InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
Let `L`denote antilog_32 0.6 and M denote the number of positive integers whichhave the characteristic 4, when the base of log is 5, and N denote the valueof `49^((1-(log)_7 2))+5^(-(log)_5 4.)`Find the value of `(L M)/Ndot` |
|
Answer» `L=antilog_32 0.6=(32)^(0.6)=(32)^(6/10)` `L=8` M from `5^4` to `5^5` =625 to 3125 2500 integer m=2500 N=`49^(1-log_7^2)+5^(-log_5^4)` `=49*49^(-log_7^2)+5^(log_5^(4^(-1)` `=49*7^(-2log_7^2)+4^(-1)` `=49.2^(-2)+4^(-1)` `=49*1/4+1/4` `=49/4+1/4=50/4=25/2=N` `(LM)/N=(8*2500*2)/25=1600`. |
|
| 152. |
The number of positive integers satisfying `x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6`is........... |
|
Answer» `x+log_10(2^x+1)=xlog_10 5+log_10 6` `log_10 10^x=xlog_10 10=lambda` `log_10 10^lambda+log_10(2^lambda+1)=log_10 5^x+log_10 6` `2^x*5^x[2^x+1]=6*5^x=5^lambda[2^(2lambda(+2^lambda-6))]=0` `5^x=0,2^(2lambda)+2^lambda-6=0` `2^x=t^2+t-6=0` `t^2+3t-2t-6=0` `t(t+30-2(t+3)=0` `(t-2)(t+3)=0` `t=2,-3` `2^lambda-2=0` `lambda=1`. |
|
| 153. |
If `(log)_(10)2=a ,(log)_(10)3=bt h e n(log)_(0. 72)(9. 6)` in terms of `a` and `b` is equal to (a) `(2a+3b-1)/(5a+b-2)` (b) `(5a+b-1)/(3a+2b-2)` (c) `(3a+b-2)/(2a+3b-1)` (d) `(2a+5b-2)/(3a+b-1)` |
|
Answer» `log_0.72^9.6` `log_10^9.6/log_10^0.72=(log_10^96-log_10^10)/(log_10^72-log_10^100)` `=(log_10 (2^5*3)-1)/(log_10 (2^3*3^2)-2)` `=(log_10 2^5+log_10 (3-1))/(log_10 2^3 +log_10 3^2 -2)` `=(5a+b-1)/(3a+2b-2)`. |
|
| 154. |
if `(a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b` then find the value of `b`A. `1/2`B. `2/3`C. `1/3`D. `3/2` |
|
Answer» Correct Answer - C `(a+log_(4) 3)/(a+log_(2)3) = (a+log_(8) 3)/(a+log_(4)3) = (log_(4) 3-log_(8) 3)/(log_(2)3-log_(4) 3) = 1/3` |
|
| 155. |
The value of `log ab- log|b|=`A. log aB. `log|a|`C. `-log a`D. none of these |
|
Answer» Correct Answer - B log ab is defined if ` ab gt 0` or a and b have the same sign. Case (i): a, `b gt 0` ` rArr log ab - log|b| = log a + log b - log b = log a` …(i) Case (ii): ` a, b lt 0` ` rArr log ab - log|b| = log (-a) + log (-b) - log (-b) ` ` = log (-a)` ...(ii) From Eqs. (i) and (ii), we have ` log ab - log|b| = log |a|`. |
|
| 156. |
If `f(x)=log((1+x)/(1-x)),t h e n`(a)`f(x_1)f(x)=f(x_1+x_2)`(b)`f(x+2)-2f(x+1)+f(x)=0`(c)`f(x)+f(x+1)=f(x^2+x)`(d)`f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))` |
|
Answer» `f(x_1)+f(x_2)=ln((1+x_1)/(1-x_1))+ln((1+x_2)/(1-x_2))` `ln[((1+x_1)(1+x_2))/((1-x_1)(1-x_2))]` `ln[(1+x_1+x_2+x_2x_1)/(1-x_1-x_2+x_1x_2)]-(1)` `f((x_1+x_2)/(1+x_1x_2))=ln((1+(x_1+x_2)/(1+x_1x_2))/(1-((x_1+x_2)/(1+x_1x_2))))` `=ln((1+x_1x_2+x_1+x_2)/(1+x_1x_2-x_1-x_2))-(2)` `f(x)+f(x+1)=ln((1+x)/(1-x))+ln((1+x+1)/(1-x-1))` `ln[((1+x)(2+x))/((1-x)x)]=ln((x^2+3x+2)/(x(1-x)))` `f(x^2+x)=ln((1+x+x^2)/(1-(x^2+x)))=ln((x^2+x+1)/(1-x^2-x))`. |
|
| 157. |
If a, b, c are consecutive positive integers and log (1+ac) = 2K, then the value of K isA. log bB. log aC. 2D. 1 |
|
Answer» Correct Answer - A Let ` a = x - 1, b = x, c = x+1` Now `log(1+ac)=log [1+(x-1)(x+1)]` ` = log x^(2) = 2 log x = 2 log b` ` rArr K = log b` |
|
| 158. |
If `(a+(log)_4 3)/(a+(log)_2 3)=(a+(log)_8 3)/(a+(log)_4 3)=b` ,then b is equal to`1/2`(2) `2/3`(c) `1/3`(d) `3/2` |
|
Answer» `(a+1/2log_2^3)/(a+log_2^3)=(a+1/3log_2^3)/(a+1/2log_2^3)` `(a+t/2)/(a+t)=(a+t/3)/(a+t/2)` `(a+t/2)^2=(a+t)(a+t/3)` `a^2+t^2/4+at=a^2+(4at)/3+t^2/3` `t/4+a=(4a)/3+t/3` `-t/12=a/3` `a=-t/4` `b=(a+t/2)/(a+t)` `=(-t/4+t/2)/(-t/4+t)` `=(1/4)/(3/4)` `=1/3`. |
|
| 159. |
If `a , b , c`are consecutive positive integers and `(log(1+a c)=2K ,`then the value of `K`is`logb`(b) `loga`(c) 2(d) 1 |
|
Answer» a=m b=m+1 c=m+2 `log(1+ac)=2k` LHS `=log(1+ac)` `=log(1+m(m+2))` `=log(1+m^2+2m)` `=log(m+1)^2` `=2log(m+1)` `=2logb` `2k=2logb` `k=logb`. |
|
| 160. |
Solve`(x-1)/(log_(3)(9-3^(x))- 3) le 1`. |
|
Answer» We have `(x-1)/(log_(3)(9-3^(x))-3) le 1` For this, we must have ` 9-3^(x) gt 0 or 3^(x) lt 9 or x lt 2` The given expression can be expressed as: ` ((x-1))/(log_(3)(9-3^(x))-log_(3) 27) le 1 ` ` rArr ((x-1))/(log_(3)((9-3^(x))/27))le 1` ` rArr (x-1)*log_(((9-3^(x))/27)) 3 le 1` ` rArr log_(((9-3^(x))/27))(3^(x-1)) lt 1` As ` x lt 2, 0 lt (9-3^(x))/27 lt 1` We have ` 3^(x-1) ge (9-3^(x))/27` ` rArr 9 xx 3^(x) ge 9 - 3^(x)` ` rArr 10 xx 3^(x) ge 9` ` rArr x ge log_(3) 0.9` Therefore, ` x in [log_(3) 0.9, 2)` |
|
| 161. |
Solve `log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1)`. |
|
Answer» Correct Answer - x = 4 `log_(2)(2sqrt17-2x)=1+log_(2)(x-1)` ` or log_(2)((2sqrt(17-2x))/(x-1))=1` ` or ((2sqrt(17-2x))/(x-1))=2` `or 2sqrt(17-2x)=2(x-1)` ` or x^(2)2x+1 = 17 - 2x` ` x^(2) = 16` ` rArr x = 4 ("as "x ne -4)` |
|
| 162. |
Solve` log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1)`. |
|
Answer» Correct Answer - x = - 2 `log_(2)(25^(x+3)-1)=2+log_(2)(5^(x+3)+1)` ` or log_(2) (25^(x+3)-1)-log_(2)(5^(x+3)+1) = 2` ` or log_(2). (25^(x+3)-1)/(5^(x+3)+1) = 2` `or (25^(x+3)-1)/(5^(x+3)+1) = 2^(2)` ` or y^(2) - 1 = 4y + 4" "("putting "5^(x+3)=y)` ` or y^(2) -4y-5 = 0` ` or y =-1, 5` ` rArr 5^(x+3) = 5 ` ` or x =- 2` |
|
| 163. |
`0.7625 xx 0.000357` |
| Answer» Correct Answer - 0.0002723 | |
| 164. |
`69.13 xx 0.34 xx 0.014` |
| Answer» Correct Answer - 0.3291 | |
| 165. |
Solve `log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4`.. |
|
Answer» Correct Answer - ` x = 1/8` `(log_(6)9+log _(6)4)-(log_(3)27)/(log_(3) 9) =(log_(8) x)/2 - log_(8) x` ` rArr 2 - 3/2 =- 1/2 log_(8) x` ` or 1/2 =- 1/2 log_(8) x` ` or x =1/8` |
|
| 166. |
Solve ` 2 log_(3) x - 4 log_(x) 27 le 5`. |
|
Answer» Let ` log_(3) x = y` ` rArr x = 3^(y)` (i) Therefore, the given inequality becomes ` 2log_(x) x - 12 log_(x) 3 le 5` ` or 2y - 12/y le 5` ` or 2y^(2) - 5y - 12 le 0` ` or (2y+3)(y-4) le 0` ` rArr y in [-3/2 , 4]` ` rArr - 3/2 le log_(3) x le 4` ` rArr 3^(-3//2) le x le 81` |
|
| 167. |
`358.6 xx 0.078 xx 0.5943` |
| Answer» Correct Answer - 16.63 | |
| 168. |
Solve `log_(4)(2xx4^(x-2)-1)+4= 2x`. |
|
Answer» Correct Answer - x = 2 ` log_(4)(2xx4^(x-2)-1)+4 = 2x` `or log_(4)(2xx4^(x-2)-1)=2x-4` ` or 2xx4^(x-2)-1 = 4^(2x-4)` ` or 2y-1 = y^(2)" "("putting "y=4^(x-2))` ` or y^(2)-2y+1 = 0` ` or y = 1` ` or 4^(x-2) = 1` `or x = 2` |
|
| 169. |
If ` a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w)`. |
|
Answer» `log_(a)(bcd)=log_(a) b+log_(a) c+ log_(a) d` Now` a^(x) = b^(y)` ` or (log b)/(log a) = x/y` ` or log_(a)b = x/y` Similarly, ` log_(a) c= x/z and log_(a) d = x/w` ` rArr log_(a) (bcd) = log_(a) b+ log_(a) c+ log_(a) d` `= x(1/y+1/z+1/w)` |
|
| 170. |
Solve ` log_(4)(x-1)= log_(2) (x-3)`. |
|
Answer» Correct Answer - x = 5 The given equality meaningful if ` x- 1 gt 0, x - 3 gt 0 rArr x gt 3`. The given equality can be written as ` (log(x-1))/(log 4) =(log(x-3))/(log 2) ` ` or log(x-1)= 2 log(x-3)(log 4 = 2 log 2)` ` or (x-1)=(x-3)^(2)` ` or x^(2) - 7x + 10 = 0` ` or (x-5)(x-2)=0` ` or x= 5 or 2`. But ` x gt 3, so x = 5`. |
|
| 171. |
Prove the following identities: (a) `(log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x)`. |
|
Answer» (a) `(log_(n) n)/(log_(ab) n) = (log_(n) ab)/(log_(n) a) = (log_(n) a+ log_(n) b)/(log_(n) a)` ` = 1+(log_(n) b)/(log_(n) a) = 1+log_(a) b` (b) `(log_(a) xlog_(b) x)/(log_(a) x+log_(b) x) =(1/(log_(x) a)1/(log_(x) b))/(1/(log_(x) a)+1/(log_(x) b))=(1/(log_(x) a)1/(log_(x) b))/((log_(x) a + log_(x) b)/(log_(x) a log_(x) b))` ` = 1/(log_(x) a+log_(x) b)=1/(log_(x) ab)=log_(ab) x` |
|
| 172. |
Solve:` 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|)`. |
|
Answer» Correct Answer - x = 3 We have `27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2) (x-1)|)` We must have `x-1 gt 0 and x - 1 ne 1` ` :. X gt and x ne 2` If ` 1 lt x lt 2, log_(2) (x-1) lt 0` `:. (log_(2)(x-1))/(|log_(2)(x-1)|) =- 1` This is not possible as L.H.S. ` gt 0` always. If ` x gt 2," then "(log_(2)(x-1))/(|log_(2)(x-1)|) = 1` `:." Equation reduces to "27^(log_(3)root(3)(x^(2)-3x+1))=1` `:gt x^(2)- 3x+1 = 1` ` rArr x = 0, 3," but "x ne 0` ` :. x = 3` is the only solution. |
|
| 173. |
`(8.67 xx 99)/(1.78)` |
| Answer» Correct Answer - 19.19 | |
| 174. |
Compute ` log_(ab)(root(3)a//sqrtb)" if " log_(ab) a = 4`. |
|
Answer» Correct Answer - `17/16` `log_(ab) a = 4` ` or 1/(log_(a)ab) = 4` ` or 1/(log_(a) a+log_(a) b) = 4` ` or 1+log_(a) b = 1/4` ` or log_(a) b=- 3/4` Now` log_(ab) (root(3)a//sqrtb)=(log(root(3)a//sqrtb))/(log ab) = (1/3loga - 1/2 log b)/(log a+ log b) ` ` (1/3-1/2 (logb)/(log a))/(1+(log b)/(log a))` ` = (1/3-1/2 log_(a) b)/(1+ log_(a) b)` `= (1/3+1/2*3/4)/(1-3/4)` ` =(17/24)/(1/4)=17/6` |
|
| 175. |
Find the value of`log_(1//3)root(4)(729*root(3)(9^(-1)*27^(-4//3)))`. |
|
Answer» Correct Answer - -1 `log_(1//3) root(4)(729 xxroot(3)(9^(-1)xx27^(-4//3)))` ` = log_(1//3)root(4)(729 xxroot(3)(3^(-2)xx3^(-4)))` ` = log_(1//3) root(4)(3^(6)xx3^(-2))` ` = log_(1//3) 3` ` =-1` |
|
| 176. |
`root(5)(8.0125)` |
| Answer» Correct Answer - 7.517 | |
| 177. |
`(0.09634)^(3)` |
| Answer» Correct Answer - 0.0008941 | |
| 178. |
The value of \(25^{\big(\frac{-1}{4}log_5\,25\big)}\) is(a) \(\frac{1}{5}\)(b) \(-\frac{1}{25}\)(c) –25 (d) None of these |
|
Answer» (a) \(\frac{1}{5}\) \(25^{\big[\big(\frac{-1}{4}log_5\,25\big)\big]}\) = \(5^{\big[2\big(\frac{-1}{4}log_5\,25\big)\big]}\) = \(5^{\big[\big(\frac{-1}{2}log_5\,25\big)\big]}\) = \(5^{log_5(25)^{-\frac{1}{2}}}\) = \(25^{-\frac{1}{2}}\) = \(\frac{1}{5}\) (∵ \(a^{log_ax}=x\)) |
|