Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Define limit of a function.

Answer»

Limit of a function: When the value of a variable x Is brought closer and closer to a number ‘a’, the value of function f(x) approaches closer and closer to a definite number ‘l’, then we can say that as x tends to ‘a’ f(x) tends to ‘l’ that is x → a, f(x) → 1. This definite number ‘l’ is called limit of a function f(x). Symbolically it can be written as follows:

\(\lim\limits_{x\to a}\,f(x)=l\)

‘l’ is the limit of f(x). Hence f(x) ≠ l.

102.

State division working rule of limit.

Answer»

f (x) and g (x) are two functions of real variable x and \(\lim\limits_{x\to a}\) f(x) = 1, \(\lim\limits_{x\to a}\) g (x) = m.

If \(\frac{f(x)}{g(x)}\) is the division of the two functions. then division working rule of limit is as follows:

\(\lim\limits_{x\to a}\,\left[\frac{f(x)}{g}(x)\right]\\=\frac{\lim\limits_{x\to a}\,f(x)}{\lim\limits_{x\to a}\,g(x)}\\=\frac{l}{m},m\neq0\)

Thus, the limit of division of two functions is equal to the division of their limits, where the limit of the function in denominator is not zero.

103.

find limit by Tabular Method .

Answer»

To find limit by Tabular Method :

Limiting Value of xIncreasing ValuesDecreasing Values
-2-2.1. -2.01, -2.001, -2.0001,…– 1.9, – 1.99, -1.999, – 1.9999,…
– 1-1.1, -1.01, -1.001, -1.0001,…-0.9, -0.99, -0.999, -0.9999,…
0-0.1, -0.01, -0.001, -0.0001….0.1, 0.01, 0.001, 0.0001,…
10.9, 0.99, 0.999, 0.9999,…1.1, 1.01, 1.001, 1.0001,…
21.9, 1.99, 1.999, 1.9999,…2.1, 2.01, 2.001, 2.0001,…
104.

 Punctured 8 neighbourhood of a.

Answer»
  • N * (a, δ) = {x | (a – δ) < x < (a + δ), x ≠ a, x∈ R}
  • N (a, δ) = |x – a|< δ (Modulus form)
  • N (a, δ) = (a – δ, a + δ) (Interval form)
105.

δ neighbourhood of a .

Answer»

N (a, δ) = (x| (a – δ) < x < (a + δ), x ∈ R}

106.

For each positive integer n, let ` y_(n) = 1/n ((n+1)(n+2)…(n+n))^(1/n)`. For ` x in R`, let [x] be the greatest integer less than or equal to x. If ` lim_( n to infty) y_(n) = L`, then the value of [L] is …………….. .

Answer» Correct Answer - `(1)`
We have,
` y_(n)=1/n [( n+ 1)(n+1)(n+2)...(n+n)]^(1//n) and underset( n to infty) lim y_(n) = L `
` rArr L = underset( n to infty) lim 1/n [(n+1)(n+2)(n+3)...(n+n)]^(1//n) `
` rArr L = underset( n to infty) lim [( 1+1/n)(1+2/n)(1+3/n)...(1+n/n)]^(1/n)`
`rArr log L = underset( n to infty) lim 1/n [log (1+1/n)+ log (1+2/n) ...log(1+n/n)]`
` rArr log L = underset( n to infty) lim 1/n underset( r =1) overset( n) sum log (1+ r/n)`
`rArr log L = int_(0)^(1) underset"II" 1 xx underset("I")log(1+x) dx `
` rArr log L = (x* log (1+ x))_(0)^(1) -int_(0)^(1) [d/(dx)(log(1+x))int dx]dx`
[by using integration by parts]
`rArr log L = [ x log (1+x)]_(0)^(1) - int _(0)^(1) x/(1+x) dx `
` rArr log L = log 2 - int_(0)^(1) ((x+1)/(x+1) -1/(x+1)) dx`
` rArr log L = log 2 - [x]_(0)^(1) + [log(x+1)]_(0)^(1)`
` rArr log L = log 2 -1 + log 2 -0`
` rArr log L = log 4 - log e = log e = log 4/e rArr L = 4/e rArr [L] = [4/e] = 1`
107.

If N (k1, 0.5) = (19.5, k2), then find the values of k1 and k2.

Answer»

N (k1, 0.5) = (19.5, k2)

k1 – <5 = 19.5, k1 + S = k2

Here, δ = 0.5

∴ k1 – 0.5 = 19.5

∴ k1 = 19.5 + 0.5 = 20

Putting k1 – 20 and δ = 0.5 in k1 + δ = k2,

20 + 0.5 = k2

k2 = 20.5

Hence, k1 = 20, k2 = 20.5

108.

Let `[.]` represent the greatest integer function and `f (x)=[tan^2 x]` then :

Answer» Correct Answer - B
Given, f(x) = `[tan^(2) x]`
Now, ` - 45^(@) lt x lt 45^(@) `
`rArr" " tan (-45^(@)) lt tan x lt tan (45^(@))`
` rArr" "-tan 45^(@) lt tan x lt tan (45^(@))`
`rArr" " 0 lt tan^(2) x lt 1`
`rArr " "[tan^(2) x] = 0`
i.e. f(x) is zero for all values of x from ` x =- 45^(@) to 45^(@)`. Thus, f(x) exists when ` x to 0 ` and also it is continuous at x = 0. Also, f(x) is differentiable at x = 0 and has a value of zero.
Therefore, (b) is the answer.
109.

If ` f (x) = x (sqrtx+sqrt((x+1))`, thenA. f (x) is continuous but not differentiable at x = 0B. f(x) is differentiable at x = 0C. f(x) is not differentiable at x = 0D. None of the above

Answer» Correct Answer - C
Given,` f(x) = x (sqrtx+sqrt(x+1)`
`rArr f(x) ` would exists when ` x ge 0`.
`:.` f(x) is not continous at x = 0 ,
because LHL does not exist. ltbr. Hence, option (c ) is correct.
110.

Let [x] denotes the greatest integer less than or equal to x. If `f(x) = [x sin pix]`, then f(x) isA. continuous at x = 0B. continuous in `(-1, 0)`C. differentiable at x = 1D. differentiable in `(-1, 1)`

Answer» Correct Answer - A::B::D
We have, for ` -1 lt x lt 1`
` rArr" " [x tan pix] = 0`
Also, x sin ` pi x` becomes negative and numerically less than 1 when x is slightly greater than 1 and so by definition of [x] .
` f(x) = [ x sin pi x ] =- 1, " when " 1 lt x lt 1 + h`
Thus, f(x) is constant and equal to 0 in the closed interval `[-1, 1] ` and so f(x) is continuous and differentiable in the open interval ` (-1, 1)`.
At x = 1, f(x) is discontinuous, since ` underset( h to 0) lim (1-h) = 0 `
and `underset( h to 0) lim (1+h) =- 1`
`:.` f(x) is not differentiable at x = 1 .
Hence, (a), (b) and (d) are correct answers.
111.

The function `f(x) = [x] cos((2x-1)/2) pi` where [ ] denotes the greatest integer function, is discontinuousA. all xB. all integer pointsC. no xD. x which is not an integer

Answer» Correct Answer - C
Here, `f(x) = [x] cos ((2x -1)/2) pi`
f(x)=`:." "f(x)={{:(-cos((2x-1)/2)pi" ,"-1 le x lt 0),(0" , "0 le x lt 1),(cos((2x-1)/2) pi" , " 1 le x lt 2),(2 cos ((2x -1)/2) pi" , "2le x lt 3):}`
which shows RHL = LHL at x = n `in ` Integer as if x = 1
`rArr underset( x to 1^(+)) lim cos((2x-1)/2) pi = 0 and underset ( x to 1^(-)) lim 0= 0 `
Also, f(1) = 0
`:.` Continous at x = 1.
Similarly, when x = 2,
` underset( x to 2^(+)) lim f(x) = underset( x to 2^(-)) lim f(x) = 0 `
Thus, function is discontinuous at no x.
Hence, option (c ) is the correct answer.
112.

If `f(x) ={{:(sin[x]/[[x]]", "[x] ne 0),(" "0", "[x] ne 0):}` where, [x] denotes the greatest integer less than or equal to x, then ` lim_(x to 0) f(x) ` equalsA. 1B. 0C. `-1`D. None of these

Answer» Correct Answer - D
Since, `f(x) = {{:((sin [x])/[[x]]", "[x] ne 0 ),("0, "[x] = 0):}`
`rArr f(x) = {{:((sin [x])/[[x]]", "x inR-[0,1)),("0, "0 le x lt 1):}`
At x = 0,
RHL = ` underset(x to 0^(+)) lim 0 = 0`
and LHL = `underset(x to 0^(-)) lim (sin [x])/[x] = underset( h to 0) lim (sin [0-h])/([0-h]) `
` = underset( h to 0) lim (sin (-1))/(-1) = sin 1 `
`:. ` Limit does not exist.
113.

In the following, [x] denotes the greatest integer less than or equal to x. `{:(,"Column I",,"Column II"),(A.,x|x|,p.,"continuous in (-1, 1)"),(B.,sqrt|x|,q.,"differentiable in (-1, 1) "),(C.,x+[x],r.,"strictly increasing (-1, 1)"),(D.,|x-1|+|x+1| " in (-1,1)",s.,"not differentiable atleast at one point in (-1, 1)"):}`

Answer» Correct Answer - `(A) to p,q,r,s; (B) to p, s; (D) to p, s `
A. x|x| is continuous, differentiable and strictly increasing in (-1, 1).
B. `sqrt|x|` is continuous in (-1, 1) and not differentiable at x = 0.
C. x+[x] is strictly increasing in (-1, 1) and discontinuous at x = 0
`rArr` not differentiable at x = 0.
D. `|x-1|+|x+1|=2" in "(-1, 1)`
`rArr ` The function is continuous and differentiable in (-1, 1) .
114.

The value of `lim_(x rarr 0)(a^(2x)-1)/(2x)` isA. `(1)/(4)log_(e)a`B. 1C. `(1)/(2)`D. `log_(e)a`

Answer» Correct Answer - D
115.

The value of `lim_(x rarr 0) (e^(x2)-1)/(x)` isA. 1B. 0C. does not existD. nono of these

Answer» Correct Answer - B
116.

The value of `lim_(xrarroo)(1+(1)/(x))^(x)` isA. 1B. eC. `e^(-1)`D. does not exist

Answer» Correct Answer - B
117.

Evaluate the following limits: `lim_(xrarr0)(x cot2x)`

Answer» Correct Answer - `1/2`
Given limit `=1/2xxlim_(2xto0)(2x)/(tan2x)=((1)/(2)xx1)=1/2.`
118.

Evaluate the following limits: `lim_(xrarr0)((cot2x-cosecex))/(x)`

Answer» Correct Answer - `-1`
Given limit `=lim_(xto0)((cos2x-1))/(xsin2x)=lim_(xto0)(-(1-cos2x))/(xsin2x)`
`=lim_(xto0)(-2sin^(2)x)/(2xsinxcosx)=-lim_(xto0)(tanx)/(x)=-1.`
119.

Let `f(x){{:((x)/(|x|)",",xne0),(0",",x=0):}` Show that `lim_(xrarr0)f(x)` does not exist.

Answer» `lim_(xto0^(+))f(x)=lim_(hto0)(0+h)=lim_(hto0)f(h)=lim_(hto0|-h|)=lim_(hto0)h/h=1" "[becausehgt0]`
`lim_(xto0^(-))f(x)=lim_(hto0)f(0-h)=lim_(hto0)(-h)/(|-h|)=lim_(hto0)(-h)/(h)=-1.`
`thereforelim_(xto0^(+))f(x)nelim_(xto0)f(x)and so limf(x)` does not exist.
120.

Evaluate `lim_(xrarra)((x+2)^(3//2)-(a+2)^(3//2))/(x-a).`

Answer» `lim_(xtoa)((x+2)^(3//2)-(a+2)^(3//2))/(x-a)`
`=underset((x+2)to(a+2))(lim)((x+2)^(3//2)-(a+2)^(3//2))/((x+2)-(a+2))`
`=3/2.(a+2)^(((3)/(2)-1))=3/2(a+2)^(1//2)" "[becauselim_(xtoa)((x^(n)-a^(n))/(x-a))=na^(n-1)].`
121.

`lim_(x->0)(sin3x+7x)/(4x+sin2x)`

Answer» `lim_(xto0)((sin3x+7x)/(4x+sin2x))=lim_(xto0)(((sin3x)/(x)+7)/(4+(sin2x)/(x))) " "["dividing num. and denom. by x"]`
`=lim_(xto0){((sin3x)/(3x).3+7)/(4+((sin2x)/(2x)).2)}=([3xxlim_(3xto0)(sin3x)/(3x)]+7)/(4+[2xxlim_(2xto0)((sin2x)/(2x))])`
`=((3xx1)+7)/(4+(2xx1))=10/6=5/3.`
122.

Evaluate `lim_(xrarra){(x^(12)-a^(12))/(x-a)}.`

Answer» `lim_(xtoa){(x^(12)-a^(12))/(x-a)}=12a^((12-1))=12a^(11)" "[becauselim_(xtoa)((x^(n)-a^(n))/(a-x))=na^(n-1)].`
123.

Evalute `lim_(xrarr1) (x^(15)-1)/(x^(10)-1)`

Answer» `lim_(xto1)(x^(15)-1)/(x^(10)-1)=lim_(xto1){((x^(15)-1)/(x-1))div((x^(10)-1)/(x-1))}`
`=lim_(xto1)((x^(15)-1)/(x-1))divlim_(xto1)((x^(10)-1)/(x-1))`
`implies(15xx10^(14))div(10xx1^(9))=15/10=3/2.`
124.

If `lim_(x to -a)(x^(7)+a^7)/(x+a)=7` then the value of a isA. 1B. -1C. 7D. -7

Answer» Correct Answer - A,B,D
125.

Let `f(x) (1-cos4x)/(x^(2)),g(x)=(sqrtx)/((sqrt(16+sqrtx))-4)and q(x)=(e^(2x)-x^(x)+1)/(x^(2x+e^(x)+1)),(x in R).` `lim_(x to 0)g(x)=`A. `(1)/(8)`B. 8C. 2D. `(1)/(2)`

Answer» Correct Answer - B
126.

Let `f(x) (1-cos4x)/(x^(2)),g(x)=(sqrtx)/((sqrt(16+sqrtx))-4)and q(x)=(e^(2x)-x^(x)+1)/(x^(2x+e^(x)+1)),(x in R).` `lim_(xrarr0)f(x)`A. `(1)/(2)`B. 2C. `(1)/(8)`D. 8

Answer» Correct Answer - D
127.

Evaluate `lim_(xrarr0)(xtan4x)/(1-cos4x).`

Answer» `lim_(xto0)(xtan4x)/(1-cosx)=lim_(xto0)(xsin4x)/(cos4x(2sin^(2)2x))`
`=lim_(xto0)(2xsin2xcos2x)/(cos4x(2sin^(2)2x))=lim_(xto0)((cos2x)/(cos4x).(2x)/(sin2x)xx(1)/(2))`
`=1/2xx(lim_(2xto0)cos2x)/(lim_(4xto0)cos4x)xxlim_(2xto0)((2x)/(sin2x))=((1)/(2)xx(1)/(1)xx1)=1/2.`
128.

Evaluate `lim_(xrarr(pi)/(4))((sinx-cosx))/((x-(pi)/(4))).`

Answer» Put `(x-(pi)/(4))=y"so that when"y to (pi)/(4) then y to 0.`
`thereforelim_(xto(pi)/(4))((sinx-cosx))/((x-(pi)/(4)))`
`=lim_(yto0)({sin""((pi)/(4)+y)-cos((pi)/(4)+y)})/(y)" "["putting""("x-(pi)/(4)")"=y]`
`=lim_(yto0)({(sin""(pi)/(4)cosy+cos""(pi)/(4)siny)-(cos""(pi)/(4)cosy-sin""(pi)/(4)siny)})/(y)`
`=(2)/(sqrt2)xxlim_(yto0)((siny)/(y))=(2sqrtxx1)=sqrt2.`
129.

Let `f(x) (1-cos4x)/(x^(2)),g(x)=(sqrtx)/((sqrt(16+sqrtx))-4)and q(x)=(e^(2x)-x^(x)+1)/(x^(2x+e^(x)+1)),(x in R).` `lim_(x to 0)q(x)=`

Answer» Correct Answer - B
130.

Evaluate `lim_(xrarr(pi)/(2))(cosx)/(((pi)/(2)-x)).`

Answer» Put `(x-(pi)/(2))=y,` so that when `xto(pi)/(2)then tyto0.`
`thereforelim_(xto(pi)/(2))(cosx)/(((pi)/(2)-x))=lim_(yto0)(cos((pi)/(2)+y))/(-y)=lim_(yto0)((-siny)/(-y))=lim_(yto0)(siny)/(y)=1.`
131.

Evaluate `lim_(xrarr(pi)/(6))((sqrt3sinx-cosx))/((x-(pi)/(6))).`

Answer» `lim_(x to(pi)/(6))(x-(pi)/(6))`
`=lim_(xto(pi)/(6))(2((sqrt3)/(2)sinx-1/2cosx))/((x-(pi)/(6)))=lim_(xto(pi)/(6))(2(sinxcos""(pi)/(6)-cosxsin""(pi)/(6)))/((x-(pi)/(6)))`
`=2lim_(x to (pi)/(6))(sin(x-(pi)/(6)))/((x-(pi)/(6)))=2lim_(yto0)(siny)/(y)=2" ""[""putting"(x-(pi)/(6))=y"]".`
132.

If f , g , and h are functions having a cammon domain D and `h(x) lef(x) leg(x), x in D` and if `lim_(x to a)h(x)=lim_(x to a)g(x)=l" "then" "lim_(x to a)f(x)=l` The value of `lim_(x to 0)(|x|)/(sqrt(x^(4)+4x^(2)+7))-`A. 1B. 0C. `(1)/(2)`D. `-(1)/(2)`

Answer» Correct Answer - B
133.

Evaluate `lim_(x to0)(xtanx)/((1-cosx))`

Answer» `lim_(x to 0)(x tanx)/((1-cosx))=lim_(xto0)(x tanx)/(cos x(1-cosx))`
`=lim_(x to 0)(x sin^(2)x)/(sinx cos x(1-cosx))`
`=lim_(x to 0)(x(1-cos^(2)x))/(sinx cosx(1-cosx))=lim_(x to 0)(x(1+cosx))/(sin x cosx)`
`=lim_(xto0)(x)/(sinx)lim_(xto0)((1+cosx))/(cosx)=(1xx(2)/(1))=2.`
134.

If f , g , and h are functions having a cammon domain D and `h(x) lef(x) leg(x), x in D` and if `lim_(x to a)h(x)=lim_(x to a)g(x)=l" "then" "lim_(x to a)f(x)=l` `lim_(x to 0)x^(4)sin((1)/(3sqrtx))` is

Answer» Correct Answer - A
135.

Evaluate the following limits: `lim_(x to0)(sqrt2-sqrt(1+cosx))/(2x+sin3x)`

Answer» Correct Answer - `(1)/(4sqrt2)`
`lim_(xto0)(sqrt2-sqrt(1+cosx))/(sin^(2)x)=lim_(xto0)(sqrt2-sqrt(2cos^(2)(x//2)))/((1-cos^(2)x))=lim_(xto0)(sqrt2(1-cos""(x)/(2)))/((1-cosx)(1+cosx))`
`=lim_(xto0)(sqrt2(1-cos""(x)/(2)))/((2sin^(2)""(x)/2)(1+cosx))=(1)/(sqrt2)lim_(xto0)((1-cos""(x)/(2)))/((1-cos^(2)""(x)/(2))(1+cosx))`
`=(1)/(sqrt2)lim_(xto0)(1)/((1+cos""(x)/(2))(1+cosx))=(1)/(sqrt2)xx(1)/((1+1)(1+1))=(1)/(4sqrt2).`
136.

`lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))`

Answer» Correct Answer - `1/2`
Given limit `=lim_(xto1)((x-1)(x+1)(x^(2)-2))/((x-1)(x^(2)-4x-1))=lim_(xto1)((x+1)(x^(2)-2))/((x^(2)-4x-1))=1/2.`
137.

Let `f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):}` If `lim_(xrarr2)f(x)` exists then find the value of a.

Answer» Correct Answer - `a=-1`
`lim_(xto2^(-))f(x)=lim_(hto0)f(2+h)=lim_(hto0)(2+h-a)=(2-a).`
`lim_(xto2^(-))f(x)=lim_(hto0)f(2-h)=lim_(hto0){4(2-h)-5}=(8-5)=3.`
Since `lim_(xto2^(-))f(x)` exist, we must have `lim_(xto2^(+))f(x)=lim_(xto2^(-))f(x).`
`therefore2-a=3impliesa=(2-3)=-1.`
138.

Let `f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):}` If `lim_(xrarr2)f(x)` exists then find the value of a.

Answer» Correct Answer - `a=-1`
`lim_(xto2^(-))f(x)=lim_(hto0)f(2+h)=lim_(hto0)(2+h-a)=(2-a).`
`lim_(xto2^(-))f(x)=lim_(hto0)f(2-h)=lim_(hto0){4(2-h)-5}=(8-5)=3.`
Since `lim_(xto2^(-))f(x)` exist, we must have `lim_(xto2^(+))f(x)=lim_(xto2^(-))f(x).`
`therefore2-a=3impliesa=(2-3)=-1.`
139.

`lim_(x->pi)(sin(pi-x)/(pi(pi-x)))`

Answer» Correct Answer - `(1)/(pi)`
Putting `(pi-x)=h, "we have" x to pi implies pi-xto0rarrhto0.`
`thereforelim_(xto pi)(sin(pi-x))/(pi(pi-x))=(1)/(pi)lim_(hto0)(sinh)/(h)=((1)/(pi)xx1)=(1)/(pi).`
140.

Let `f(x){:{(2x+3",",xle0),(3(x+1)",",xgt0.):}` Find `(i) lim_(xrarr0)f(x)" "(ii)lim_(xrarr1)f(x)`

Answer» (I) We have
`lim_(xto0^(+))f(x)=lim_(hto0)3(0+h+1)=lim_(hto0)3(h+1)=3.`
`lim_(xto0^(-))f(x)=lim_(hto0)3(0-h+1)=lim_(hto0)3(-h+1)=3.`
`thereforelim_(xto0^(+))(x)=lim_(xto0^(-))f(x)=3.`
Hence, `lim_(xto0)f(x)=3.`
(ii) We have
`limf(x)lim_(hto0)f(1+h)=lim_(hto0)3(1+h+1)=lim_(hto0)3(2+h)=6.`
`lim_(xto1^(-))f(x)=lim_(hto0)f(1-h)=lim_(hto0)3(1-h+1)=lim_(hto0)3(2-h)=6.`
`thereforelim_(xto1^(+))f(x)=lim_(xto1)f(x)=6.`
Hence `lim_(xto1)f(x)=6.`
141.

Evaluate the following limits: `lim_(xrarr0)((e^(bx)-e^(ax))/(x)),0ltaltb`

Answer» Correct Answer - `(b-a)`
Given limit `=lim_(xto0){((e^(bt)-1)-(e^(ax)-1))/(x)}=lim_(bxto0){((e^(bx)-1)/(bx)).b}-lim_(axto0){((e^(ax)-1)/(ax)).a}`
`=(1xxb)-(1xxa)=(b-a).`
142.

Evaluate the following limits: `lim_(xrarr0)(cos ax-cos bx)/(cos cx-1)`

Answer» Correct Answer - `((a^(2)-b^(2)))/(c^(2))`
Given limit `=lim_(xto0)(-2sin((a+b)/(2))x.sin((a-b)/(2))x)/(-2sin^(2)((cx)/(2)))`
`((sin((a+b)/(2))x)/(((a+b)/(2)))xx((a+b)/(2))x.(sin((a-b)/(2))x)/(((a-b)/(2))x)xx((a-b)/(2))x)/({(sin((cx)/(2)))/(((cx)/(2)))}^(2))`
`={((a+b)/(2))((a-b)/(2))xx(4)/(c^(2))}.lim_(xto0)(sin((a+b)/(2))x)/(((a+b)/(2))).lim_(xto0)(sin((a-b)/(2))x)/(((a-b)/(2))x)`
`={((a^(2)-b^(2)))/(x^(2))xx1xx1}=((a^(2)-b^(2)))/(c^(2)).`
143.

Evaluate the following limits: `lim_(xrarr0)(sinax+bx)/(ax+sinbx),where a, b, a+bne0`

Answer» Correct Answer - 1
`lim_(xto0)(sina+bc)/(ax+sin bx)=lim_(xto0){((sinax)/(x)+b)/(a+(sinbx)/(x))}" "["dividing num. and denom. by x"]`
`=lim_(xto0)({a((sinax)/(ax))+b})/({a+b((sinbx)/(bx))})=((axx1)+b)/(a+(bxx1))=(a+b)/(a+b)=1.`
144.

Find `(dy)/(dx)` at `x=-1` ,when `(siny)^(sin((pi/2)x))+sqrt3/2 sec^(-1)(2x)+2^x tan(ln(x+2))=0`

Answer» Correct Answer - `3/(pisqrt(pi^(2)-3)) `
Here, `(siny)^(sin.pi/2x) +sqrt3/2 sec^(-1)(2x)+2^(x) tan {log (x+2)}=0`
On differentiating both sides, we get
`(sin y)^(sin.pi/2 x)*log (sin y)*cos.pi/2 x*pi/2`
`" "+(sin. pi/2x)(sin y)^((sin .pi/2 x)-1)*cos y *(dy)/(dx) `
`" "+sqrt3/2*2/((2|x|)sqrt(4x^(2)-1))+(2^(x)*sec^(2){log (x+2)})/((x+2))`
`" "+ 2^(x) log 2* tan {log (x+2)}=0`
Putting `(x=- 1, y = - sqrt3/pi)`, we get
`(dy)/(dx)=(-sqrt3/pi)^(2)/sqrt(1-(sqrt(3)/pi)^(2))=3/(pisqrt(pi^(2)-3))`
145.

Let `p=(lim)_(xvec0+)(1+tan^2sqrt(x))^(1//2x)`then `logp`is equal to:(1) 2(2) 1(3) `1/2`(4)`1/4`A. 2B. 1C. `1/2`D. `1/4`

Answer» Correct Answer - C
Given, ` p = underset( x to 0^(+)) lim (1+ tan^(2) sqrtx)^(1/(2x) ) ( 1^( infty) " form") `
` = e^(underset( x to 0^(+)) lim (tan^(2)sqrtx)/(2x)) = e^(1/2 underset( x to 0^(+)) lim ((tan sqrtx)/(sqrtx))^(2))=e^(1/2) `
` :. " " log p = log e^(1/2) = 1/2 `
146.

Evaluate the following limits: `lim_(xrarr0)((sqrt(1+x+x^(2))-1)/(x))`

Answer» Correct Answer - `1/2`
147.

Evaluate the following limits: `lim_(xrarr0)((sqrt(2-x)-sqrt(2+x))/(x))`

Answer» Correct Answer - `(-1)/(sqrt2)`
148.

Evaluate the following limits: `lim_(xrarr5)((x^(2)-25)/(x-5))`

Answer» Correct Answer - 10
149.

Evaluate the following limits: `lim_(xrarr-2)((x^(3)+8)/(x+2))`

Answer» Correct Answer - 12
150.

Evaluate the following limits: `lim_(xrarr3)((x^(2)-4x+3)/(x^(2)-2x-3))`

Answer» Correct Answer - `1/2`