InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Evaluate the following integrals :\(\int\)\(\frac{1}{x\,log\,x}\) dx |
|
Answer» Assume, logx = t d(logx) = dt \(\frac{1}{x}\)dx = dt Put t and dt in given equation we get, ⇒ ∫\(\frac{dt}{t}\) = ln|t| + c. But, t = logx = ln| logx| + c |
|
| 52. |
Evaluate the following integrals :\(\int\)\(\frac{e^x+1}{e^x+x}\)dx |
|
Answer» Assume, ex + x = t d(ex + x) = dt ex + 1 = dt Put t and dt in given equation we get, ⇒ ∫\(\frac{dt}{t}\) = ln|t| + c. But, t = ex + x = ln| ex + 1| + c |
|
| 53. |
Evaluate the following integrals :\(\int\)\(\frac{1}{x(3+log\,x)}\)dx |
|
Answer» Assume, 3 + logx = t d(3 + logx) = dt ⇒ \(\frac{1}{x}\)dx = dt Put t and dt in given equation we get, ⇒ ∫\(\frac{dt}{t}\) = ln|t| + c. But, t = 3 + logx = ln|3 + logx| + c |
|
| 54. |
Evaluate ∫ sec6x dx |
|
Answer» ∫ sec6x dx In this integral we will use the formula, 1+tan2x = sec2x I = ∫sec2x sec4x dx = ∫sec2x (1 + tan2x)2dx Now, Put tan x = t which means sec2xdx = dt, I = ∫(1+ t2)2dt = ∫(1+t4+2t2) dt Now put the value of t, which is t = tan x in above integral- I = tanx + \(\frac{tan^5x}{5}\)+ 2.\(\frac{tan^3x}{3}\) |
|
| 55. |
Evaluate ∫ (x+1)2 ex dx |
|
Answer» ∫ (x+1)2 ex dx y = ∫(x2 + 2x + 1) ex dx y = ∫(x2 + 2x)ex dx + ∫ex dx We know that, ∫(f(x) +f’(x))ex dx = f(x) ex Here, f(x) = x2 Then, f’(x) = 2x y = x2ex + ex + c y = (x2 + 1)ex + c |
|
| 56. |
Evaluate ∫ log(logx)/x dx\(\int\frac{ log\,(log\,x)}{x}\)dx |
|
Answer» ∫ log(logx)/x dx Let, log x = t Differentiating both side with respect to t, \(\frac{1}{x}\frac{dx}{dt}\) = 1 ⇒ \(\frac{dx}{x}\) = dt Note :- Always use direct formula for ∫log x dx y = ∫log t dt y = t log t – t + c Again, Put t = log x y = (log x)log(log x) – log x + c |
|
| 57. |
Evaluate ∫ tan5xsec3xdx |
|
Answer» ∫ tan5xsec3xdx In this integral we will use the formula, 1+ tan2x = sec2x Then equation will be transform in below form- I = ∫tan5x sec2x secx dx = ∫secx tan5x sec2x dx Now, Put tan x = t which means sec2xdx = dt, I = \(\int t^5.\sqrt{1+t^2}\) dt In this above integral, Put 1+t2 = k2 that is mean tdt = kdk I = ∫(k4 + 1- 2k) k2 dk = ∫ (k6 + k2 – 2k3)dk = \(\frac{k^7}{7}\)+ \(\frac{k^3}{3}\)- \(\frac{k^4}{2}\) Now, Put the value of k = (1+t2) = sec2x in above equation- I = \(\frac{sec^{14}x}{7}\)+ \(\frac{sec^{6}x}{3}\)-\(\frac{sec^{8}x}{2}\) |
|
| 58. |
Evaluate ∫ (ex(1+x))/(cos2(xex))dx\(\int\frac{e^x(1+x)}{cos^2(xe^x)}\) dxA. 2 logecos (xex) + C B. sec(xex) + C C. tan(xex) + C D. tan(x + ex) +C |
|
Answer» Option : (C) Given, ∫ (ex(1+x))/(cos2(xex))dx Let (t) = xex \(\frac{dt}{dx}\) = ex(1 + x) ⇒ \(\int\frac{dt}{(cos\,t)^2}\) = \(\int\) (sec t)2 dt = tan t (put (t) = x ) = tan (xex) + c |
|
| 59. |
Evaluate:\(\int\sqrt{4-x^2}dx\)∫√{4 - x2}dx |
|
Answer» We know that, \(\int\sqrt{a^2-x^2}dx\) = \(\frac{x}2\)\(\sqrt{a^2-x^2}\) + \(\frac{a^2}2\)sin-1\(\frac{x}a\) + c \(\int\sqrt{2^2-x^2}dx\) = \(\frac{x}2\)\(\sqrt{4-x^2}\) + 2sin-1\(\frac{x}2\) + c |
|
| 60. |
Evaluate: \(\int\cfrac{dx}{(e^x+e^{-x})}\)∫ dx/(ex + e-x) |
|
Answer» To find: \(\int\cfrac{dx}{(e^x+e^{-x})}\) Formula Used:\(\int\cfrac{dx}{1+x^2}=tan^{-1}x\) Given equation is: \(\int\cfrac{dx}{(e^x+e^{-x})}=\int\cfrac{e^x dx}{(e^2x+1)}\)....(1) Let y = ex … (1) Differentiating both sides, we get dy = ex dx Substituting in (1), \(\int\cfrac{dy}{y^2+1}\) ⇒ tan-1 y From (1), ⇒ tan-1 (ex) Therefore, \(\int\cfrac{dx}{(e^x+e^{-x})}=tan^{-1}(e^x)+c\) |
|
| 61. |
If f(x) = \(\frac{sin^{-1}x}{\sqrt{1 - x^2}},\) \(g(x) = e^{sin^{-1}}x,\) then ∫ f(x) . g(x) . dx =f(x) = (sin-1x)/(√1 - x2), g(x) = esin-1x, then ∫ f(x) . g(x) . dx =(a) \(e^{sin^{-1}}x . (sin^{-1}x - 1) + c\)(b) \(e^{sin^{-1}}x . (1 - sin^{-1}x) + c\)(c) \(e^{sin^{-1}}x . (sin^{-1}x + 1) + c\)(d) \(e^{sin^{-1}}x . (sin^{-1}X - 1) + c\) |
|
Answer» Correct answer is (a) \(e^{sin^{-1}}x . (sin^{-1}x - 1) + c\) |
|
| 62. |
Evaluate: \(\int\cfrac{sinx}{(1+cos^2x)}dx\)∫ sin x/(1+cos2x)dx |
|
Answer» To find: \(\int\cfrac{sinx}{(1+cos^2x)}dx\) Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\cfrac{1}{a}tan^{-1}(\cfrac{x}{a})+c\) Let y = cos x … (1) Differentiating both sides, we get dy = –sin x dx Substituting in given equation, \(\Rightarrow\)\(\int\cfrac{-dy}{1+y^2}\) ⇒ – tan -1 y From (1), ⇒ –tan -1 (cos x) Therefore, \(\int\cfrac{sinx}{1+cos^2x}dx=-tan^{-1}{(cosx)}+C\) |
|
| 63. |
∫sin5x cos x dx |
|
Answer» Suppose sin x = t d(sin x) = dt = cos x dx Putting t = sin x and dt = cos x dx in given equation ∫sin5x cos x dx = ∫t5 dt By integrating = t6/6 + c On substituting the value of t = sin6 x/6 + c |
|
| 64. |
Evaluate : \(\int\frac{(x-4)e^x}{(x-2)^3}dx\) |
|
Answer» I = \(\int\begin{bmatrix}\frac{(x-2)-2}{(x-2)^3} \\[0.3em]\end{bmatrix}e^xdx\) \(= \int\frac{e^x}{(x-2)^2}dx-\)\(2\int\frac{e^x}{(x-2)^3}dx\) \(=\frac{e^x}{(x-2)^2}+\)\(2\int\frac{e^x\,dx}{(x-2)^3}-\)\(2\int\frac{e^x\,dx}{(x-2)^3}\) \(=\frac{e^x}{(x-2)^2}+\) C |
|
| 65. |
Evaluate : ∫(ex + 1)2 ex dx |
|
Answer» Let I = ∫(ex + 1)2 ex dx Let ex +1= t = ex dx = dt I = ∫ ex + 1)2 ex dx = ∫t2 dt = \(\frac{t^3}{3}\) Now, Substitute the value of t. Hence, I = \(\frac{(e^x+1)^3}{3}\) + C |
|
| 66. |
Evaluate: x2 - \(\frac{6}{x} \) + 5ex |
|
Answer» ∫x2 - \(\frac{6}{x}\) + 5exdx = \(\frac{x^3}{x}\) - 6logx + 5ex + C |
|
| 67. |
Evaluate: 76log 7x. |
|
Answer» ∫76log 7xdx = ∫7log 7x^6dx = ∫x6dx = \(\frac{x^7}{7} + c\) |
|
| 68. |
Evaluate: cot2x. |
|
Answer» ∫cot2x dx = ∫(cosec2x – 1)dx = cot x – x + c |
|
| 69. |
Evaluate: 7x2 – 4 sec2x |
|
Answer» ∫7x2 – 4sec2x dx = 7.\(\frac{x^3}{3}\) – 4.tanx + c |
|
| 70. |
Evaluate the integral: ∫tan3x sec2 x dx |
|
Answer» Suppose I = ∫tan3x sec2 x dx Suppose tan x = t, now sec2 x dx = dt On substituting the value of x I = ∫t3 dt On integrating I = t4/4 + c On substituting the value of t I = tan4x/4 + c |
|
| 71. |
Evaluate the following integrals :\(\int\frac{sin(log\,x)}{x}\)dx |
|
Answer» Assume, logx = t d(logx) = dt ⇒ \(\frac{1}{x}\) dx = dt Substituting t and dt ⇒ \(\int\)sint dt = - cost + c But, t = logx ⇒ cos(logx) + c. |
|
| 72. |
Evaluate the following integrals :\(\int\frac{e^{mtan^{-1}x}}{1+x^2}\)dx |
|
Answer» Assume, tan-1x = t d( tan-1x) = dt ⇒ \(\frac{1}{x^2+1}\) = dt Substituting t and dt ⇒ \(\int\) emt dt ⇒ \(\frac{e^{mt}}{m}\)+ c But, t = tan-1x ⇒ \(\frac{e^{mtan^{-1}x}}{m}\) + c. |
|
| 73. |
Evaluate the following integrals :\(\int\frac{(sin^{-1}x)^3}{\sqrt{1-x^2}}\) dx |
|
Answer» Assume, sin-1x = t d( sin-1x) = dt ⇒ \(\frac{dx}{\sqrt{1-x^2}}\) = dt ∴ Substituting t and dt in given equation we get ⇒ \(\int t^3\) dt ⇒ \(\frac{t^4}{4}\) + c But, t = sin-1x ⇒ \(\frac{(sin^{-1}x)^4}{4}\) + c |
|
| 74. |
Evaluate the following integrals :\(\int\frac{x\,tan^{-1}x^2}{1+x^4}\)dx |
|
Answer» Assume, tan-1x2 = t d( tan-1x2) = dt ⇒ \(\frac{2x}{x^4+1}\) = dt ⇒ \(\frac{x}{x^4+1}\) = \(\frac{dt}{2}\) Substituting t and dt ⇒ \(\frac{1}{2}\)\(\int\)t dt ⇒ \(\frac{t^2}{4}\) + c But, t = tan-1x2 ⇒ \(\frac{(tan^{-1}x^2)^2}{4}\) + c. |
|
| 75. |
Evaluate the following integrals :\(\int\frac{e^{x-1}+x^{e-1}}{e^x+x^e}\)dx |
|
Answer» Multiplying and dividing the numerator by e we get the given as ⇒ \(\frac{1}{e}\)\(\int\frac{e^{x-1}+x^{e-1}}{e^x+x^6}\)dx …(1) Assume, ex + xe = t ⇒ d(ex + xe )= dt ⇒ ex + exe-1 = dt Substituting t and dt in equation 1 we get ⇒ \(\frac{1}{e}\int\frac{dt}{t}\) = ln|t| + c But, t = ex + xe ∴ ln| ex + xe | + c. |
|
| 76. |
Evaluate the following integrals: ∫ 2x3\(e^{x^2}\)dx |
|
Answer» Let I = ∫ 2x3\(e^{x^2}\)dx Put x2 = t 2xdx = dt I = \(\int t\,e^tdt\) Using integration by parts, = \(t\int e^tdt\) - \(\int\frac{d}{dt}t\int e^t\,dt\) We have, \(\int e^xdx\) = ex = tet - et + c = et(t - 1) + c Substitute value for t, I = \(e^{x^2}\)(x2 - 1) + c |
|
| 77. |
Evaluate the following integrals :\(\int\frac{log\,x}{x}\)dx |
|
Answer» Assume, logx = t ⇒ d(logx) = dt ⇒ \(\frac{1}{x}\)dx = dt Substituting t and dt in above equation we get, ⇒ \(\int\)t.dt ⇒ \(\frac{t^2}{2}+c\) But, t = log(x) ⇒ \(\frac{log^2x}{2}\) + c . |
|
| 78. |
Evaluate the following integrals :\(\int\frac{\sqrt{1+x^2}}{x^4}\)dx |
|
Answer» Let , x = tanθ So, dx = sec 2θ dθ And, θ = tan-x Putting above values, \(\int\frac{\sqrt{1+x^2}}{x^4}\)dx = \(\int\frac{\sqrt{1+tam^2\theta}}{tan^4\theta}\) sec2θ dθ = ∫ sec2θ/tan2θ dθ = ∫ cosec2θ dθ = - cotθ + c Put, θ = tan-x = - cotθ + c = - cot tan-x + c |
|
| 79. |
Evaluate: cot2(5x + 3). |
|
Answer» ∫cot2(5x + 3)dx = ∫cosec2(5x + 3) -1)dx = \(\frac{cot(5x + 3)}{5}\) - x + c. |
|
| 80. |
Evaluate: ∫x cosec2x dx. |
|
Answer» ∫x cosec2x dx. = x(-cotx) – ∫-cotx . dx = -x cotx + logsinx + C |
|
| 81. |
Evaluate: ∫xsinxdx. |
|
Answer» ∫x sinx dx = x . (-cosx) – ∫-cosx .dx = -x cosx + sinx + c |
|
| 82. |
Evaluate: ∫x2cosxdx. |
|
Answer» ∫x2cosxdx = x2 – ∫sinx(2x)dx = x2 -2∫xsinxdx = x2 - 2[x(-cos x) – ∫-cosxdx] = x2sinx + cosx – 2 sinx + c |
|
| 83. |
Evaluate: cosec(3 – 5x) cot(3 – 5x) |
|
Answer» ∫cosec(3 – 5x)cot(3 – 5x)dx = \(-\frac{cos(3 - 5x)}{-5} + c\) |
|
| 84. |
Evaluate: sec2(x – 5) |
|
Answer» ∫sec2(x – 5)dx = tan(x – 5) + c |
|
| 85. |
Evaluate: 35x – 3 |
|
Answer» ∫35x – 3dx = \(\frac{3^{5x - 3}}{5.log3} + c\) |
|
| 86. |
Evaluate: e3 – 4x |
|
Answer» ∫e3 – 4xdx = \(\frac{e^{3 - 4x}}{-4} + c\) |
|
| 87. |
Evaluate: \(\frac{cosx}{1 + cosx}\) |
|
Answer» ∫\(\frac{cosx}{1 + cosx}\)dx = ∫(cot x . cosecx – cot2x)dx = -cosec x – ∫(cosec2x – 1)dx = -cosecx -(- cotx) + x + c = -cosecx + cotx + x + c |
|
| 88. |
Evaluate: cosx.\(\sqrt{cos^2x - 1}\) |
|
Answer» ∫cosx.\(\sqrt{cos^2x - 1}\)dx = ∫cosex.\(\sqrt{cot^2x}\) dx= ∫cosecx. cot x .dx = cosec x + c |
|
| 89. |
Evaluate:\(\int\frac{(1-sin2x)}{(x+cos^2x)}dx\)∫(1 - sin2x)/(x + cos2x)dx |
|
Answer» Let (x + cos2 x) = t (1 - sin 2x) dx = dt \(\int\frac{dt}t\) = Int + c \(\int\frac{(1-sin2x)}{(x+cos^2x)}dx\) = In (|x + cos2x|) + c |
|
| 90. |
Evaluate: \(\sqrt{1 + sin2x}\) |
|
Answer» ∫\(\sqrt{1 + sin2x}\)dx = \(\int\sqrt{(cosx + sinx)^2}\)dx = ∫(cosx + sinx)dx = sinx – cosx + c |
|
| 91. |
Evaluate: \(\int\frac{sin2x}{1 + cos^2x}dx\) |
|
Answer» \(\int\frac{sin2x}{1 + cos^2x}dx\) = \(\int\frac{-dt}{t}\) = -logt + c = -log(1 + cos2x) + c put 1 + cos2x = t2 cosx(-sinx) dx = dt -sin2x dx = dt sin2xdx = -dt |
|
| 92. |
Evaluate: \(\int\frac{cosx}{2 + sinx}dx\) |
|
Answer» \(\int\frac{cosx}{2 + sinx}dx\) = log(2 + sin x) + c |
|
| 93. |
Evaluate: \(\int\frac{cotx}{3 + log(sinx)}dx\) |
|
Answer» \(\int\frac{cotx}{3 + log(sinx)}dx\) = \(\frac{dt}{t}\) = log t + c = log(3 + log(sin x)) + c put 3 + log(sin x) = t \(\frac{cosx}{sinx}dx\) = dt cos x dx = dt |
|
| 94. |
Evaluate: \(\int\frac{cos^2x.cotx}{4 + 5cos^2x}dx\) |
|
Answer» \(\int\frac{cos^2x.cotx}{4 + 5cos^2x}dx\) = \(\int\frac{\frac{-1}{10}dx}{t} = \frac{-1}{10}\)logt + c = log(4 + 5cosec2x) + c put 4 + 5 cosec2x = t – 10 cosec x – cosec x × cot x dx = dt cosec2x . cotxdx = \(\frac{-1}{10}\)dt |
|
| 95. |
Evaluate:\(\int\frac{9x^8 + 9^xlog9}{x^9 + 9^x}dx\) |
|
Answer» \(\int\frac{9x^8 + 9^xlog9}{x^9 + 9^x}dx\) = log(x9 + 9x) + c |
|
| 96. |
Evaluate: \(\int\frac{1}{x(x + 1)(x + 2)}dx\) |
|
Answer» \(\int\frac{1}{x(x + 1)(x + 2)}dx\) = \(\frac{A}{x} + \frac{B}{x + 1} + \frac{C}{x + 2}.....(1)\) 1 = A ( x + 1) (x + 2) + B(x) (x + 2) + c × x(x + 1) put x = 0, 1 = A(1)(2) ⇒ 1 = 2A ⇒ A = \(\frac{1}{2}\) put x = -1, 1 = A(0) + B(-1) (-1 + 2) + c(0) ⇒ 1 = -B ⇒ B = -1 put x = -2, 1 = A(0) + B(0) + c(-2), (-2 + 1) ⇒ 1 = 2c ⇒ c = \(\frac{1}{2}\) ∴ \(\int\frac{dx}{x(x + 1)(x + 2)} = \int\frac{\frac{1}{2}}{x} + \frac{-1}{x + 1} + \frac{\frac{1}{2}}{x + 2}dx\) = \(\frac{1}{2}\)log2 – log(x + 1) + \(\frac{1}{2}\)log(x + 2) +c |
|
| 97. |
Evaluate: \(\int\frac{3x^2}{1 + x^3}dx\) |
|
Answer» \(\int\frac{3x^2}{1 + x^3}dx\) = log(1 + x3)+c or using \(\int\frac{f'(x)}{f(x)}dx\) logf(x) + c put 1 + x3 = t ∴ 3x2dx = dt ∴ = ∫ \(\frac{1}{t}\)dt = log t + c = log(1 + x3) + c |
|
| 98. |
Evaluate: \(\int\frac{e^x - 1}{e^x - x}dx\) |
|
Answer» \(\int\frac{e^x - 1}{e^x - x}dx\) = log(ex – x) + c |
|
| 99. |
Evaluate: \(\int\frac{4x + 3}{2x^2 + 3x + 5}dx\) |
|
Answer» \(\int\frac{4x + 3}{2x^2 + 3x + 5}dx\) = log(2x2 + 3x +5) + c ∴ \(\int\frac{f'(x)}{f(x)}dx\) = log(f(x)) + C |
|
| 100. |
Evaluate: secx(secx – tanx) |
|
Answer» ∫sec x (sec x – tan x)dx = ∫sec2x – sec x .tan x. dx = tan x – sec x + c |
|