Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Evaluate integral:∫cos3xsinx dx

Answer»

\(\int cos^3x \,sinx\,dx = - \int t^3 dt\)   \(\begin{pmatrix}\because \text{Let} \, cos x = t\\⇒-sinx\,dx = dt\\⇒sinx\,dx = - dt\end{pmatrix}\) 

\(= \frac{-t^4}4 + C\)

\(= \frac{-cos^4x}{4}+C\)      \((\because t = cos x)\) 

102.

Evaluate the indefinite integral:∫10w4+9w3+7wdw

Answer»

\(\int (10w^4 + 9w^3 + 7w)dw\)

\(= 10 \int w^4dw + 9\int w^3 dw +7\int wdw\)

\(= 10\left(\frac{w^5}{5}\right)+ 9\left(\frac{w^4}{4}\right)+ 7\left(\frac{w^2}2\right)+ C\)

\(= 2w^5 + \frac94w^4 + \frac72w^2 + C\)

103.

Evaluate the indefinite integral:∫6x5-18x2+7 dx

Answer»

\(\int (6x^5 -18x^2 + 7)dx\)

\(= 6\int x^5 dx - 18\int x^2 dx + 7\int dx\)

\(= 6\left(\frac{x^6}{6}\right)-18\left(\frac{x^3}3\right) + 7x + C\)

\(= x^6 - 6x^3 + 7x + C\)

104.

Integrate the following indefinite integral. ∫ dx /√8x+3 + √8x+1\(\int\frac{dx}{\sqrt{8x+3}+\sqrt{8x+1}}\)

Answer»

\(\int\frac{dx}{\sqrt{8x+3}+\sqrt{8x+1}}\)

 = \(\int\frac{\sqrt{8x+3}-\sqrt{8x+1}}{(8x+3)-(8x+1)}dx\) 

 = \(\int\frac{\sqrt{8x+3}-\sqrt{8x+1}}{2}dx\) 

 = \(\frac12[\int\sqrt{8x+3}dx-\int\sqrt{8x+1}dx]\) 

 = \(\frac12[\frac23\frac{(8x+3)^{3/2}}8-\frac23\frac{(8x+1)^{3/2}}8]+c\)

 = \(\frac12\times\frac23\times\frac18[(8x+3)^{3/2}-(8x+1)^{3/2}]+c\) 

 = \(\frac1{24}[(8x+3)^{3/2}-(8x+1)^{3/2}]+c\)

105.

Evaluate the following integrals : ∫ sin5x cos x dx

Answer»

Assume,

sinx = t 

d(sinx) = dt 

cosx dx = dt 

∴ Substituting t and dt in given equation we get

⇒ \(\int\)t5dt

⇒ \(\frac{t^6}{6}\) + c

But,

t = sinx

⇒ \(\frac{sin^6x}{6}\) + c

106.

Evaluate:\(\int\cfrac{dx}{\sqrt{4x^2-1}}\)∫ dx/√(4x2-1)

Answer»

Formula to be used - \(\int\cfrac{dx}{\sqrt{x^2\pm a^2}}=log(x+\sqrt{x^2\pm a^2})+c\), where c is the integrating constant

\(\therefore\int\cfrac{dx}{\sqrt{4x^2-1}}\)

\(= \int\cfrac{dx}{\sqrt{(2x)^{2}-1^2}}\)

\(=\cfrac{1}{2}log|2x+\sqrt{4x^2-1}|+c\), c being the integrating constant

107.

Evaluate:\(\int\frac{(1+tan\,x)}{(1-tan\,x)}dx\)∫(1 + tanx)/(1 - tanx)dx

Answer»

\(\frac{1+tan\,x}{1-tan\,x}\) = \(\frac{cos\,x+sin\,x}{cos\,x-sin\,x}\)

\(\int\frac{cos\,x+sin\,x}{cos\,x-sin\,x}dx\)

Let cos x - sin x = t 

-(sin x + cos x)dx = dt

\(\int\frac{-dt}{t}\) = - int + c

\(\int\frac{1+tan\,x}{1-tan\,x}dx\) = - In[cosx - sinx] + c

108.

Evaluate:\(\int\cfrac{dx}{\sqrt{9x^2-7}}\)∫ dx/√(9x2-7)

Answer»

Formula to be used -\(\int\cfrac{dx}{\sqrt{x^2\pm a^2}}=log(x+\sqrt{x^2\pm a^2})+c\)

\(\therefore\int\cfrac{dx}{\sqrt{9x^2-7}}\)

\(=\int\cfrac{dx}{\sqrt{(3x)^{2}-\sqrt{7}^2}}\)

\(=log|3x+\sqrt{9x^2-7}|+c\), c being the integrating constant

109.

\(\int \frac{log\, x}{(log\,ex)^2}.dx =\)∫ (log x)/(log ex)2. dx =(a) \(\frac{x}{1 + log\,x} + c\)(b) x(1 + log x) + c(c) \(\frac{1}{1 + log\,x} + c\)(d) \(\frac{1}{1 - log\,x} + c\)

Answer»

Correct answer is (a) \(\frac{x}{1 + log\,x} + c\)

110.

Evaluate:∫ sin3x sin x dx

Answer»

1/2∫ 2sin3x sin x dx

{ 2 sin A sin B=cos(A-B)-cos(A+B) }

1/2∫ (cos2x - cos4x) dx = sin2x/4 - sin4x/8 + c

111.

Evaluate: ∫xe3x+5 dx.

Answer»

∫xe3x+5 dx

= x.\(\frac{e^{3x + 5}}{3} - \int\frac{e^{3x + 5}}{3}.1dx\)

\(\frac{xe^{3x + 5}}{3} - \frac{e^{3x + 5}}{9} + c\)

112.

Evaluate the integral: ∫32log3 x dx

Answer»

We can write as ∫3log3x2 dx

By simplifying, we get

∫x2 dx

On integrating, we get

x3/3 + c

113.

Evaluate the integral: ∫logx x dx

Answer»

Given as ∫logx x dx

Given equation, we can write as

∫1. dx

On integrating, we get

x + c