Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

701.

What is the value of 102 + 122 + 142 - 92 - 112 - 132?1. 592. 693. 794. 89

Answer» Correct Answer - Option 2 : 69

Concept

The difference between the consecutive square number is the sum of the two numbers that are squared.

Calculation

(10- 92) + (12- 112) + (14- 132)

⇒ 19 + 23 + 27

⇒  69

702.

If \(a-\dfrac{1}{a}=7\), then \(a^3 - \dfrac{1}{a^3}= \ ?\) 1. 3222. 3643. 3574. 343

Answer» Correct Answer - Option 2 : 364

Given:

\(a-\dfrac{1}{a}=7\)

Formula used:

(a – b)3 = a3 – b3 – 3ab(a – b)

Calculation:

\(a-\dfrac{1}{a}=7\)      ----1

⇒  \({\left( {a - \;\frac{1}{a}} \right)^3} = {a^3} - \;\frac{1}{{{a^{3\;}}}}\; - \;\frac{{3a}}{a}\left( {a - \;\frac{1}{a}} \right)\)

⇒  \({a^3} - \;\frac{1}{{{a^{3\;}}}}\; = \;{\left( {a - \;\frac{1}{a}} \right)^3} + 3\left( {a - \;\frac{1}{a}} \right)\;\)

⇒ a3 – 1/a3 = 73 + 3 × 7

⇒ 343 + 21

⇒ 364

∴ \({a^3} - \;\frac{1}{{{a^{3\;}}}}\; = 364\;\)

703.

If \(\dfrac{5x-7}{3}+2=\dfrac{4x-3}{4}+4x\), then the value of (8x + 5) is1. 92. 133. 64. 7

Answer» Correct Answer - Option 3 : 6

Given:

\(\dfrac{5x-7}{3}+2=\dfrac{4x-3}{4}+4x\)

Calculation:

\(\dfrac{5x-7}{3}+2=\dfrac{4x-3}{4}+4x\)

⇒ {(4x – 3)/4} + 4x – {(5x – 7)/3} = 2

⇒ 3(4x – 3) + 12 × 4x – 4(5x – 7) = 2 × 12      ----(Multiply with 12)

⇒ 12x – 9 + 48x – 20x + 28 = 24

⇒ 12x + 48x – 20x = 24 + 9 – 28

⇒ 40x = 5

⇒ x = 1/8

Now, (8x + 5) = 8/8 + 5 = 1 + 5 = 6

∴ The required value of the given expression is 6

704.

If \(x-\dfrac{1}{x}=4\), then the value of \(x^3 - \dfrac{1}{x^3}\) is:1. 602. 763. 644. 72

Answer» Correct Answer - Option 2 : 76

Given:

x – 1/x = 4

Formula used:

(a – b)3 = a3 – b3 – 3ab(a – b)

Calculation:

Our given expression is x – 1/x = 4

Taking cube on both the sides,

(x – 1/x)3 = 43

⇒ x3 – 1/x3 – 3x × 1/x(x – 1/x) = 64

⇒ x3 – 1/x3 – 3 × 4 = 64      ----(∵ x – 1/x = 4)

⇒ x3 – 1/x3 = 64 + 12

⇒ x3 – 1/x3 = 76

∴ The value of the given expression is 76

705.

When x(x - 5) = 7, then find the value of (x6 – 230x3 – 243)/4?

Answer» Correct Answer - Option 4 : 25

Given:

x(x - 5) = 7

⇒ x2 – 5x = 7

Concept:

Cube both side of the given equation and then proceed.

Formula used:

(a - b)3 = a3 - b3 - 3ab(a - b)

Calculation:

∵ x2 - 5x = 7

On cubing both sides, we get;

(x2 – 5x)3 = 73

⇒ x6 - 125x3 – [3 × (x2) × 5x(x2 – 5x)] = 343

⇒ x6 - 125x3 - [3 × x2 × (5x) × (7)] = 343

⇒ x6 - 125x3 - 105x3 = 343

⇒ x6 – 230x3 = 343      ------(1)

Putting the value of (1) in (x6 – 230x3 – 243)/4;

⇒ (343 – 243)/4

⇒ 100/4 = 25
706.

Which of the following statements given below are correct?A: Unit digit of 13123 is 7.B: (31224 – 19224) is completely divisible by 12.C: HCF of 72, 48 and 64 is 4. 1. Only A2. Only A and B3. Only B and C4. All A, B and C

Answer» Correct Answer - Option 2 : Only A and B

CALCULATION:

A:

Below given is the chart of cyclicity of the number:

Numbers

Cyclicity

1, 5, 6

1

4, 9

2

2, 3, 7, 8

4


13123 can be written as: (134)30 × 133

Unit digit of (134)30 is 1 while unit digit of 133 is 7.

Hence, required unit digit = 7

B:

We know that:

(an – bn) is divisible by (a + b) if n is even

So, (31224 – 19224) is completely divisible by (31 – 19) which is 12.

C:

72 = 2 × 2 × 2 × 3 × 3 = 23 × 32

48 = 2 × 2 × 2 × 2 × 3 = 24 × 31

64 = 2 × 2 × 2 × 2 × 2 × 2 = 26

Hence, HCF = 23 = 8

Hence, only A and B are TRUE. 

707.

l. x2 + x – 2 = 0ll. y2 – 11y + 24 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y OR relation between x and y can not be established.

Answer» Correct Answer - Option 2 : x < y

Calculation:

l. x2 + x – 2 = 0

⇒ x2 + 2x – x – 2 = 0

⇒ x(x + 2) – 1(x + 2) = 0

⇒ (x – 1) (x + 2) = 0

⇒ x = 1, -2.

  ll. y2 – 11y + 24 = 0

⇒ y2 – 8y – 3y + 24 = 0

⇒ y(y – 8) – 3(y – 8) = 0

⇒ (y – 3) (y – 8) = 0

⇒ y = 3, 8.

Value of x

Value of y

Relation

1

3

x < y

1

8

x < y

-2

3

x < y

-2

8

x < y

x < y.

708.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. x2 + 29x + 208 = 0II. y2 + 19y + 78 = 0 1. x &gt; y2. x &lt; y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 4 : x ≤ y

Calculation:

I. x2 + 29x + 208 = 0

⇒ x2 + 16x + 13x + 208 = 0

⇒ x(x + 16) + 13(x + 16) = 0

⇒ (x + 16)(x + 13) = 0

⇒ x = -16 or x = -13

II. y2 + 19y + 78 = 0 

⇒ y2 +13y + 6y + 78 = 0

⇒ y(y + 13) + 6(y + 13) = 0

⇒ (y + 6)(y + 13) = 0

⇒ y = -6 or y = -13

Comparison between x and y (via Tabulation)

Value of x

Value of y

Relation

-16

-6

x < y

-16

-13

x < y

-13

-6

x < y

-13

-13

x = y

∴ x ≤ y

709.

The sum of X and Y is 60.When X is divided by Y, Then the quotient is 5.Find the difference between X and Y.1. 202. 103. 404. 50

Answer» Correct Answer - Option 3 : 40

Given

X + Y = 60

And X ÷ Y = 5

Explanation

X/Y = 5

X = 5Y

X + Y = 60       ….(1)

Put X = 5Y in equation ( 1)

⇒  5 Y + Y = 60

⇒  6Y = 60

⇒  Y = 10

So, X is 50 i.e. (60 – 10)

Difference of X and Y is 40 i.e(50 – 10)
710.

Find the unit digit of (717)7531. 72. 83. 94. 6

Answer» Correct Answer - Option 1 : 7

Concept:

A number with unit digit 7 have repeating cycle of 7,9,3 and 1 after every fourth power.

Explanation:

Power series of 7 i.e. unit digit 7 power expansion has 7,9,3 and 1 and it is raised to power 753 i.e.

753 ÷ 4 = 188, remainder is 1

So, (717)1= 7
711.

If a2 + b2 = 82 and ab = 9, then a possible value of a3 + b3 is:1. 7502. 7303. 8304. 720

Answer» Correct Answer - Option 2 : 730

Given:

a2 + b2 = 82

ab = 9

Formula used:

(a + b)2 = a2 + b2 + 2ab

(a + b)3 = a3 + b3 + 3ab(a + b)

Calculation:

(a + b)3 = a3 + b3 + 3ab(a + b)

We need to find (a + b)

(a + b)2 = a2 + b2 + 2ab

⇒ (a + b)2 = 82 + 2 × 9

⇒ (a + b)2 = 100

⇒ (a + b) = 10

Now,

(a + b)3 = a3 + b3 + 3ab(a + b)

⇒ (10)3 = a3 + b3 + 3 × 9 × 10

⇒ 1000 = a3 + b3 + 270

⇒ a3 + b3 = 1000 - 270 = 730

∴ the value of a3 + b3 is 730

 

712.

Nishu has six and a half dozen chocolates. She gave 1/6 of these to Ravi, 1/13 of these to Rahul and one half of these to her other friends. The number of chocolate left with her is:1. 272. 323. 204. 26

Answer» Correct Answer - Option 3 : 20

Given:

Nishu has chocolates = \(6\frac{1}{2}\) dozens

Nishu gave chocolates to Ravi = 1/6 of \(6\frac{1}{2}\) dozens

Nishu gave chocolates to Rahul = 1/13 of \(6\frac{1}{2}\) dozens

Half of the chocolates given to her friends = 1/2 of \(6\frac{1}{2}\) dozens

Concept used:

One dozen = 12

Calculations:

 \(6\frac{1}{2}\) dozens = (13/2) × 12

⇒ 13 × 6 = 78 chocolates 

The number of chocolates given to Ravi = (1/6) × \(6\frac{1}{2}\) dozens

⇒ 78 × 1/6 = 13 chocolates

The number of chocolates given to Rahul= (1/13) × \(6\frac{1}{2}\) dozens

⇒ 78 × 1/13 = 6 chocolates

The number of chocolates given to her friends = (1/2) of 78

⇒ (1/2) × 78 = 39

The number of chocolates given to friends, Ravi and Rahul = 39 + 6 + 13

⇒ 58

The number of chocolates left with her = Total chocolates - The number of chocolates given to other friends, Ravi and Rahul

⇒ 78 - 58 = 20

∴ The number of chocolates left with her is 20

713.

If x(3 – √7) = y(3 + √7) = 2, find the value of (x + y)/2?1. 122. 23. 64. 3

Answer» Correct Answer - Option 4 : 3

Given:

x(3 – √7) = y(3 + √7) = 2

So y(3 + √7) = 2

And x(3 – √7) = 2

Concept:

From the given equations, calculate the value of ‘x’ and ‘y’.

Calculation:

∵ x(3 – √7) = 2

⇒ x = 2/(3 – √7)     ----(1)

∵ y(3 + √7) = 2

⇒ y = 2/(3 + √7)     ----(2)

From (1) and (2);

⇒ x + y = [2/(3 – √7)] + [2/(3 + √7)]

⇒ [2(3 + √7) + 2(3 – √7)]/[(3 – √7)(3 + √7)]

⇒ (6 + 2√7 + 6 – 2√7)/[(3)2 – (√7)2]

⇒ 12/(9 – 7)

⇒ 12/2 = 6

∴ (x + y)/2 = 6/2 = 3

714.

If it is given that x2 – 2x = 34, find the value of (x + 5)2 + 1/(x + 5)2?1. 1192. 1423. 1674. 98

Answer» Correct Answer - Option 2 : 142

Given:

x2 – 2x = 34

Formula used:

(x + y)2 = x2 + y2 + 2ab

Calculation:

∵ x2 – 2x = 34

Adding and subtracting 5x on LHS;

⇒ x2 + 5x – 5x – 2x = 34

⇒ x2 + 5x – 7x = 34

Subtracting 35 on both sides;

⇒ x2 + 5x – 7x – 35 = 34 – 35

⇒ x(x + 5) – 7(x + 5) = (-1)

⇒ (x + 5)(x – 7) = (-1)

⇒ x – 7 = (-1)/(x + 5)

⇒ x + 1/(x + 5) = 7

Adding 5 both sides;

⇒ (x + 5) + 1/(x + 5) = 12

Squaring both sides;

⇒ (x + 5)2 + 1/(x + 5)2 + 2 = 144

⇒ (x + 5)2 + 1/(x + 5)2 = 144 – 2 = 142
715.

If a = 6, b = 7 then the value of the expression (5/4) + (3b + 7)/(2a + 4) will be:1. 22. 93. 54. 3

Answer» Correct Answer - Option 4 : 3

Given:

a/b = 6/7

Calculation:

∵ (5/4) + (3b + 7)/(2a + 4)

⇒ (5/4) + [(3 × 7) + 7]/[(2 × 6) + 4]

⇒ (5/4) + (21 + 7)/(12 + 4)

⇒ (5/4) + 28/16

⇒ (5/4) + 7/4

⇒ (5 + 7)/4

⇒ 12/4 = 3

716.

The Rajdhani train starts from Delhi city. The number of women in the train is half the number of men. In Faridabad city, 10 men get off the train and five women enter the train. Now the number of men and women is equal. In the beginning, how many passengers entered the train?A. 25B. 35 C. 45D. 551. D2. A3. C4. B

Answer» Correct Answer - Option 3 : C

Given:

The number of women on the train is half the number of men. In Faridabad city, 10 men get off the train and five women enter the train.

Concept Used:

Concept of the linear equation of one variable

Calculation:

Let, the number of men in the train is 2x

Accordingly, the number of women on the train is x

In Faridabad city, 10 men get off the train and five women enter the train.

Now, the number of men in the train is (2x - 10) and the number of women in the train is (x + 5)

Accordingly,

(2x - 10) = (x + 5)

⇒ 2x - x = 5 + 10

⇒ x = 15

In the beginning, the number of women on the train was 15 and the number of men on the train was 15 × 2 = 30

At the beginning number of passengers in the train was (30 + 15) = 45

∴ In the beginning, 45 passengers entered the train.

717.

If \(\sqrt{11 - 3 \sqrt{8}} = a + b \sqrt{2}\), then what is the value of (2a + 3b)?1. 72. 93. 34. 5

Answer» Correct Answer - Option 3 : 3

Concept used:

(a – b)2 = a2 – 2ab + b2 

Calculations:

\(\sqrt{11 - 3 \sqrt{8}} = a + b \sqrt{2}\)

\(⇒ \sqrt{11 - 3 \sqrt{2 × 2 × 2}} = a + b \sqrt{2}\)

\(⇒ \sqrt{11 - 2 × 3 \sqrt{2}} = a + b \sqrt{2}\)

\(⇒ \sqrt{(3)^2 + (\sqrt2)^2 - 2 × 3 \sqrt{2}} = a + b \sqrt{2}\)

\(⇒ \sqrt{(3\;-\;√2)^2} = a + b \sqrt{2}\)

⇒ 3 – √2 = a + b√2

Compare a and b 

⇒ a = 3 

⇒ b = -1 

Value of (2a + 3b) = 2 × 3 + 3 × (-1) 

⇒ 6 – 3 = 3 

∴ Value of 2a + 3b is 3

718.

Solve: - x - 4 = -3A. 7B. -1C. -7D. 11. B2. C3. A4. D

Answer» Correct Answer - Option 1 : B

Given:

- x - 4 = -3. We have to find the value of x

Concept Used:

concept of the linear equation of one variable.

Calculation:

- x - 4 = -3

⇒ - x = - 3 + 4

⇒  - x = 1

⇒ x = - 1

∴ The required value of x is - 1.

719.

If 2x2 - 7x + 5 = 0, then what is the value of \(x^2 + \frac{25}{4x^2}\)?1. \(5 \frac{1}{2}\)2. \(7 \frac{1}{4}\)3. \(9 \frac{3}{4}\)4. \(9 \frac{1}{2}\)

Answer» Correct Answer - Option 2 : \(7 \frac{1}{4}\)

Concept used:

(a + b)2 = a2 + b2 + 2ab 

Calculations:

2x2 – 7x + 5 = 0

⇒ 2x2 + 5 = 7x

⇒ x2 + 5/2 = 7x/2

⇒ x + 5/2x = 7/2 

Square of both side of equation

⇒ (x + 5/2x)2 = (7/2)2 

⇒ x2 + (5/2x)2 + 2 × x × 5/2x = 49/4 

⇒ x2 + 25/4x2 + 5 = 49/4 

⇒ x2 + 25/4x2 = 49/4 – 5 

⇒ x2 + 25/4x2 = 29/4 

⇒ x2 + 25/4x2 = \(7 \frac{1}{4}\)

∴ The correct of answer is \(7 \frac{1}{4}\)

720.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 + 6x + 5 = 0II. 8y2 - 22y - 21 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 2 : x < y

Given: 

I. x2 + 6x + 5 = 0

II. 8y2 - 22y - 21 = 0

Concept used:

Using quadratic equation.

Calculation:

From I,

x2 + 6x + 5 = 0

⇒ x2 + 5x + x + 5 = 0

⇒ x(x + 5) + 1(x + 5) = 0

⇒ (x + 5)(x+1) = 0

⇒ x = - 5, -1

From II,

8y2 - 22y - 21 = 0

⇒ 8y2 - 28y + 6y - 21 = 0

⇒ 4y(2y - 7) + 3(2y - 7) = 0

⇒ (2y - 7)(4y + 3) = 0

⇒ y = 7/2, - 3/4

Comparison between x and y (via Tabulation): 

Value of x

Value of y

  Relation

-5

7/4

 x < y

-5

-3/4

 x < y

 - 1

7/4

 x < y

 - 1

-3/4

 x < y

 

 x < y.

721.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 – 6x + 8 = 0II. y2 – 11y + 30 = 01. x &gt; y2. y &gt; x3. x ≥ y4. y ≥ x5. x = y or relation between x and y can't be established

Answer» Correct Answer - Option 2 : y > x

Calculations:

From I,

x2 – 6x + 8 = 0 

⇒ x2 – 4x – 2x + 8 = 0 

⇒ (x – 4)(x – 2) = 0

⇒ x = 4, 2

From II,

y2 – 11y + 30= 0 

⇒ y2 – 6y – 5y + 30 = 0 

⇒ (y – 6)(y – 5) = 0

⇒ y = 6, 5

Comparison between x and y (via Tabulation):

Value of x

Value of y

Relation

4

6

 y > x

4

5

 y > x

2

6

 y > x

2

5

 y > x

 

∴ y > x

722.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answerI. x2 – 6x + 8 = 0II. 4y2 – 24y + 32 = 01. x &gt; y2. x &lt; y3. x = y or relation between x and y can't be established4. x ≥ y5. x ≤ y

Answer» Correct Answer - Option 3 : x = y or relation between x and y can't be established

From I,

x2 – 6x + 8 = 0 

⇒ x2 – 4x – 2x + 8 = 0 

⇒ (x – 4)(x – 2) = 0

⇒ x = 4, 2

From II,

4y2 – 24y + 32 = 0

⇒ 4y2 - 16y - 8y + 32 = 0

⇒ (y - 4)(4y – 8) = 0

⇒ y = 4, 2

Comparison between x and y (via Tabulation):

Value of x

Value of y

Relation

4

4

 x = y

4

2

 x > y

2

4

x < y

2

2

 x = y

 

 Relation between x and y can't be established.

723.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I: x2 + 6x – 247 = 0II: y2 + 27y + 182 = 01.x &gt; y2.x ≤ y3.x = y or the relationship between x and y cannot be established.4.x ≥ y5. x < y

Answer» Correct Answer - Option 3 :

x = y or the relationship between x and y cannot be established.


Calculation:

I: x2 + 6x – 247 = 0

⇒ x2 – 13x + 19x – 247 = 0

⇒ x × (x – 13) + 19× (x – 13) = 0

⇒ (x – 13) × (x + 19) = 0

⇒ x = (-19), 13

II: y2 + 27y + 182 = 0

⇒ y2 +14y + 13y + 182 = 0

⇒ y × (y + 14) + 13 × (y + 14) = 0

⇒ (y + 13) × (y + 14) = 0

⇒ y = -14, -13

Comparison between x and y (via Tabulation):

Value of x

relation

Value of y

-19

-14

-19

-13

13

>

-14

13

>

-13

 

∴ x = y or the relationship between x and y cannot be established.

724.

If \(x + \frac{1}{x} = \sqrt 3\), then the value of x18 + x12 + x6 + 1 is:

Answer» Correct Answer - Option 1 : 0

Given:

\(x + \frac{1}{x} = \;\surd 3\)

Calculation:

Taking cube both side of the equation,

\({x^3} + \;\frac{1}{{{x^3}}}\; + \;3x × \frac{1}{x}\left( {x\; + \;\frac{1}{x}} \right) = 3\sqrt 3 \)

⇒ \({x^3} + \;\frac{1}{{{x^3}}} + 3\sqrt 3 = 3\surd 3\)

⇒ \(\frac{{{x^6} + 1}}{{{x^3}}}\; = \;0\)

⇒ x6 + 1 = 0

⇒ x6 = - 1

x18 + x12 + x6 + 1

⇒ x12(x+ 1) + (x+ 1)

⇒ x12 × 0 + 0

⇒ 0

∴ The value of x18 + x12 + x6 + 1 is 0.

725.

The sum of the digits of a two-digit number is 12 and the difference between the two digits of the number is 4. What is the square root of the product of the two digits of the two-digit number?1. 4√22. 6√23. 44. 8

Answer» Correct Answer - Option 1 : 4√2

Given:

The sum of the digits of a two-digit number = 12

The difference between the two digits of the number = 4

Calculations:

Let the two digits of the number be x and y respectively

⇒ x + y = 12      ----(i)

⇒ x – y = 4      ----(ii)

Adding (i) and (ii),

⇒ 2x = 16      

⇒ x = 8

Substituting the value of x in (i),

⇒ 8 + y = 12 

⇒ y = 4

The square root of the product of two digits = √(xy)

⇒ √(8 × 4)

⇒ √32

⇒ 4√2

∴ The square root of the product of the two digits of the number is 4√2    

726.

In an election, X and Y together got 19600 votes. Y won the election by a total number of 2760 votes. Find the number of votes casted to X.1. 81002. 84203. 82904. 8670

Answer» Correct Answer - Option 2 : 8420

Given: In an election, X and Y together got 19600 votes. Y won the election by a total number of 2760 votes.

Formula: Percentage increase/ decrease = [(new - actual)/actual] × 100%

Calculation: Let the total no. of votes of X and Y are x and y respectively.

According to question

x + y = 19600     ----(1)

y - x = 2760      ----(2)

On adding both the equations

2y = 22360

⇒ y = 11180

By putting value of y in any equation we get

x = 8420

∴ required answer is 8420.

727.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 3x2 – 18x + 24 = 0II. 5y2 – 50y + 125 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 2 : x < y

I. 3x2 – 18x + 24 = 0

⇒ 3x2 – 12x – 6x + 24 = 0

⇒ 3x(x – 4) – 6(x – 4) = 0

⇒ (x – 4)(3x – 6) = 0

⇒ x = 4 or 2

II. 5y2 – 50y + 125 = 0

⇒ 5y2 – 25y – 25y – 125 = 0

⇒ 5y(y – 5) – 25(y – 5) = 0

⇒ (y – 5)(5y – 25) = 0

⇒ y = 5

Comparison between x and y (via Tabulation):

Value of x

Relation

Value of y

4

5

2

5

 

∴ x < y

728.

In the given question, two equations numbered I and II are given. Solve both the equations and mark the appropriate answer.I. 3x2 + 11x + 6 = 0II. y2 + 14y + 33 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 3 : x ≥ y

I. 3x2 + 11x + 6 = 0

⇒ 3x2 + 9x + 2x + 6 = 0

⇒ 3x(x + 3) + 2(x + 3) = 0

⇒ (3x + 2)(x + 3)= 0

⇒ x = -2/3, -3

II. y2 + 14y + 33 = 0

⇒ y2 + 11y + 3y + 33 = 0

⇒ y(y + 11) + 3(y + 11) = 0

⇒ (y + 11)(y + 3) = 0

⇒ y = -11, -3

Value of x

Value of y

Relation

-2/3

-11

x > y

-2/3

-2

x > y

-3

-11

x > y

-3

-3

X = y

∴ x ≥ y

729.

If α and β are the roots of the equation 3x2 – 11x + 6, then find the value of (α – β)2.1. 49/92. 36/73. 64/74. 81/7

Answer» Correct Answer - Option 1 : 49/9

Given:

α and β are the roots of the equation 3x2 – 11x + 6

Formula Used:

If ax2 + bx + c = 0, then

Sum of the roots = -(b/a)

Product of the roots = (c/a)

(a – b)2 = (a + b)2 – 4 × a × b

Calculation:

For equation, 3x2 – 11x + 6

a = 3, b = -11, and c = 6

The sum of the roots = -(b/a)

⇒ α + β = -(-11/3)

⇒ α + β = 11/3

The product of the roots = (c/a)

⇒ α × β = 6/3

⇒ α × β = 2

Now, (α - β)2 = (α + β)2 – 4 × α × β

⇒ (11/3)2 – 4 × 2

⇒ (121/9) – 8

⇒ (121 – 72)/9

⇒ 49/9

The value of (α - β)2 is 49/9.

730.

In the given question, two equations numbered l and II are given. Solve both the equations andmark the appropriate answer.I.7x2 + 32x – 15 = 0II. 4y2– 16y +7 = 01. x > y2. x < y3. x ≤ y4. x ≥ y5. x = y or the relationship between x and y cannot be established.

Answer» Correct Answer - Option 2 : x < y

Calculation:

From I,

7x2 + 32x  15 = 0

⇒ 7x2 + 35x – 3x  15x = 0

⇒ 7x(x+5)  3(x+5) = 0

⇒ (7x3) (x+5) = 0

Taking,

⇒ 7x – 3 = 0 or x + 5 = 0

⇒ x = 3/7 or 5

From II,

4y2 16y + 7 = 0

⇒ 4y2 14y - 2y + 7 = 0

⇒ 2y(2y1) 7(2y-1) = 0 

⇒ (2y1) (2y7) = 0

Taking, 

⇒ 2y – 1 = 0 or 2y – 7 = 0

⇒ y = 1/2 or y = 7/2

 

Values of xValues of yRelation
3/71/2x < y
51/2x < y
3/77/2

x < y

57/2x < y

 

∴ Relation between x and y is, x < y. 

731.

Which is the digit at unit place of the product \(({\rm{ }}{{\bf{5}}^{{\bf{41}}}} \times {{\bf{7}}^{{\bf{69}}}} \times {{\bf{3}}^{{\bf{57}}}})\) ?1. 72. 53. 34. 1

Answer» Correct Answer - Option 2 : 5

For unit digit divide the power of any integer by 4 and the remainder is the cycle for unit digit of the number

∴ Unit digit of 541

⇒ 41/4 = 1 is the remainder i.e. cycle of 1 

⇒ 51 = 5

Unit digit of 769

⇒ 69/4 = 1 is the remainder 

⇒ 71 = 7

Unit digit of 357

⇒ 57/4 = 1 is the remainder 

⇒ 31 = 3

∴ Unit digit of 541 × 769 × 357 = 5 × 7 × 3 = 105 or 5 is the unit digit

 

 

 

732.

The difference between two digits of a two-digit number is 4, where the unit place number is great than the tenth-place number. If digits are interchanged and the resulting number is added with the original number get 66 as result. What is the original number?1. 152. 513. 624. 26

Answer» Correct Answer - Option 1 : 15

Given:

The difference between two digits of a two-digit number is 4, where the unit place number is great than the tenth-place number.

If digits are interchanged and the resulting number is added with the original number get 66 as result.

Concept Used:

1.) Linear equation of one variable

2.) In a two digit number if the unit place number is p and the tenth place number is q then the number should be (10q + p)

Calculation:

Let, the tenth-place number is x

The unit place number is great than the tenth-place number and difference between them is 4

Unit place number is (x + 4)

The number is {10x + (x + 4)} = (11x + 4)

When the digits interchange their position the number will become {10 × (x + 4) + x}

⇒ (11x + 40)

Accordingly,

(11x + 4) + (11x + 40) = 66

⇒ 22x + 44 = 66

⇒ 22x = 66 – 44

⇒ 22x = 22

⇒ x = 1

The tenth-place digit is 1 and the unit place digit is (1 + 4) = 5

The original number is {(1 × 10) + 5} = 15

733.

Find the value of (√2 + √3) × (√2 – √3)1. 12. 5 – √63. 04. –1

Answer» Correct Answer - Option 4 : –1

Identity used:

(a + b) × (a – b) = a2 – b2 

Calculation:

(√2 + √3) × (√2 – √3) = (√2)2 – (√3)2 

⇒ 2 – 3

⇒ –1

∴ The value of the given expression is –1

734.

The sum of squares of three numbers is 138, while sum of their products taken two at a time is 131. Their sum is:1. 162. 203. 244. 26

Answer» Correct Answer - Option 2 : 20

Given:

The sum of squares of three numbers is 138, while sum of their products taken two at a time is 131.

Concept used:

(x + y + z)2 = x2 + y2 + z2 + 2(xy +yz + zx)

Calculation:

Let three numbers be x, y, z.

The sum of squares of three numbers is 138

⇒ x2 + y2 + z2 = 138

Sum of their products taken two at a time is 131

⇒ xy + yz + zx = 131

Applying the formulae 

⇒ (x + y + z)2 = 138 + 2(131)

⇒ (x + y + z)2 = 138 + 262

⇒ (x + y + z)2 = 400

⇒ x + y + z = √400

⇒ x + y + z = 20

∴ The sum of three numbers is 20.

735.

Which of the following is the factor of x2 - 3x -18?1. (x + 9)2. (x - 6)3. (x - 2)4. (x - 3)

Answer» Correct Answer - Option 2 : (x - 6)

Given:

Factor of x2 -3x -18 =?

Concept used:

To find the factor of an algebraic expression, put the equation value as zero

Detailed solution:

x2 - 3x -18 = 0

⇒ x2 - 6x + 3x - 18 = 0

⇒ x(x - 6) + 3(x - 6) = 0

⇒ ( x + 3)(x - 6) = 0

∴ The factor of the expression x2 - 3x -18 is x - 6 and x + 3

736.

If (x -2)/(x + 3) = 2 Find the value of x1. 42. 83. –84. –4

Answer» Correct Answer - Option 3 : –8

Given:

We have to find the value of x from the given equation (x – 2)/(x + 3) = 2

Concept Used:

Concept of linear equation of single variable

Calculation:

(x – 2)/(x + 3) = 2

⇒ (x – 2) = 2 × (x + 3)

⇒ (x – 2) = 2x + 6

⇒ 2x – x = – 2 6

⇒ x = (–8)

The value of x is (–8)

737.

The difference between two number is 3 and the difference of their square is 69. Find the numbers1. 13 and 102. 10 and 73. 13 and 74. 12 and 15

Answer» Correct Answer - Option 1 : 13 and 10

Given

The difference between two number = 3

Difference of their square = 69

Calculation

Let the greater number = x 

⇒ Smaller number = x - 3

From question 

⇒ x2 - (x - 3)2 = 69

⇒ x2 - (x2 - 2 × 3 × x + 32) = 69

⇒ x2 - x2 + 6x - 9 = 69

⇒ 6x - 9 = 69 

⇒ 6x = 69 + 9

⇒ 6x = 78 

⇒ x =(78/6)

⇒ x = 13

⇒ Greater number = 13 and

⇒ Smaller number = 13 - 3

⇒ Smaller number = 10

∴ Greater number = 13 and smaller number = 10

Alternate method

Let small number = x 

⇒ Greater number = x + 3

From question 

⇒ (x + 3)2 - x2 = 69

⇒ (x2 + 2 × x × 3 + 32) - x2 = 69

⇒ (x2 + 6x + 9) - x2 = 69

⇒ x2 + 6x + 9 - x2 = 69 

⇒ 6x + 9 = 69

⇒ 6x = 69 - 9

⇒ 6x = 60

⇒ x = (60/6)

⇒ x = 10 

⇒ Greater number = 10 + 3

⇒ Greater number = 13 

∴ Greater number = 13 and smaller number = 10

738.

If x - y = 13 and xy = 25, then the value of x2 - y2 = ?1. 13√2292. 13√2103. 13√2694. 13√240

Answer» Correct Answer - Option 3 : 13√269

Given:

x – y = 13

xy = 25

Formula Used:

(x – y)2 = x2 + y2 – 2xy

(x + y)2 = x2 + y2 + 2xy

x2 – y2 = (x – y) × (x + y)

Calculation:

x – y = 13

Squaring both the sides

⇒ (x – y)2 = 132

⇒ x2 + y2 – 2xy = 169

⇒ x2 + y2 = 169 + 2 × 25

⇒ x2 + y2 = 219

(x + y)2 = x2 + y2 + 2xy

⇒ (x + y)2 = 219 + 2 × 25

⇒ (x + y) = √(269)

x2 – y2 = (x – y) (x + y)

⇒ x2 – y2 = 13√269

The value of x2 – y2 is 13√269.  

739.

If (x +(1/x)) = 2, then find the value of (x5 + x4 + x3 + x2 + x + 1)

Answer» Correct Answer - Option 4 : 6

Given

(x +(1/x)) = 2,

(x5 + x4 + x3 + x2 + x + 1) = ?

Calculation

⇒ (x +(1/x)) = 2

⇒ (x2 + 1)/x = 2

⇒ x2 + 1 = 2x 

⇒ x2 - 2x + 12 = 0

⇒ (x - 1)2 = 0 

⇒ x = 1 

Now, Put the value in the given equation

⇒ (x5 + x4 + x3 + x2 + x + 1) = (15 + 14 + 13 + 12 + 1 + 1)

⇒ (x5 + x4 + x3 + x2 + x + 1) = 6

∴ (x5 + x4 + x3 + x2 + x + 1) = 6 

Alternate method

(x +(1/x)) = 2

In this type of question in which x +(1/x)) = 2,

You can directly put value of x = 1 

When you put x = 1 

⇒ x +(1/x)) = 2 

i.e R.H.S = L.HS

So, put the value of x = 1 in the equation

⇒ (x5 + x4 + x3 + x2 + x + 1) = 6

∴ (x5 + x4 + x3 + x2 + x + 1) = 6

740.

If x = √3 + √2, then find the value of [x4 + (1/x)4].1. 1002. 983. 1984. 196

Answer» Correct Answer - Option 2 : 98

Given:

x = √3 + √2

Formula used:

(a + b)2 = a2 + 2ab + b2

Calculation:

x = √3 + √2

⇒ 1/x = 1/(√3 + √2)

⇒ [1/(√3 + √2)] × [(√3 - √2)/(√3 - √2)]

⇒ (√3 - √2)

⇒ [x + (1/x)] = √3 + √2 + √3 - √2

⇒ [x + (1/x)] = 2√3

x2 + (1/x)2 = (2√3)2 – 2

⇒ 10

x4 + (1/x)4 = [x + (1/x)]2 – 2

⇒ 102 – 2

⇒ 100 – 2

⇒ 98

∴ x4 + (1/x)4 = 98.

741.

If x + y = 4 and x3 + y3 = 12, then the value of x4 + y4 = ?1. 146/92. 146/33. 146/54. 146/7

Answer» Correct Answer - Option 1 : 146/9

Given:

x + y = 4

x3 + y3 = 12

Formula Used:

x2 + y2 = (x + y)2 – 2xy

x3 + y3 = (x + y) (x2 – xy + y2)

x4 + x4 = (x2 + y2)2 – 2x2y2

Calculation:

x3 + y3 = (x + y) (x2 – xy + y2)

⇒ 12 = 4 × (x2 – xy + y2)

⇒ x2 + y2 = 3 + xy

⇒ (x + y)2 – 2xy = 3 + xy

⇒ 42 – 3 = 3xy
⇒ xy = (16 – 3)/3

⇒ xy = 13/3

x4 + x4 = (x2 + y2)2 – 2x2y2

⇒ (3 + xy)2 – 2 × (13/3)2

⇒ [3 + (13/3)]2 – 2 × (169/9)

⇒ [(9 + 13)/9]2 – 338/9

⇒ (484/9) – 338/9

⇒ (484 – 338)/9

⇒ 146/9

The value of x4 + y4 is 146/9.

742.

X4 + X-4 = 194, X > 0, then what is the value of \(X + \frac{1}{X} + 2\) ?1. 142. 43. 84. 6

Answer» Correct Answer - Option 4 : 6

Given:

X4 + 1/X4 = 194

Concept used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

X4 + 1/X4 = 194

⇒ (X2)2 + 1/(X2)2 = 194

⇒ (X2)2 + 1/(X2)2 + 2 = 194 + 2                     [Adding 2 both sides]

⇒ (X2)2 + 1/(X2)2 + 2 × X2 × 1/X2 = 196

⇒ (X2 + 1/X2)2 = 196

⇒ X2 + 1/X2 = √196

⇒ X2 + 1/X2 = 14

⇒ X2 + 1/X2 + 2 = 14 + 2                                [Adding 2 both sides]

⇒ X2 + 1/X2 + 2 × X × 1/X = 16

⇒ (X + 1/X)2 = 16

⇒ X + 1/X = √16

⇒ X + 1/X = 4

X + 1/X + 2 = 4 + 2

⇒ X + 1/X + 2 = 6

∴ The value of X + 1/X + 2 is 6.

743.

If x4 + x2y2 + y4 = 63, and x2 + xy + y2 = 7, then find the value of (x/y + y/x) ?1. -42. 83. -84. 4

Answer» Correct Answer - Option 3 : -8

Calculation: 

As we know that,

x4 + x2y2 + y4 = (x2 - xy +y2) (x2 + xy + y2)

According to the question

x4 + x2y2 + y4 = 63, and

x2 + xy + y2 = 7          . . .      (1)

⇒ 63 = (x2 - xy +y2) × 7

⇒ (x2 - xy +y2) = 9        . . .   (2)

Add equation (1) and (2)

⇒ 2(x2 + y2) = 16

⇒ x2 + y2 = 8

The value of (x2 + y2) put in equation (1)

⇒ xy = 7 - 8 = -1

Now, 

⇒ (x/y + y/x)

⇒ (x2 + y2)/xy

⇒ 8/-1

⇒ -8

∴ The required value is -8.

744.

If (10a3 + 4b3) : (11a3 - 15b3) = 7 : 5, then (3a + 5b) : (9a - 2b) =?1. 3 : 22. 10 : 133. 8 : 74. 5 : 4

Answer» Correct Answer - Option 2 : 10 : 13

GIVEN:

 (10a3 + 4b3) : (11a3 - 15b3) = 7 : 5

CALCULATION:

 (10a3 + 4b3) : (11a3 - 15b3) = 7 : 5

⇒ 5 × (10a3 + 4b3)  = 7 × (11a3 - 15b3)

⇒ 50a3 + 20b3 = 77a3 - 105b3

⇒ 27a3 = 125b3

⇒ 3a = 5b

⇒ a : b = 5 : 3

⇒ (3a + 5b) : (9a - 2b) =?

⇒ (3 × 5 + 5 × 3) : (9 × 5 - 2 × 3) = ?

⇒ 30 : 39 = ?

⇒ 10 : 13 = ?

∴ (3 × 5 + 5 × 3) : (9 × 5 - 2 × 3) = 10 : 13

745.

यदि `(x^(24)+1)/(x^(12))=7` है तो `(x^(72)+1)/(x^(36))` का मान ज्ञात करें।A. 343B. 433C. 432D. 322

Answer» Correct Answer - D
Given
`(x^(24)+1)/(x^(12))=7`
`(x^(24)+1)/(x^(12))implies(x^(24))/(x^(12))+1/(x^(12))`
`implies x^(12)+1/(x^(12)=7`
`implies` cubing both sides
`implies (x^(12)+1/(x^(12)))^(3)=7^(3)`
`implies x^(36)+1/(x^(36))+(3 xx x^(12)xx 1)/(x^(12))(x^(12)+1/(x^(12)))`
`=343`
`implies x^(36)+1/(x^(36))+3xx7=343`
`implies x^(36)+1/(x^(36))=243-21`
`implies x^(36)+1/(x^(36))=(x^(72)+1)/(x^(36)=322`
746.

यदि `root(3)(a)+root(3)(b)=root(3)(c)` है तो `(a+b-c)^(3)+27abc` का साधारणीकृत मान क्या होगा?A. -1B. 3C. -3D. 0

Answer» Correct Answer - D
`root(3)(a)+root(3)(b)=root(3)(c)`
Take cube both sides
`(root(3)(a)+root(3)(b))^(3)=(root(3)(c))^(3)`
`implies a+b+3a^(1/3)b^(1/3) (root(3)(a)+root(3)(b))=c`
`implies a+b+3a^(1/3)b^(1/3)c^(1/3)=c`
`implies a+b-c=-3a^(1/3)b^(1/3)c^(1/3)`
Again take cube both sides
`implies (a+b-c)^(3)=-27abc`
`implies(a+b-c)^(3)+27abc=0`
Alternate:
Put value of `a=0`
`b=1, c=1`
value of `(a+b-c)^(3)+27abc`
`=(0+1-1)^(3)+27x0xx1xx1=0`
747.

यदि `x=root(3)(a+sqrt(a^(2)+b^(3)))+root(3)(a-(a^(2)-b^(3))` है तो `x^(3)+3bx` किसके बराबर है?

Answer» Correct Answer - C
`x=root(3)(a+sqrt(a^(2)+b^(3))+root(3)(a-sqrt(a^(2)+b^(3))`
Take cube on the both sides
`x^(3)=(a+sqrt(a^(2)+b^(3)))+`
`(a-sqrt(a^(2)+b^(3)))+3(a+sqrt(a^(2)+b^(3)))^(1/3)`
`(a-sqrt(a^(2)+b^(3)))^(1/3)`
`(root(3)(a+sqrt(a^(2)+b^(3)))+root(3)(a-sqrt(a^(3)+b^(3))))`
`x^(3)=2a+3(a^(2)-(a^(2)+b^(3)))^(1/3)xx x`
`x^(3)=2a+3(-b^(3))^(1/3)(x)`
`x^(3)=2a+3(-b^(3))^(1/3)(x)`
`x^(3)=2a-3bx`
`x^(3)+3bx=2a`
748.

यदि `4x+5y=83` और `3x:2y=21:22` है तो `(y-x)` किसके बराबर है?A. 3B. 4C. 7D. 11

Answer» Correct Answer - B
`4x+5y=83`
`3x:2y=21:22`
`x:y=7:11`
Let `x=7` and `y=11`
`4xx7+5xx11=83`
So value satisfied
`y-x=11-7=4`
749.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 15x2 - 14x + 3 = 0II. y2 - 21y + 110 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relationship between x and y cannot be established.

Answer» Correct Answer - Option 2 : x < y

Calculation

I. 15x2 - 14x + 3 = 0

⇒ 15x2 - 5x - 9x + 3 = 0

⇒ 5x (3x - 1) - 3 (3x - 1) = 0
⇒ (3x - 1) (5x - 3) = 0

⇒ x = 1 / 3, 3 / 5

II. y2 - 21y + 110 = 0

⇒ y2 - 10y - 11y + 110 = 0

⇒ y (y - 10) - 11 (y - 10) = 0

⇒ (y - 10) (y - 11) = 0

⇒ y = 10, 11

 Value of x 

 Value of y 

 Relation 

1 / 3

10

x < y

1 / 3

11

x < y

3 / 5

10

x < y

3 / 5

11

x < y

 

∴ x < y
750.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.I. 2x2 – 9x + 9 = 0II. y2 – 3y - 10 = 01. x > y2. x ≤ y3. No relation in x and y or x = y4. x ≥ y5. x < y

Answer» Correct Answer - Option 3 : No relation in x and y or x = y

Calculations:

From I,

2x2 – 9x + 9 = 0

⇒ 2x2 – 6x – 3x + 9 = 0

⇒ 2x(x – 3) - 3(x – 3) = 0

⇒ (x – 3)(2x - 3) = 0

Taking,

⇒ x – 3 = 0 or 2x - 3 = 0

⇒ x = 3 or x = 3/2

From II,

y2 – 3y - 10 = 0

⇒ y2 – 5y  + 2y – 10 = 0

⇒ y(y – 5) + 2(y – 5) = 0

⇒ (y – 5)(y + 2) = 0

Taking,

⇒ y – 5 = 0 or y + 2 = 0

⇒ y = 5 or y = –2

Comparison between x and y (via Tabulation):

x

y

Relation

3

5

x < y

3

–2

x > y

3/2

5

x < y

3/2

–2

x > y

 

No relation in x and y.