InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
Evaluate integral:∫cos3xsinx dx |
|
Answer» \(\int cos^3x \,sinx\,dx = - \int t^3 dt\) \(\begin{pmatrix}\because \text{Let} \, cos x = t\\⇒-sinx\,dx = dt\\⇒sinx\,dx = - dt\end{pmatrix}\) \(= \frac{-t^4}4 + C\) \(= \frac{-cos^4x}{4}+C\) \((\because t = cos x)\) |
|
| 102. |
Evaluate the indefinite integral:∫10w4+9w3+7wdw |
|
Answer» \(\int (10w^4 + 9w^3 + 7w)dw\) \(= 10 \int w^4dw + 9\int w^3 dw +7\int wdw\) \(= 10\left(\frac{w^5}{5}\right)+ 9\left(\frac{w^4}{4}\right)+ 7\left(\frac{w^2}2\right)+ C\) \(= 2w^5 + \frac94w^4 + \frac72w^2 + C\) |
|
| 103. |
Evaluate the indefinite integral:∫6x5-18x2+7 dx |
|
Answer» \(\int (6x^5 -18x^2 + 7)dx\) \(= 6\int x^5 dx - 18\int x^2 dx + 7\int dx\) \(= 6\left(\frac{x^6}{6}\right)-18\left(\frac{x^3}3\right) + 7x + C\) \(= x^6 - 6x^3 + 7x + C\) |
|
| 104. |
Integrate the following indefinite integral. ∫ dx /√8x+3 + √8x+1\(\int\frac{dx}{\sqrt{8x+3}+\sqrt{8x+1}}\) |
|
Answer» \(\int\frac{dx}{\sqrt{8x+3}+\sqrt{8x+1}}\) = \(\int\frac{\sqrt{8x+3}-\sqrt{8x+1}}{(8x+3)-(8x+1)}dx\) = \(\int\frac{\sqrt{8x+3}-\sqrt{8x+1}}{2}dx\) = \(\frac12[\int\sqrt{8x+3}dx-\int\sqrt{8x+1}dx]\) = \(\frac12[\frac23\frac{(8x+3)^{3/2}}8-\frac23\frac{(8x+1)^{3/2}}8]+c\) = \(\frac12\times\frac23\times\frac18[(8x+3)^{3/2}-(8x+1)^{3/2}]+c\) = \(\frac1{24}[(8x+3)^{3/2}-(8x+1)^{3/2}]+c\) |
|
| 105. |
Evaluate the following integrals : ∫ sin5x cos x dx |
|
Answer» Assume, sinx = t d(sinx) = dt cosx dx = dt ∴ Substituting t and dt in given equation we get ⇒ \(\int\)t5dt ⇒ \(\frac{t^6}{6}\) + c But, t = sinx ⇒ \(\frac{sin^6x}{6}\) + c |
|
| 106. |
Evaluate:\(\int\cfrac{dx}{\sqrt{4x^2-1}}\)∫ dx/√(4x2-1) |
|
Answer» Formula to be used - \(\int\cfrac{dx}{\sqrt{x^2\pm a^2}}=log(x+\sqrt{x^2\pm a^2})+c\), where c is the integrating constant \(\therefore\int\cfrac{dx}{\sqrt{4x^2-1}}\) \(= \int\cfrac{dx}{\sqrt{(2x)^{2}-1^2}}\) \(=\cfrac{1}{2}log|2x+\sqrt{4x^2-1}|+c\), c being the integrating constant |
|
| 107. |
Evaluate:\(\int\frac{(1+tan\,x)}{(1-tan\,x)}dx\)∫(1 + tanx)/(1 - tanx)dx |
|
Answer» \(\frac{1+tan\,x}{1-tan\,x}\) = \(\frac{cos\,x+sin\,x}{cos\,x-sin\,x}\) \(\int\frac{cos\,x+sin\,x}{cos\,x-sin\,x}dx\) Let cos x - sin x = t -(sin x + cos x)dx = dt \(\int\frac{-dt}{t}\) = - int + c \(\int\frac{1+tan\,x}{1-tan\,x}dx\) = - In[cosx - sinx] + c |
|
| 108. |
Evaluate:\(\int\cfrac{dx}{\sqrt{9x^2-7}}\)∫ dx/√(9x2-7) |
|
Answer» Formula to be used -\(\int\cfrac{dx}{\sqrt{x^2\pm a^2}}=log(x+\sqrt{x^2\pm a^2})+c\) \(\therefore\int\cfrac{dx}{\sqrt{9x^2-7}}\) \(=\int\cfrac{dx}{\sqrt{(3x)^{2}-\sqrt{7}^2}}\) \(=log|3x+\sqrt{9x^2-7}|+c\), c being the integrating constant |
|
| 109. |
\(\int \frac{log\, x}{(log\,ex)^2}.dx =\)∫ (log x)/(log ex)2. dx =(a) \(\frac{x}{1 + log\,x} + c\)(b) x(1 + log x) + c(c) \(\frac{1}{1 + log\,x} + c\)(d) \(\frac{1}{1 - log\,x} + c\) |
|
Answer» Correct answer is (a) \(\frac{x}{1 + log\,x} + c\) |
|
| 110. |
Evaluate:∫ sin3x sin x dx |
|
Answer» 1/2∫ 2sin3x sin x dx { 2 sin A sin B=cos(A-B)-cos(A+B) } 1/2∫ (cos2x - cos4x) dx = sin2x/4 - sin4x/8 + c |
|
| 111. |
Evaluate: ∫xe3x+5 dx. |
|
Answer» ∫xe3x+5 dx = x.\(\frac{e^{3x + 5}}{3} - \int\frac{e^{3x + 5}}{3}.1dx\) = \(\frac{xe^{3x + 5}}{3} - \frac{e^{3x + 5}}{9} + c\) |
|
| 112. |
Evaluate the integral: ∫32log3 x dx |
|
Answer» We can write as ∫3log3x2 dx By simplifying, we get ∫x2 dx On integrating, we get x3/3 + c |
|
| 113. |
Evaluate the integral: ∫logx x dx |
|
Answer» Given as ∫logx x dx Given equation, we can write as ∫1. dx On integrating, we get x + c |
|