Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Evaluate the following integrals :\(\int\)\(\frac{1}{x\,log\,x}\) dx

Answer»

Assume,

logx = t 

d(logx) = dt 

\(\frac{1}{x}\)dx = dt 

Put t and dt in given equation we get,

⇒ ∫\(\frac{dt}{t}\)

= ln|t| + c. 

But,

t = logx 

= ln| logx| + c

52.

Evaluate the following integrals :\(\int\)\(\frac{e^x+1}{e^x+x}\)dx

Answer»

Assume,

ex + x = t 

d(ex + x) = dt 

ex + 1 = dt 

Put t and dt in given equation we get,

⇒ ∫\(\frac{dt}{t}\)

= ln|t| + c. 

But, 

t = ex + x 

= ln| ex + 1| + c

53.

Evaluate the following integrals :\(\int\)\(\frac{1}{x(3+log\,x)}\)dx

Answer»

Assume,

3 + logx = t 

d(3 + logx) = dt 

⇒ \(\frac{1}{x}\)dx = dt

Put t and dt in given equation we get,

⇒ ∫\(\frac{dt}{t}\)

= ln|t| + c. 

But,

t = 3 + logx 

= ln|3 + logx| + c

54.

Evaluate ∫ sec6x dx

Answer»

∫ sec6x dx

In this integral we will use the formula,

1+tan2x = sec2x

I = ∫sec2x sec4x dx 

= ∫sec2x (1 + tan2x)2dx 

Now, 

Put tan x = t which means sec2xdx = dt, 

I = ∫(1+ t2)2dt 

= ∫(1+t4+2t2) dt 

Now put the value of t, 

which is t = tan x in above integral-

I = tanx + \(\frac{tan^5x}{5}\)+ 2.\(\frac{tan^3x}{3}\)

55.

Evaluate ∫ (x+1)2 ex dx

Answer»

∫ (x+1)2 ex dx

y = ∫(x2 + 2x + 1) ex dx 

y = ∫(x2 + 2x)ex dx + ∫ex dx 

We know that,

∫(f(x) +f’(x))ex dx = f(x) ex 

Here, 

f(x) = x2 

Then,

f’(x) = 2x 

y = x2ex + ex + c 

y = (x2 + 1)ex + c

56.

Evaluate ∫ log(logx)/x dx\(\int\frac{ log\,(log\,x)}{x}\)dx

Answer»

∫ log(logx)/x dx

Let, 

log x = t 

Differentiating both side with respect to t,

\(\frac{1}{x}\frac{dx}{dt}\) = 1

⇒ \(\frac{dx}{x}\) = dt

Note :-  Always use direct formula for ∫log x dx 

y = ∫log t dt 

y = t log t – t + c 

Again, 

Put t = log x 

y = (log x)log(log x) – log x + c

57.

Evaluate ∫ tan5xsec3xdx

Answer»

∫ tan5xsec3xdx

In this integral we will use the formula,

1+ tan2x = sec2

Then equation will be transform in below form-

I = ∫tan5x sec2x secx dx 

= ∫secx tan5x sec2x dx 

Now,

Put tan x = t which means sec2xdx = dt,

I = \(\int t^5.\sqrt{1+t^2}\) dt

In this above integral, 

Put 1+t= k2 that is mean tdt = kdk 

I = ∫(k4 + 1- 2k) k2 dk 

= ∫ (k6 + k2 – 2k3)dk

\(\frac{k^7}{7}\)\(\frac{k^3}{3}\)\(\frac{k^4}{2}\)

Now, 

Put the value of k = (1+t2) = sec2x in above equation-

I = \(\frac{sec^{14}x}{7}\)\(\frac{sec^{6}x}{3}\)-\(\frac{sec^{8}x}{2}\)

58.

Evaluate ∫ (ex(1+x))/(cos2(xex))dx\(\int\frac{e^x(1+x)}{cos^2(xe^x)}\) dxA. 2 logecos (xex) + C B. sec(xex) + C C. tan(xex) + C D. tan(x + ex) +C

Answer»

Option : (C)

Given,

∫ (ex(1+x))/(cos2(xex))dx

Let (t) = xex

\(\frac{dt}{dx}\) = ex(1 + x)

⇒ \(\int\frac{dt}{(cos\,t)^2}\) = \(\int\) (sec t)2 dt

= tan t 

(put (t) = x ) 

= tan (xex) + c

59.

Evaluate:\(\int\sqrt{4-x^2}dx\)∫√{4 - x2}dx

Answer»

We know that,

\(\int\sqrt{a^2-x^2}dx\) = \(\frac{x}2\)\(\sqrt{a^2-x^2}\) + \(\frac{a^2}2\)sin-1\(\frac{x}a\) + c

 \(\int\sqrt{2^2-x^2}dx\) = \(\frac{x}2\)\(\sqrt{4-x^2}\) + 2sin-1\(\frac{x}2\) + c

60.

Evaluate: \(\int\cfrac{dx}{(e^x+e^{-x})}\)∫ dx/(ex + e-x)

Answer»

To find: \(\int\cfrac{dx}{(e^x+e^{-x})}\)

Formula Used:\(\int\cfrac{dx}{1+x^2}=tan^{-1}x\)

Given equation is:

\(\int\cfrac{dx}{(e^x+e^{-x})}=\int\cfrac{e^x dx}{(e^2x+1)}\)....(1)

Let y = ex … (1)

Differentiating both sides, we get

dy = ex dx

Substituting in (1),

\(\int\cfrac{dy}{y^2+1}\)

⇒ tan-1 y

From (1),

⇒ tan-1 (ex)

Therefore,

\(\int\cfrac{dx}{(e^x+e^{-x})}=tan^{-1}(e^x)+c\)

61.

If f(x) = \(\frac{sin^{-1}x}{\sqrt{1 - x^2}},\) \(g(x) = e^{sin^{-1}}x,\) then ∫ f(x) . g(x) . dx =f(x) = (sin-1x)/(√1 - x2), g(x) = esin-1x, then ∫ f(x) . g(x) . dx =(a) \(e^{sin^{-1}}x . (sin^{-1}x - 1) + c\)(b) \(e^{sin^{-1}}x . (1 - sin^{-1}x) + c\)(c) \(e^{sin^{-1}}x . (sin^{-1}x + 1) + c\)(d) \(e^{sin^{-1}}x . (sin^{-1}X - 1) + c\)

Answer»

Correct answer is (a) \(e^{sin^{-1}}x . (sin^{-1}x - 1) + c\)

62.

Evaluate: \(\int\cfrac{sinx}{(1+cos^2x)}dx\)∫ sin x/(1+cos2x)dx

Answer»

To find: \(\int\cfrac{sinx}{(1+cos^2x)}dx\)

Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\cfrac{1}{a}tan^{-1}(\cfrac{x}{a})+c\)

Let y = cos x … (1)

Differentiating both sides, we get 

dy = –sin x dx 

Substituting in given equation,

\(\Rightarrow\)\(\int\cfrac{-dy}{1+y^2}\)

⇒ – tan -1 y 

From (1), 

⇒ –tan -1 (cos x) 

Therefore,

\(\int\cfrac{sinx}{1+cos^2x}dx=-tan^{-1}{(cosx)}+C\)

63.

∫sin5x cos x dx 

Answer»

Suppose sin x = t

d(sin x) = dt = cos x dx

Putting t = sin x and dt = cos x dx in given equation

∫sin5x cos x dx = ∫t5 dt

By integrating

= t6/6 + c

On substituting the value of t

= sin6 x/6 + c

64.

Evaluate : \(\int\frac{(x-4)e^x}{(x-2)^3}dx\)

Answer»

I = \(\int\begin{bmatrix}\frac{(x-2)-2}{(x-2)^3} \\[0.3em]\end{bmatrix}e^xdx\)

\(= \int\frac{e^x}{(x-2)^2}dx-\)\(2\int\frac{e^x}{(x-2)^3}dx\)

\(=\frac{e^x}{(x-2)^2}+\)\(2\int\frac{e^x\,dx}{(x-2)^3}-\)\(2\int\frac{e^x\,dx}{(x-2)^3}\)

\(=\frac{e^x}{(x-2)^2}+\) C

65.

Evaluate : ∫(ex + 1)2 ex dx

Answer»

Let I = ∫(ex + 1)2 ex dx

Let ex +1= t = ex dx = dt

I = ∫ ex + 1)2 ex dx 

= ∫t2 dt

\(\frac{t^3}{3}\) 

Now, 

Substitute the value of t.

Hence,

I = \(\frac{(e^x+1)^3}{3}\) + C

66.

Evaluate: x2 - \(\frac{6}{x} \) + 5ex

Answer»

∫x2\(\frac{6}{x}\) + 5exdx

\(\frac{x^3}{x}\) - 6logx + 5ex + C

67.

Evaluate: 76log 7x.

Answer»

∫76log 7xdx

= ∫7log 7x^6dx

= ∫x6dx = \(\frac{x^7}{7} + c\)

68.

Evaluate: cot2x.

Answer»

∫cot2x dx = ∫(cosec2x – 1)dx 

= cot x – x + c

69.

Evaluate: 7x2 – 4 sec2x

Answer»

∫7x2 – 4sec2x dx = 7.\(\frac{x^3}{3}\) – 4.tanx + c

70.

Evaluate the integral: ∫tan3x sec2 x dx

Answer»

Suppose I = ∫tan3x sec2 x dx

Suppose tan x = t, now

sec2 x dx = dt

On substituting the value of x 

I = ∫t3 dt

On integrating 

I = t4/4 + c

On substituting the value of t

I = tan4x/4 + c

71.

Evaluate the following integrals :\(\int\frac{sin(log\,x)}{x}\)dx

Answer»

Assume,

logx = t 

d(logx) = dt 

⇒ \(\frac{1}{x}\) dx = dt

Substituting t and dt 

⇒ \(\int\)sint dt

= - cost + c 

But,

t = logx 

⇒ cos(logx) + c.

72.

Evaluate the following integrals :\(\int\frac{e^{mtan^{-1}x}}{1+x^2}\)dx

Answer»

Assume,

tan-1x = t 

d( tan-1x) = dt

⇒ \(\frac{1}{x^2+1}\) = dt

Substituting t and dt 

⇒ \(\int\) emt dt

⇒ \(\frac{e^{mt}}{m}\)+ c

But, 

t = tan-1x

⇒ \(\frac{e^{mtan^{-1}x}}{m}\) + c.

73.

Evaluate the following integrals :\(\int\frac{(sin^{-1}x)^3}{\sqrt{1-x^2}}\) dx

Answer»

Assume, 

sin-1x = t 

d( sin-1x) = dt 

⇒ \(\frac{dx}{\sqrt{1-x^2}}\) = dt

∴ Substituting t and dt in given equation we get 

⇒ \(\int t^3\) dt

⇒  \(\frac{t^4}{4}\) + c

But,

t = sin-1x

⇒ \(\frac{(sin^{-1}x)^4}{4}\) + c

74.

Evaluate the following integrals :\(\int\frac{x\,tan^{-1}x^2}{1+x^4}\)dx

Answer»

Assume,

tan-1x2 = t 

d( tan-1x2) = dt

⇒ \(\frac{2x}{x^4+1}\) = dt

⇒ \(\frac{x}{x^4+1}\) = \(\frac{dt}{2}\)

Substituting t and dt 

⇒ \(\frac{1}{2}\)\(\int\)t dt

⇒ \(\frac{t^2}{4}\) + c

But,

t = tan-1x2 

⇒ \(\frac{(tan^{-1}x^2)^2}{4}\) + c.

75.

Evaluate the following integrals :\(\int\frac{e^{x-1}+x^{e-1}}{e^x+x^e}\)dx

Answer»

Multiplying and dividing the numerator by e we get the given as

⇒ \(\frac{1}{e}\)\(\int\frac{e^{x-1}+x^{e-1}}{e^x+x^6}\)dx  …(1)

Assume,

ex + xe = t 

⇒ d(ex + xe )= dt 

⇒ ex + exe-1 = dt 

Substituting t and dt in equation 1 we get 

⇒ \(\frac{1}{e}\int\frac{dt}{t}\)

= ln|t| + c 

But,

t = ex + xe 

∴ ln| ex + xe | + c.

76.

Evaluate the following integrals: ∫ 2x3\(e^{x^2}\)dx

Answer»

Let I = ∫ 2x3\(e^{x^2}\)dx

Put x= t 

2xdx = dt

I = \(\int t\,e^tdt\)

Using integration by parts,

\(t\int e^tdt\) - \(\int\frac{d}{dt}t\int e^t\,dt\)

We have,

\(\int e^xdx\) = ex

= tet - et + c

= et(t - 1) + c

Substitute value for t,

I = \(e^{x^2}\)(x2 - 1) + c

77.

Evaluate the following integrals :\(\int\frac{log\,x}{x}\)dx

Answer»

Assume,

logx = t 

⇒ d(logx) = dt 

⇒ \(\frac{1}{x}\)dx = dt

Substituting t and dt in above equation we get,

⇒ \(\int\)t.dt

⇒ \(\frac{t^2}{2}+c\)

But,

t = log(x) 

⇒ \(\frac{log^2x}{2}\) + c  .

78.

Evaluate the following integrals :\(\int\frac{\sqrt{1+x^2}}{x^4}\)dx

Answer»

Let ,

x = tanθ 

So, 

dx = sec 2θ dθ 

And,

θ  = tan-x

Putting above values,

\(\int\frac{\sqrt{1+x^2}}{x^4}\)dx 

\(\int\frac{\sqrt{1+tam^2\theta}}{tan^4\theta}\) sec2θ dθ

= ∫ sec2θ/tan2θ dθ

= ∫ cosec2θ dθ

= - cotθ + c

Put,

θ =  tan-x

= - cotθ + c

= - cot tan-x + c

79.

Evaluate: cot2(5x + 3).

Answer»

∫cot2(5x + 3)dx = ∫cosec2(5x + 3) -1)dx = \(\frac{cot(5x + 3)}{5}\) - x + c.

80.

Evaluate: ∫x cosec2x dx.

Answer»

∫x cosec2x dx.

= x(-cotx) – ∫-cotx . dx 

= -x cotx + logsinx + C

81.

Evaluate: ∫xsinxdx.

Answer»

∫x sinx dx

= x . (-cosx) – ∫-cosx .dx

= -x cosx + sinx + c

82.

Evaluate: ∫x2cosxdx.

Answer»

∫x2cosxdx = x2 – ∫sinx(2x)dx 

= x2 -2∫xsinxdx 

= x2 - 2[x(-cos x) – ∫-cosxdx] 

= x2sinx + cosx – 2 sinx + c

83.

Evaluate: cosec(3 – 5x) cot(3 – 5x)

Answer»

∫cosec(3 – 5x)cot(3 – 5x)dx

\(-\frac{cos(3 - 5x)}{-5} + c\)

84.

Evaluate: sec2(x – 5)

Answer»

∫sec2(x – 5)dx = tan(x – 5) + c

85.

Evaluate: 35x – 3

Answer»

∫35x – 3dx

\(\frac{3^{5x - 3}}{5.log3} + c\)

86.

Evaluate: e3 – 4x

Answer»

∫e3 – 4xdx

\(\frac{e^{3 - 4x}}{-4} + c\)

87.

Evaluate: \(\frac{cosx}{1 + cosx}\)

Answer»

\(\frac{cosx}{1 + cosx}\)dx

= ∫(cot x . cosecx – cot2x)dx 

= -cosec x – ∫(cosec2x – 1)dx 

= -cosecx -(- cotx) + x + c 

= -cosecx + cotx + x + c

88.

Evaluate: cosx.\(\sqrt{cos^2x - 1}\)

Answer»

∫cosx.\(\sqrt{cos^2x - 1}\)dx

= ∫cosex.\(\sqrt{cot^2x}\) dx= ∫cosecx. cot x .dx 

= cosec x + c

89.

Evaluate:\(\int\frac{(1-sin2x)}{(x+cos^2x)}dx\)∫(1 - sin2x)/(x + cos2x)dx

Answer»

Let (x + cos2 x) = t 

(1 - sin 2x) dx = dt

\(\int\frac{dt}t\) = Int + c

\(\int\frac{(1-sin2x)}{(x+cos^2x)}dx\) = In (|x + cos2x|) + c

90.

Evaluate: \(\sqrt{1 + sin2x}\)

Answer»

\(\sqrt{1 + sin2x}\)dx

\(\int\sqrt{(cosx + sinx)^2}\)dx

=  ∫(cosx + sinx)dx

= sinx – cosx + c

91.

Evaluate: \(\int\frac{sin2x}{1 + cos^2x}dx\)

Answer»

\(\int\frac{sin2x}{1 + cos^2x}dx\)

\(\int\frac{-dt}{t}\)

= -logt + c 

= -log(1 + cos2x) + c 

put 1 + cos2x = t2 

cosx(-sinx) dx = dt 

-sin2x dx = dt 

sin2xdx = -dt

92.

Evaluate: \(\int\frac{cosx}{2 + sinx}dx\)

Answer»

\(\int\frac{cosx}{2 + sinx}dx\) = log(2 + sin x) + c

93.

Evaluate: \(\int\frac{cotx}{3 + log(sinx)}dx\)

Answer»

\(\int\frac{cotx}{3 + log(sinx)}dx\)

\(\frac{dt}{t}\)

= log t + c = log(3 + log(sin x)) + c 

put 3 + log(sin x) = t

\(\frac{cosx}{sinx}dx\) = dt

cos x dx = dt

94.

Evaluate: \(\int\frac{cos^2x.cotx}{4 + 5cos^2x}dx\)

Answer»

\(\int\frac{cos^2x.cotx}{4 + 5cos^2x}dx\)

\(\int\frac{\frac{-1}{10}dx}{t} = \frac{-1}{10}\)logt + c

= log(4 + 5cosec2x) + c 

put 4 + 5 cosec2x = t 

– 10 cosec x – cosec x × cot x dx = dt 

cosec2x . cotxdx = \(\frac{-1}{10}\)dt

95.

Evaluate:\(\int\frac{9x^8 + 9^xlog9}{x^9 + 9^x}dx\)

Answer»

\(\int\frac{9x^8 + 9^xlog9}{x^9 + 9^x}dx\) = log(x9 + 9x) + c

96.

Evaluate: \(\int\frac{1}{x(x + 1)(x + 2)}dx\)

Answer»

\(\int\frac{1}{x(x + 1)(x + 2)}dx\) = \(\frac{A}{x} + \frac{B}{x + 1} + \frac{C}{x + 2}.....(1)\)

1 = A ( x + 1) (x + 2) + B(x) (x + 2) + c × x(x + 1) 

put x = 0, 1 = A(1)(2) ⇒ 1 = 2A ⇒ A = \(\frac{1}{2}\)

put x = -1, 1 = A(0) + B(-1) (-1 + 2) + c(0) ⇒ 1 = -B ⇒ B = -1 

put x = -2, 1 = A(0) + B(0) + c(-2), (-2 + 1) ⇒ 1 = 2c ⇒ c = \(\frac{1}{2}\)

∴ \(\int\frac{dx}{x(x + 1)(x + 2)} = \int\frac{\frac{1}{2}}{x} + \frac{-1}{x + 1} + \frac{\frac{1}{2}}{x + 2}dx\)

= \(\frac{1}{2}\)log2 – log(x + 1) + \(\frac{1}{2}\)log(x + 2) +c

97.

Evaluate: \(\int\frac{3x^2}{1 + x^3}dx\)

Answer»

\(\int\frac{3x^2}{1 + x^3}dx\) = log(1 + x3)+c or using

\(\int\frac{f'(x)}{f(x)}dx\) logf(x) + c

put 1 + x3 = t

∴ 3x2dx = dt 

∴ = ∫ \(\frac{1}{t}\)dt = log t + c = log(1 + x3) + c

98.

Evaluate: \(\int\frac{e^x - 1}{e^x - x}dx\)

Answer»

\(\int\frac{e^x - 1}{e^x - x}dx\) = log(ex – x) + c

99.

Evaluate: \(\int\frac{4x + 3}{2x^2 + 3x + 5}dx\)

Answer»

\(\int\frac{4x + 3}{2x^2 + 3x + 5}dx\)

= log(2x2 + 3x +5) + c 

\(\int\frac{f'(x)}{f(x)}dx\) = log(f(x)) + C

100.

Evaluate: secx(secx – tanx)

Answer»

∫sec x (sec x – tan x)dx 

= ∫sec2x – sec x .tan x. dx 

= tan x – sec x + c