + β2 = (-4/7) 2 - 2(-1/7) = 30/49

40.

The coefficient of a2 in the sum of -5a2 + 8ab, -3a2, 14a2 – 11ab is :1. -52. -223. 64. -3

Answer» Correct Answer - Option 3 : 6

Given:

Equation = -5a2 + 8ab – 3a2  and 14a2 – 11ab

Sum = -5a2 + 8ab – 3a2 + 14a2 – 11ab

⇒ 6a2 – 3ab

∴ The coefficient of a2 is 6

41.

If α and β are the roots of the equation ax2 + bx + c = 0 then the value of 1/α2 + 1/β2 is: 1. (a2 - 2cb)c22. (b2 – 2ca)/c23. (b2 + 2ca)/c24. (a2 + 2bc)/c2

Answer» Correct Answer - Option 2 : (b2 – 2ca)/c2

Given:

Our given quadratic equation is ax2 + bx + c = 0  

Concept used:

General quadratic equation in terms of roots is x2 – (α + β)x + αβ = 0

Formula used:

a2 + b2 = (a + b)2 – 2ab

Calculation:

By comparing given quadratic equation with general quadratic equation, we get

(α + β) = –b/a and αβ = c/a

Now, 1/α2 + 1/β2

⇒ (α+ β2)/(α2β2)

⇒ ((–b/a)2 – 2(c/a))/(c/a)2

⇒ (b2 – 2ca)/c2

∴ The required value of given expression is (b2 – 2ca)/c2

42.

If the equation 12x2 – ax + 7 = ax2 + 9x + 3 has only one solution (repeated), then what is the positive internal solution of 'a'?1. 32. 43. 54. 2

Answer» Correct Answer - Option 1 : 3

Given:

The equation 12x2 – ax + 7 = ax2 + 9x + 3

Formula used:

To have only one solution D = 0 

D = b2 – 4ac

Calculation:

12x2 – ax + 7 = ax2 + 9x + 3

⇒ x2(12 – a) – x(9 + a) + 4 = 0

According to the question:

⇒ (9 + a)2 – 4(12 – a)(4) = 0

⇒ 81 + a2 + 18a – 192 + 16a = 0

⇒ a2 + 34a – 111 = 0

⇒ a2 + 37a – 3a – 111 = 0

⇒ a(a + 37) – 3(a + 37) = 0

⇒ (a – 3)(a + 37) = 0

If, (a – 3) = 0

⇒ a = 3

Either, (a + 37) = 

⇒ a = – 37 

⇒ a = – 37 is not positive.

∴ The positive internal solution of 'a' is 3.

43.

 In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answerI. 4x2 – 72x + 224 = 0II. y2 – 19y + 60 = 01. x > y2. x ≤ y3. x = y or the relationship cannot be established.4. x ≥ y5. x < y

Answer» Correct Answer - Option 3 : x = y or the relationship cannot be established.

I. 4x2 – 72x + 224 = 0

⇒ 4x2 – 56x – 16x + 224 = 0

⇒ 4x(x – 14) – 16(x – 14) = 0

⇒ (x – 14)(4x – 16) = 0

⇒ x = 14 or 4

II. y2 – 19y + 60 = 0

⇒ y2 – 15y – 4y + 60 = 0

⇒ y(y – 15) – 4(y – 15) = 0

⇒ (y – 15)(y – 4) = 0

⇒ y = 15 or 4

Comparison between x and y (via Tabulation):

Value of x

Relation

Value of y

14

15

14

4

4

15

4

=

4

∴ x = y or the relationship cannot be established.

44.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 4x2 + 13x + 9 = 0II. 4y2 + 20y + 25 =01. x ˃ y2. x ˂ y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 1 : x ˃ y

From equation I) we get,

4x2 + 13x + 9 = 0

⇒  4x2 + 4x +9x + 9

⇒ 4x (x +1) +9(x + 1)

⇒ (x +1)(4x + 9)

x = -1, -9/4

From equation II) we get,

4y2 + 20y + 25 =0

⇒ 4y2 +10y +10Y +25

⇒ 2y(2y + 5) + 5(2y + 5)

⇒ (2y + 5) (2y + 5)

∴  y = -5/2, -5/2

Comparison between x and y (via Tabulation):

Value of xValue of yRelation
-1-5/2x > y
-1-5/2x > y
-9/4-5/2x > y
-9/4-5/2

x > y

 

∴ x > y

45.

If x = 1 and x = -1/3 are roots of the equation mx2 – nx – 1 = 0. Determine the value of m and n.  1. m = -3 and n = 2 2. m = 3 and n = -23. m = 2 and n = 2 4. m = 3 and n = 2

Answer» Correct Answer - Option 4 : m = 3 and n = 2 

Given:

Roots of quadratic equation are -1/3 and 1 

Calculation:

x = 1

m(1)2 – n(1) – 1 = 0

⇒ m – n -1 = 0

⇒ m – n = 1                                                  …………………….. (1)

x = -1/3

m(-1/3)2 – n(-1/3) – 1 = 0

⇒ m/9 + n/3 = 1

⇒ m + 3n = 9                                              ………………………. (2)

From equation (1) and (2)

-4n = -8

⇒ n = 2

Now,

⇒ m – 2 = 1

⇒ m = 3

∴ m = 3 and n = 2 

The correct option is 4 i.e. m = 3 and n = 2 

46.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 4x2 - 7x + 3 = 0II. 16y2 - 9 = 01. x &gt; y2. x &lt; y3. x ≥ y4. x ≤ y5. x = y or relationship between x and y cannot be established.

Answer» Correct Answer - Option 3 : x ≥ y

Given

I. 4x2 - 7x + 3 = 0,

⇒ 4x2 - 4x - 3x + 3 = 0,

⇒ 4x (x - 1) -3 (x - 1) = 0,

⇒ (4x - 3) (x - 1) = 0,

⇒ x = 3 / 4, 1

II. 16y2 - 9 = 0,

⇒ 16y2 = 9,

⇒ y2 = 9 / 16,

⇒ y = ± 3 / 4

Value of X

 Value of Y

Relation

3 / 4

3 / 4

x = y

3 / 4

- 3 / 4

x > y

1

3 / 4

x > y

1

- 3 / 4

x > y

 

Hence, x ≥ y
47.

If a + b + c = 6, a2 + b2 + c2 = 30 and a3 + b3 + c3 = 165, then the value of 4abc is:1. -12. -43. 14. 4

Answer» Correct Answer - Option 4 : 4

Given:

If a + b + c = 6, a2 + b2 + c2 = 30 and a3 + b3 + c3 = 165

Concept used:

(a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca)

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)

Calculation:

⇒ (a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca)

⇒ 62 = 30 + 2 (ab + bc + ca)

⇒ (ab + bc + ca) = 6/2 = 3

⇒ a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)

⇒ 165 - 3abc = 6 × (30 - 3)

⇒ 165 - 3abc = 6 × 27

⇒ 3abc = 165 - 162

⇒ abc = 1

∴ 4abc = 4 × 1 = 4

48.

If x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0, then what is the value of x3 + 8y3?1. 852. 653. 764. 95

Answer» Correct Answer - Option 2 : 65

Given - 

x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0

Formula used - 

a3 + b3 = (a + b) (a2 - ab + b2)

(a + b)2 = a2 + b2 + 2ab

Solution - 

x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0

⇒ xy = 2 then, 4xy = 8

⇒ (x + 2y)2 = x2 + 4y2 + 4xy = 17 + 8 = 25

⇒ (x + 2y) = 5

⇒ x3 + 8y3 = (x + 2y) (x2 + 4y2 - 2xy)

⇒ x3 + 8y3 = (5) × (17 - 4) = 65

∴ x3 + 8y3 = 65.

Short trick - 

⇒ put x = 1, y = 2

⇒ it satisfy both the given expression.

⇒x3 + 8y3 = 13 + 8 × 23 = 65

49.

यदि `x=2015, y=2014` और `z=2013` है तो `x^(2)+y^(2)+z^(2)-xy-yz-xz` का मान क्या है?A. 3B. 4C. 6D. 2

Answer» Correct Answer - A
`x=2015`
`y=2014`
`z=2013`
`=x^(2)+y^(2)+z^(2)-xy-yz-zx=`
`1/2[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]`
`= 1/2[(2015-2014)^(2)+(2014`
`-2013)^(2)+(2013-2015)^(2)]`
`=1/2(1+1+4)=3`
50.

यदि `(xy)/(x+y)=a,(xz)/(x+z)=b` और `(yz)/(y+z)=c` है जहां `a,b,c` सभी अशून्य संख्याऐं है तो `x` का मान किसके बराबर है?A. `(2abc)/(ab+bc-ac)`B. `(2abc)/(ab+ac-bc)`C. `(2abc)/(ac+bc-ab)`D. `(2abc)/(ab+bc-ac)`

Answer» Correct Answer - C
`(xy)/(x+y)=a, (xz)/(x+z)=b, (yz)/(y+z)=c`
Now
`implies (x+y)/(xy)=1/a`
`(x+z)/(xz)=1/b,(y+z)/(yz)=1/c`
`implies 1/y+1/x=1/a,1/z+1/x=1/b`,
`1/z+1/y=1/c`
Now we have to findthe value of `x`
`:. 1/a+1/b-1/c=1/y+1/x+1/z`
`+1/x-1/y-1/z`
`:. 1/a+1/b=1/c=2/x`
`(bc+ac-ab)/(abc)=2/x`
`x=(2abc)/(bc+ac-ab)`