InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
Define limit of a function. |
|
Answer» Limit of a function: When the value of a variable x Is brought closer and closer to a number ‘a’, the value of function f(x) approaches closer and closer to a definite number ‘l’, then we can say that as x tends to ‘a’ f(x) tends to ‘l’ that is x → a, f(x) → 1. This definite number ‘l’ is called limit of a function f(x). Symbolically it can be written as follows: \(\lim\limits_{x\to a}\,f(x)=l\) ‘l’ is the limit of f(x). Hence f(x) ≠ l. |
|
| 102. |
State division working rule of limit. |
|
Answer» f (x) and g (x) are two functions of real variable x and \(\lim\limits_{x\to a}\) f(x) = 1, \(\lim\limits_{x\to a}\) g (x) = m. If \(\frac{f(x)}{g(x)}\) is the division of the two functions. then division working rule of limit is as follows: \(\lim\limits_{x\to a}\,\left[\frac{f(x)}{g}(x)\right]\\=\frac{\lim\limits_{x\to a}\,f(x)}{\lim\limits_{x\to a}\,g(x)}\\=\frac{l}{m},m\neq0\) Thus, the limit of division of two functions is equal to the division of their limits, where the limit of the function in denominator is not zero. |
|
| 103. |
find limit by Tabular Method . |
||||||||||||||||||
|
Answer» To find limit by Tabular Method :
|
|||||||||||||||||||
| 104. |
Punctured 8 neighbourhood of a. |
Answer»
|
|
| 105. |
δ neighbourhood of a . |
|
Answer» N (a, δ) = (x| (a – δ) < x < (a + δ), x ∈ R} |
|
| 106. |
For each positive integer n, let ` y_(n) = 1/n ((n+1)(n+2)…(n+n))^(1/n)`. For ` x in R`, let [x] be the greatest integer less than or equal to x. If ` lim_( n to infty) y_(n) = L`, then the value of [L] is …………….. . |
|
Answer» Correct Answer - `(1)` We have, ` y_(n)=1/n [( n+ 1)(n+1)(n+2)...(n+n)]^(1//n) and underset( n to infty) lim y_(n) = L ` ` rArr L = underset( n to infty) lim 1/n [(n+1)(n+2)(n+3)...(n+n)]^(1//n) ` ` rArr L = underset( n to infty) lim [( 1+1/n)(1+2/n)(1+3/n)...(1+n/n)]^(1/n)` `rArr log L = underset( n to infty) lim 1/n [log (1+1/n)+ log (1+2/n) ...log(1+n/n)]` ` rArr log L = underset( n to infty) lim 1/n underset( r =1) overset( n) sum log (1+ r/n)` `rArr log L = int_(0)^(1) underset"II" 1 xx underset("I")log(1+x) dx ` ` rArr log L = (x* log (1+ x))_(0)^(1) -int_(0)^(1) [d/(dx)(log(1+x))int dx]dx` [by using integration by parts] `rArr log L = [ x log (1+x)]_(0)^(1) - int _(0)^(1) x/(1+x) dx ` ` rArr log L = log 2 - int_(0)^(1) ((x+1)/(x+1) -1/(x+1)) dx` ` rArr log L = log 2 - [x]_(0)^(1) + [log(x+1)]_(0)^(1)` ` rArr log L = log 2 -1 + log 2 -0` ` rArr log L = log 4 - log e = log e = log 4/e rArr L = 4/e rArr [L] = [4/e] = 1` |
|
| 107. |
If N (k1, 0.5) = (19.5, k2), then find the values of k1 and k2. |
|
Answer» N (k1, 0.5) = (19.5, k2) k1 – <5 = 19.5, k1 + S = k2 Here, δ = 0.5 ∴ k1 – 0.5 = 19.5 ∴ k1 = 19.5 + 0.5 = 20 Putting k1 – 20 and δ = 0.5 in k1 + δ = k2, 20 + 0.5 = k2 k2 = 20.5 Hence, k1 = 20, k2 = 20.5 |
|
| 108. |
Let `[.]` represent the greatest integer function and `f (x)=[tan^2 x]` then : |
|
Answer» Correct Answer - B Given, f(x) = `[tan^(2) x]` Now, ` - 45^(@) lt x lt 45^(@) ` `rArr" " tan (-45^(@)) lt tan x lt tan (45^(@))` ` rArr" "-tan 45^(@) lt tan x lt tan (45^(@))` `rArr" " 0 lt tan^(2) x lt 1` `rArr " "[tan^(2) x] = 0` i.e. f(x) is zero for all values of x from ` x =- 45^(@) to 45^(@)`. Thus, f(x) exists when ` x to 0 ` and also it is continuous at x = 0. Also, f(x) is differentiable at x = 0 and has a value of zero. Therefore, (b) is the answer. |
|
| 109. |
If ` f (x) = x (sqrtx+sqrt((x+1))`, thenA. f (x) is continuous but not differentiable at x = 0B. f(x) is differentiable at x = 0C. f(x) is not differentiable at x = 0D. None of the above |
|
Answer» Correct Answer - C Given,` f(x) = x (sqrtx+sqrt(x+1)` `rArr f(x) ` would exists when ` x ge 0`. `:.` f(x) is not continous at x = 0 , because LHL does not exist. ltbr. Hence, option (c ) is correct. |
|
| 110. |
Let [x] denotes the greatest integer less than or equal to x. If `f(x) = [x sin pix]`, then f(x) isA. continuous at x = 0B. continuous in `(-1, 0)`C. differentiable at x = 1D. differentiable in `(-1, 1)` |
|
Answer» Correct Answer - A::B::D We have, for ` -1 lt x lt 1` ` rArr" " [x tan pix] = 0` Also, x sin ` pi x` becomes negative and numerically less than 1 when x is slightly greater than 1 and so by definition of [x] . ` f(x) = [ x sin pi x ] =- 1, " when " 1 lt x lt 1 + h` Thus, f(x) is constant and equal to 0 in the closed interval `[-1, 1] ` and so f(x) is continuous and differentiable in the open interval ` (-1, 1)`. At x = 1, f(x) is discontinuous, since ` underset( h to 0) lim (1-h) = 0 ` and `underset( h to 0) lim (1+h) =- 1` `:.` f(x) is not differentiable at x = 1 . Hence, (a), (b) and (d) are correct answers. |
|
| 111. |
The function `f(x) = [x] cos((2x-1)/2) pi` where [ ] denotes the greatest integer function, is discontinuousA. all xB. all integer pointsC. no xD. x which is not an integer |
|
Answer» Correct Answer - C Here, `f(x) = [x] cos ((2x -1)/2) pi` f(x)=`:." "f(x)={{:(-cos((2x-1)/2)pi" ,"-1 le x lt 0),(0" , "0 le x lt 1),(cos((2x-1)/2) pi" , " 1 le x lt 2),(2 cos ((2x -1)/2) pi" , "2le x lt 3):}` which shows RHL = LHL at x = n `in ` Integer as if x = 1 `rArr underset( x to 1^(+)) lim cos((2x-1)/2) pi = 0 and underset ( x to 1^(-)) lim 0= 0 ` Also, f(1) = 0 `:.` Continous at x = 1. Similarly, when x = 2, ` underset( x to 2^(+)) lim f(x) = underset( x to 2^(-)) lim f(x) = 0 ` Thus, function is discontinuous at no x. Hence, option (c ) is the correct answer. |
|
| 112. |
If `f(x) ={{:(sin[x]/[[x]]", "[x] ne 0),(" "0", "[x] ne 0):}` where, [x] denotes the greatest integer less than or equal to x, then ` lim_(x to 0) f(x) ` equalsA. 1B. 0C. `-1`D. None of these |
|
Answer» Correct Answer - D Since, `f(x) = {{:((sin [x])/[[x]]", "[x] ne 0 ),("0, "[x] = 0):}` `rArr f(x) = {{:((sin [x])/[[x]]", "x inR-[0,1)),("0, "0 le x lt 1):}` At x = 0, RHL = ` underset(x to 0^(+)) lim 0 = 0` and LHL = `underset(x to 0^(-)) lim (sin [x])/[x] = underset( h to 0) lim (sin [0-h])/([0-h]) ` ` = underset( h to 0) lim (sin (-1))/(-1) = sin 1 ` `:. ` Limit does not exist. |
|
| 113. |
In the following, [x] denotes the greatest integer less than or equal to x. `{:(,"Column I",,"Column II"),(A.,x|x|,p.,"continuous in (-1, 1)"),(B.,sqrt|x|,q.,"differentiable in (-1, 1) "),(C.,x+[x],r.,"strictly increasing (-1, 1)"),(D.,|x-1|+|x+1| " in (-1,1)",s.,"not differentiable atleast at one point in (-1, 1)"):}` |
|
Answer» Correct Answer - `(A) to p,q,r,s; (B) to p, s; (D) to p, s ` A. x|x| is continuous, differentiable and strictly increasing in (-1, 1). B. `sqrt|x|` is continuous in (-1, 1) and not differentiable at x = 0. C. x+[x] is strictly increasing in (-1, 1) and discontinuous at x = 0 `rArr` not differentiable at x = 0. D. `|x-1|+|x+1|=2" in "(-1, 1)` `rArr ` The function is continuous and differentiable in (-1, 1) . |
|
| 114. |
The value of `lim_(x rarr 0)(a^(2x)-1)/(2x)` isA. `(1)/(4)log_(e)a`B. 1C. `(1)/(2)`D. `log_(e)a` |
| Answer» Correct Answer - D | |
| 115. |
The value of `lim_(x rarr 0) (e^(x2)-1)/(x)` isA. 1B. 0C. does not existD. nono of these |
| Answer» Correct Answer - B | |
| 116. |
The value of `lim_(xrarroo)(1+(1)/(x))^(x)` isA. 1B. eC. `e^(-1)`D. does not exist |
| Answer» Correct Answer - B | |
| 117. |
Evaluate the following limits: `lim_(xrarr0)(x cot2x)` |
|
Answer» Correct Answer - `1/2` Given limit `=1/2xxlim_(2xto0)(2x)/(tan2x)=((1)/(2)xx1)=1/2.` |
|
| 118. |
Evaluate the following limits: `lim_(xrarr0)((cot2x-cosecex))/(x)` |
|
Answer» Correct Answer - `-1` Given limit `=lim_(xto0)((cos2x-1))/(xsin2x)=lim_(xto0)(-(1-cos2x))/(xsin2x)` `=lim_(xto0)(-2sin^(2)x)/(2xsinxcosx)=-lim_(xto0)(tanx)/(x)=-1.` |
|
| 119. |
Let `f(x){{:((x)/(|x|)",",xne0),(0",",x=0):}` Show that `lim_(xrarr0)f(x)` does not exist. |
|
Answer» `lim_(xto0^(+))f(x)=lim_(hto0)(0+h)=lim_(hto0)f(h)=lim_(hto0|-h|)=lim_(hto0)h/h=1" "[becausehgt0]` `lim_(xto0^(-))f(x)=lim_(hto0)f(0-h)=lim_(hto0)(-h)/(|-h|)=lim_(hto0)(-h)/(h)=-1.` `thereforelim_(xto0^(+))f(x)nelim_(xto0)f(x)and so limf(x)` does not exist. |
|
| 120. |
Evaluate `lim_(xrarra)((x+2)^(3//2)-(a+2)^(3//2))/(x-a).` |
|
Answer» `lim_(xtoa)((x+2)^(3//2)-(a+2)^(3//2))/(x-a)` `=underset((x+2)to(a+2))(lim)((x+2)^(3//2)-(a+2)^(3//2))/((x+2)-(a+2))` `=3/2.(a+2)^(((3)/(2)-1))=3/2(a+2)^(1//2)" "[becauselim_(xtoa)((x^(n)-a^(n))/(x-a))=na^(n-1)].` |
|
| 121. |
`lim_(x->0)(sin3x+7x)/(4x+sin2x)` |
|
Answer» `lim_(xto0)((sin3x+7x)/(4x+sin2x))=lim_(xto0)(((sin3x)/(x)+7)/(4+(sin2x)/(x))) " "["dividing num. and denom. by x"]` `=lim_(xto0){((sin3x)/(3x).3+7)/(4+((sin2x)/(2x)).2)}=([3xxlim_(3xto0)(sin3x)/(3x)]+7)/(4+[2xxlim_(2xto0)((sin2x)/(2x))])` `=((3xx1)+7)/(4+(2xx1))=10/6=5/3.` |
|
| 122. |
Evaluate `lim_(xrarra){(x^(12)-a^(12))/(x-a)}.` |
| Answer» `lim_(xtoa){(x^(12)-a^(12))/(x-a)}=12a^((12-1))=12a^(11)" "[becauselim_(xtoa)((x^(n)-a^(n))/(a-x))=na^(n-1)].` | |
| 123. |
Evalute `lim_(xrarr1) (x^(15)-1)/(x^(10)-1)` |
|
Answer» `lim_(xto1)(x^(15)-1)/(x^(10)-1)=lim_(xto1){((x^(15)-1)/(x-1))div((x^(10)-1)/(x-1))}` `=lim_(xto1)((x^(15)-1)/(x-1))divlim_(xto1)((x^(10)-1)/(x-1))` `implies(15xx10^(14))div(10xx1^(9))=15/10=3/2.` |
|
| 124. |
If `lim_(x to -a)(x^(7)+a^7)/(x+a)=7` then the value of a isA. 1B. -1C. 7D. -7 |
| Answer» Correct Answer - A,B,D | |
| 125. |
Let `f(x) (1-cos4x)/(x^(2)),g(x)=(sqrtx)/((sqrt(16+sqrtx))-4)and q(x)=(e^(2x)-x^(x)+1)/(x^(2x+e^(x)+1)),(x in R).` `lim_(x to 0)g(x)=`A. `(1)/(8)`B. 8C. 2D. `(1)/(2)` |
| Answer» Correct Answer - B | |
| 126. |
Let `f(x) (1-cos4x)/(x^(2)),g(x)=(sqrtx)/((sqrt(16+sqrtx))-4)and q(x)=(e^(2x)-x^(x)+1)/(x^(2x+e^(x)+1)),(x in R).` `lim_(xrarr0)f(x)`A. `(1)/(2)`B. 2C. `(1)/(8)`D. 8 |
| Answer» Correct Answer - D | |
| 127. |
Evaluate `lim_(xrarr0)(xtan4x)/(1-cos4x).` |
|
Answer» `lim_(xto0)(xtan4x)/(1-cosx)=lim_(xto0)(xsin4x)/(cos4x(2sin^(2)2x))` `=lim_(xto0)(2xsin2xcos2x)/(cos4x(2sin^(2)2x))=lim_(xto0)((cos2x)/(cos4x).(2x)/(sin2x)xx(1)/(2))` `=1/2xx(lim_(2xto0)cos2x)/(lim_(4xto0)cos4x)xxlim_(2xto0)((2x)/(sin2x))=((1)/(2)xx(1)/(1)xx1)=1/2.` |
|
| 128. |
Evaluate `lim_(xrarr(pi)/(4))((sinx-cosx))/((x-(pi)/(4))).` |
|
Answer» Put `(x-(pi)/(4))=y"so that when"y to (pi)/(4) then y to 0.` `thereforelim_(xto(pi)/(4))((sinx-cosx))/((x-(pi)/(4)))` `=lim_(yto0)({sin""((pi)/(4)+y)-cos((pi)/(4)+y)})/(y)" "["putting""("x-(pi)/(4)")"=y]` `=lim_(yto0)({(sin""(pi)/(4)cosy+cos""(pi)/(4)siny)-(cos""(pi)/(4)cosy-sin""(pi)/(4)siny)})/(y)` `=(2)/(sqrt2)xxlim_(yto0)((siny)/(y))=(2sqrtxx1)=sqrt2.` |
|
| 129. |
Let `f(x) (1-cos4x)/(x^(2)),g(x)=(sqrtx)/((sqrt(16+sqrtx))-4)and q(x)=(e^(2x)-x^(x)+1)/(x^(2x+e^(x)+1)),(x in R).` `lim_(x to 0)q(x)=` |
| Answer» Correct Answer - B | |
| 130. |
Evaluate `lim_(xrarr(pi)/(2))(cosx)/(((pi)/(2)-x)).` |
|
Answer» Put `(x-(pi)/(2))=y,` so that when `xto(pi)/(2)then tyto0.` `thereforelim_(xto(pi)/(2))(cosx)/(((pi)/(2)-x))=lim_(yto0)(cos((pi)/(2)+y))/(-y)=lim_(yto0)((-siny)/(-y))=lim_(yto0)(siny)/(y)=1.` |
|
| 131. |
Evaluate `lim_(xrarr(pi)/(6))((sqrt3sinx-cosx))/((x-(pi)/(6))).` |
|
Answer» `lim_(x to(pi)/(6))(x-(pi)/(6))` `=lim_(xto(pi)/(6))(2((sqrt3)/(2)sinx-1/2cosx))/((x-(pi)/(6)))=lim_(xto(pi)/(6))(2(sinxcos""(pi)/(6)-cosxsin""(pi)/(6)))/((x-(pi)/(6)))` `=2lim_(x to (pi)/(6))(sin(x-(pi)/(6)))/((x-(pi)/(6)))=2lim_(yto0)(siny)/(y)=2" ""[""putting"(x-(pi)/(6))=y"]".` |
|
| 132. |
If f , g , and h are functions having a cammon domain D and `h(x) lef(x) leg(x), x in D` and if `lim_(x to a)h(x)=lim_(x to a)g(x)=l" "then" "lim_(x to a)f(x)=l` The value of `lim_(x to 0)(|x|)/(sqrt(x^(4)+4x^(2)+7))-`A. 1B. 0C. `(1)/(2)`D. `-(1)/(2)` |
| Answer» Correct Answer - B | |
| 133. |
Evaluate `lim_(x to0)(xtanx)/((1-cosx))` |
|
Answer» `lim_(x to 0)(x tanx)/((1-cosx))=lim_(xto0)(x tanx)/(cos x(1-cosx))` `=lim_(x to 0)(x sin^(2)x)/(sinx cos x(1-cosx))` `=lim_(x to 0)(x(1-cos^(2)x))/(sinx cosx(1-cosx))=lim_(x to 0)(x(1+cosx))/(sin x cosx)` `=lim_(xto0)(x)/(sinx)lim_(xto0)((1+cosx))/(cosx)=(1xx(2)/(1))=2.` |
|
| 134. |
If f , g , and h are functions having a cammon domain D and `h(x) lef(x) leg(x), x in D` and if `lim_(x to a)h(x)=lim_(x to a)g(x)=l" "then" "lim_(x to a)f(x)=l` `lim_(x to 0)x^(4)sin((1)/(3sqrtx))` is |
| Answer» Correct Answer - A | |
| 135. |
Evaluate the following limits: `lim_(x to0)(sqrt2-sqrt(1+cosx))/(2x+sin3x)` |
|
Answer» Correct Answer - `(1)/(4sqrt2)` `lim_(xto0)(sqrt2-sqrt(1+cosx))/(sin^(2)x)=lim_(xto0)(sqrt2-sqrt(2cos^(2)(x//2)))/((1-cos^(2)x))=lim_(xto0)(sqrt2(1-cos""(x)/(2)))/((1-cosx)(1+cosx))` `=lim_(xto0)(sqrt2(1-cos""(x)/(2)))/((2sin^(2)""(x)/2)(1+cosx))=(1)/(sqrt2)lim_(xto0)((1-cos""(x)/(2)))/((1-cos^(2)""(x)/(2))(1+cosx))` `=(1)/(sqrt2)lim_(xto0)(1)/((1+cos""(x)/(2))(1+cosx))=(1)/(sqrt2)xx(1)/((1+1)(1+1))=(1)/(4sqrt2).` |
|
| 136. |
`lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))` |
|
Answer» Correct Answer - `1/2` Given limit `=lim_(xto1)((x-1)(x+1)(x^(2)-2))/((x-1)(x^(2)-4x-1))=lim_(xto1)((x+1)(x^(2)-2))/((x^(2)-4x-1))=1/2.` |
|
| 137. |
Let `f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):}` If `lim_(xrarr2)f(x)` exists then find the value of a. |
|
Answer» Correct Answer - `a=-1` `lim_(xto2^(-))f(x)=lim_(hto0)f(2+h)=lim_(hto0)(2+h-a)=(2-a).` `lim_(xto2^(-))f(x)=lim_(hto0)f(2-h)=lim_(hto0){4(2-h)-5}=(8-5)=3.` Since `lim_(xto2^(-))f(x)` exist, we must have `lim_(xto2^(+))f(x)=lim_(xto2^(-))f(x).` `therefore2-a=3impliesa=(2-3)=-1.` |
|
| 138. |
Let `f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):}` If `lim_(xrarr2)f(x)` exists then find the value of a. |
|
Answer» Correct Answer - `a=-1` `lim_(xto2^(-))f(x)=lim_(hto0)f(2+h)=lim_(hto0)(2+h-a)=(2-a).` `lim_(xto2^(-))f(x)=lim_(hto0)f(2-h)=lim_(hto0){4(2-h)-5}=(8-5)=3.` Since `lim_(xto2^(-))f(x)` exist, we must have `lim_(xto2^(+))f(x)=lim_(xto2^(-))f(x).` `therefore2-a=3impliesa=(2-3)=-1.` |
|
| 139. |
`lim_(x->pi)(sin(pi-x)/(pi(pi-x)))` |
|
Answer» Correct Answer - `(1)/(pi)` Putting `(pi-x)=h, "we have" x to pi implies pi-xto0rarrhto0.` `thereforelim_(xto pi)(sin(pi-x))/(pi(pi-x))=(1)/(pi)lim_(hto0)(sinh)/(h)=((1)/(pi)xx1)=(1)/(pi).` |
|
| 140. |
Let `f(x){:{(2x+3",",xle0),(3(x+1)",",xgt0.):}` Find `(i) lim_(xrarr0)f(x)" "(ii)lim_(xrarr1)f(x)` |
|
Answer» (I) We have `lim_(xto0^(+))f(x)=lim_(hto0)3(0+h+1)=lim_(hto0)3(h+1)=3.` `lim_(xto0^(-))f(x)=lim_(hto0)3(0-h+1)=lim_(hto0)3(-h+1)=3.` `thereforelim_(xto0^(+))(x)=lim_(xto0^(-))f(x)=3.` Hence, `lim_(xto0)f(x)=3.` (ii) We have `limf(x)lim_(hto0)f(1+h)=lim_(hto0)3(1+h+1)=lim_(hto0)3(2+h)=6.` `lim_(xto1^(-))f(x)=lim_(hto0)f(1-h)=lim_(hto0)3(1-h+1)=lim_(hto0)3(2-h)=6.` `thereforelim_(xto1^(+))f(x)=lim_(xto1)f(x)=6.` Hence `lim_(xto1)f(x)=6.` |
|
| 141. |
Evaluate the following limits: `lim_(xrarr0)((e^(bx)-e^(ax))/(x)),0ltaltb` |
|
Answer» Correct Answer - `(b-a)` Given limit `=lim_(xto0){((e^(bt)-1)-(e^(ax)-1))/(x)}=lim_(bxto0){((e^(bx)-1)/(bx)).b}-lim_(axto0){((e^(ax)-1)/(ax)).a}` `=(1xxb)-(1xxa)=(b-a).` |
|
| 142. |
Evaluate the following limits: `lim_(xrarr0)(cos ax-cos bx)/(cos cx-1)` |
|
Answer» Correct Answer - `((a^(2)-b^(2)))/(c^(2))` Given limit `=lim_(xto0)(-2sin((a+b)/(2))x.sin((a-b)/(2))x)/(-2sin^(2)((cx)/(2)))` `((sin((a+b)/(2))x)/(((a+b)/(2)))xx((a+b)/(2))x.(sin((a-b)/(2))x)/(((a-b)/(2))x)xx((a-b)/(2))x)/({(sin((cx)/(2)))/(((cx)/(2)))}^(2))` `={((a+b)/(2))((a-b)/(2))xx(4)/(c^(2))}.lim_(xto0)(sin((a+b)/(2))x)/(((a+b)/(2))).lim_(xto0)(sin((a-b)/(2))x)/(((a-b)/(2))x)` `={((a^(2)-b^(2)))/(x^(2))xx1xx1}=((a^(2)-b^(2)))/(c^(2)).` |
|
| 143. |
Evaluate the following limits: `lim_(xrarr0)(sinax+bx)/(ax+sinbx),where a, b, a+bne0` |
|
Answer» Correct Answer - 1 `lim_(xto0)(sina+bc)/(ax+sin bx)=lim_(xto0){((sinax)/(x)+b)/(a+(sinbx)/(x))}" "["dividing num. and denom. by x"]` `=lim_(xto0)({a((sinax)/(ax))+b})/({a+b((sinbx)/(bx))})=((axx1)+b)/(a+(bxx1))=(a+b)/(a+b)=1.` |
|
| 144. |
Find `(dy)/(dx)` at `x=-1` ,when `(siny)^(sin((pi/2)x))+sqrt3/2 sec^(-1)(2x)+2^x tan(ln(x+2))=0` |
|
Answer» Correct Answer - `3/(pisqrt(pi^(2)-3)) ` Here, `(siny)^(sin.pi/2x) +sqrt3/2 sec^(-1)(2x)+2^(x) tan {log (x+2)}=0` On differentiating both sides, we get `(sin y)^(sin.pi/2 x)*log (sin y)*cos.pi/2 x*pi/2` `" "+(sin. pi/2x)(sin y)^((sin .pi/2 x)-1)*cos y *(dy)/(dx) ` `" "+sqrt3/2*2/((2|x|)sqrt(4x^(2)-1))+(2^(x)*sec^(2){log (x+2)})/((x+2))` `" "+ 2^(x) log 2* tan {log (x+2)}=0` Putting `(x=- 1, y = - sqrt3/pi)`, we get `(dy)/(dx)=(-sqrt3/pi)^(2)/sqrt(1-(sqrt(3)/pi)^(2))=3/(pisqrt(pi^(2)-3))` |
|
| 145. |
Let `p=(lim)_(xvec0+)(1+tan^2sqrt(x))^(1//2x)`then `logp`is equal to:(1) 2(2) 1(3) `1/2`(4)`1/4`A. 2B. 1C. `1/2`D. `1/4` |
|
Answer» Correct Answer - C Given, ` p = underset( x to 0^(+)) lim (1+ tan^(2) sqrtx)^(1/(2x) ) ( 1^( infty) " form") ` ` = e^(underset( x to 0^(+)) lim (tan^(2)sqrtx)/(2x)) = e^(1/2 underset( x to 0^(+)) lim ((tan sqrtx)/(sqrtx))^(2))=e^(1/2) ` ` :. " " log p = log e^(1/2) = 1/2 ` |
|
| 146. |
Evaluate the following limits: `lim_(xrarr0)((sqrt(1+x+x^(2))-1)/(x))` |
| Answer» Correct Answer - `1/2` | |
| 147. |
Evaluate the following limits: `lim_(xrarr0)((sqrt(2-x)-sqrt(2+x))/(x))` |
| Answer» Correct Answer - `(-1)/(sqrt2)` | |
| 148. |
Evaluate the following limits: `lim_(xrarr5)((x^(2)-25)/(x-5))` |
| Answer» Correct Answer - 10 | |
| 149. |
Evaluate the following limits: `lim_(xrarr-2)((x^(3)+8)/(x+2))` |
| Answer» Correct Answer - 12 | |
| 150. |
Evaluate the following limits: `lim_(xrarr3)((x^(2)-4x+3)/(x^(2)-2x-3))` |
| Answer» Correct Answer - `1/2` | |