Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Solve : `6(log_x2-(log_4x)+7=0.`

Answer» `6(log_x2 - log_4x)+7 = 0`
`=>6(log_2 2/(log_2 x) - log_2x/log_2 4) +7 = 0`
`=>6(1/(log_2 x) - log_2x/2) +7 = 0`
Let `log_2x =t`, then our equation becomes,
`=>6(1/t - t/2)+7 =0`
`=>12-6t^2+14t = 0`
`=>3t^2- 7t -6 =0`
`=>3t^2- 9t + 2t -6 =0`
`=>(t-3)(3t+2) = 0`
`=>t = 3 or t = -2/3`
`=>log_2 x = 3 or log_2 x = -2/3`
`=>x = 2^3 or x = 2^(-2/3).`
52.

Solve for x: `4^(x) - 3^(x-1/2)=3^(x+1/2)-2^(2x-1)`.

Answer» `4^(x)-3^(x-1/2)=3^(x+1/2) - 2 ^(2x-1)`
` or 4^(x) - 3^(x)/sqrt3 = 3^(x) sqrt3 - 4^(x)/2`
` or 3/2 xx 4^(x) = 3^(x) (sqrt3+ 1/sqrt3)`
`or 3/2 xx 4^(x) = 3^(x) xx 4/sqrt3 `
`or 4^(x-1)/4^(1//2) = 3^(x-1)/sqrt3`
` or 4^(x-3//2)= 3^(x-3//2)`
` or (4/3)^(x-3//2) = 1`
`or x-3/2 = 0`
` or x = 3//2`
53.

Solve `e^(sin x)-e^(-sin x) - 4 = 0`.

Answer» Given that
` e^(sin x) - e^(-sin x) - 4 = 0`.
Let ` e^(sin x) = y`.
Then, given equation becomes
` y-1/y - 4 = 0`
` or y^(2) - 4y-1 = 0`
`:. Y = e^(sin x) = 2 + sqrt5, 2- sqrt5`
Since ` e^(sin x) gt 0, e^(sin x) ne 2 - sqrt5`
Also, maximum value of ` e^(sin x )` is e when sin x = `.
So, ` e^(sin x) ne 2+ sqrt5`
Therefore, given equation has no solution.
54.

Solve `|x-3|^(3x^(2)-10x+3)= 1`.

Answer» Given that
`|x-3|^(3x^(2) -10x+3) = 1`, we have following cases
If ` 3x^(2) - 10x + 3 = 0," where "x ne 3`
` :. X = 1//3`
If ` |x-3| = 1, :. X = 4, 2`
55.

Find the smallest integral value of x satisfying `(x-2)^(x^(2)-6x+8) gt 1`.

Answer» Clearly , ` x gt 2` …(i)
`(x-2)^(x^(2)-6x+8) gt 1`
` rArr (x-2)^(x^(2)-6x+8) gt (x-2)^(0)`
When ` x - 2 gt 1`
` or x gt 3`…(ii)
We have
` x^(2) - 6x+8 gt 0 `
` rArr (x-2)(x-4) gt 0 `
` rArr x lt 2 or x gt 4 ` ....(iii)
From (ii) and (iii) ,` x gt 4`
When ` x - 2 lt 1`
` or x lt 3 ` ....(iv)
We have
` x^(2) - 6x + 8 lt 0 `
` :. (x-2)(x-4) lt 0`
` :. 2 lt x lt 4` ...(v)
From (i), (iv) and (v), we have
` 2 lt x lt 3`
Thus, `x in (2, 3) cup (4, infty)`.
56.

Solve:`|x-3|^(3x^2-10 x+3)=1`

Answer» `|x-3|^(3x^2-10x+3)=1`
taking log both side
`(3x^2-9x-x+3)log(|x-3|)`
`(3x(x-3)-1(x-3)log(|x-3|_=0`
`(3x-1)(x-3)(log|x-3|)=0`
`x=1/3,2,4`.
57.

Find the smallest integral value of `x`satisfying `(x-2)^(x^2-6x+8))>1`

Answer» `(x-2)^(x^2-6x+8)`
1)`x-2<1`
`x^2-6x+8>0`
`x^2-4x-2x+8>0`
`(x-4)(x-2)>0`
`x in (-oo.2)(4,oo)`
`x in(4,oo)`
2)`x-2<1`
`x<3`
`x-6x+8<0`
`(x-4)(x-2)<0`
`x in(2,4)`
`x in(2,3)`
`x in(2,-3)uu(4,p)`
`5`.
58.

The solution of the equation `(log)_7(log)_5(sqrt(x+5)+sqrt(x)=0`is...

Answer» `log_7 (log_5 (sqrt(x+5)+sqrtx))=0`
`log_5(sqrt(x+5)+sqrtx))=7^0=1`
`sqrt(x+5)+sqrtx=5^1=5`
Squaring both sides
`x+5+x+2sqrtxsqrt(x+5)=25`
`2sqrtxsqrt(x+5)=25-5-2x`
`2sqrtxsqrt(x+5)=20-2x=2(10-x)`
`sqrtxsqrt(x+5)=10-x`
Squaring both sides
`x(x+5)=(10-x)^2`
`x^2-5x=x^2-20x+100`
`25x=100`
`x=4`
59.

Find the value of ` sqrt((log_(0.5)4)^(2))`.

Answer» Correct Answer - 2
`sqrt((log_(0.5)4)^(2)) = |log_(0.5) 4|`
` = |log_(0.5)(0.5)^(-2)|`
` |-2|`
= 2
60.

If ` log_(sqrt8) b = 3 1/3`, then find the value of b.

Answer» Correct Answer - 32
` log_(sqrt8) b = 3 1/3`
` rArr b = (sqrt8)^(10/3) = 2^(5) = 32`
61.

Find the value of ` log_(5) log_(2)log_(3) log_(2) 512`.

Answer» ` log_(5) log_(2) log_(3) log_(2) (2^(9))`
` = log_(5) log_(2) log_(3) 9`
` = log_(5) log_(2) log_(3) 3^(2) `
` = log_(5) log_(2) 2`
` = log_(5) 1`
= 0
62.

If the equation `2^x+4^y=2^y`is solved for `y`in terms of `x`where `x

Answer» Correct Answer - B
`2^(2y) - 2^(y) + 2^(x) (1-2)^(x)) = 0`
Putting ` 2^(y) = t`, we get
` t^(2) - t+2^(x) (1-2^(x)) = 0 ," where "t_(1) = 2^(y_(1)) and t_(2) = 2^(y_(2))`
` t_(1)t_(2)=2^(x)(1-2^(x))`
` 2^(y_(1)+y_(2))=2^(x) (1-2^(x))`
` y_(1)+y_(2) = x + log _(2) (1-2^(x))`
63.

The number of solution of `x^(log_(x)(x+3)^(2)) = 16`is

Answer» Correct Answer - A
`x^(log_(x)(x+3)^(2))=16," where " x gt x ne 1`
` rArr (x+3)^(2) = 16 `
` or x =1, -7`
Therefore, both values are not possible.
64.

If x = 9 is one of the solutions of ` log_(e)(x^(2)+15a^(2))-log_(e)(a-2)=log_(e)((8ax)/(a-2))`,thenA. ` a= 3/5`B. a = 3C. x = 15D. x = 2

Answer» Correct Answer - B
`log_(e)(x^(2)+15a^(2))-log_(e)(a-2)=log_(e)((8ax)/(a-2))`
Here` a gt 2, (8ax)/(a-2) gt 0`
`:. x gt 0`
Now` (x^(2)+15a^(2))/(a-2) = (8ax)/(a-2)`
` or x^(2) = 8ax+15a^(2) = 0`
` rArr x = 3a, 5a`
Now, ` x = 9`
` rArr a = 3, 9/5`
But ` a gt 2`
` :. a = 3`
For ` a = 3, x = 9, 15`
65.

The product of roots of the equation `(log_(8)(8//x^(2)))/((log_(8)x)^(2)) = 3` isA. 1B. `1//2`C. `1//3`D. `1//4`

Answer» Correct Answer - D
Let ` log_(8) x = y`, then the given equation reduces to
` (1-2y)//y^(2) = 3`.
` rArr 3y^(2)+2y - 1 = 0`
`(3y-1)(y+1) = 0`
` rArr log_(8) x = y = 1//3, -1`
` rArr x = 2, 1//8`
66.

Let `a >1`be a real number. Then the number of roots equation `a^(2(log)_2x)=15+4x^((log)_2a)`is2 (b) infinite (c)0 (d) 1

Answer» `a^(2log_2^x)=15+4x^(log_2^a)`
`a>1`
`(a^(log_2^x))^2=15+4x^(log_2^a)`
`(x^(log_2^a))^2=15+4x^(log_2^a)`
`x>0`
Let `x^(log_2^a)=t`
`log_2^a` is positive
`t^2=15+4t`
`t^2-4t-15=0`
`t=(4pmsqrt(16+60))/2=(4pmsqrt(76))/2`
`t=2+sqrt19`
`t=2-sqrt19` this is not possible
Number of solution=1.
67.

Let `agt1` be a real number . If S is the set of real number `x` that are solutions to the equation `a^(2log_2x)=5+4x^(log_2a)`, thenA. 2B. infiniteC. 0D. 1

Answer» Correct Answer - D
Given equation can be written as
`(a^(log_(2)x))^(2)=5+4 a^(log_(2) x)`
Let `a^(log_(2)x)=t`.Then the given equation becomes
` r^(2) - 4t-5 = 0`
`rArr (t-5)(t+1) = 0`
` rArr t = 5 or t =- 1` (rejected)
` :. A^(log_(2)x) = 5`
` rArr x^(log_(2)a) = 5`
` rArr x = 5^(log_(a)2)`
68.

Solve : `(log)_2(x-1)/(x-2)>0`

Answer» `log_2((x-1)/(x-2)) gt 0`
`=>(x-1)/(x-2)gt 2^0`
`=>(x-1)/(x-2)gt 1`
`=>(x-1)/(x-2) - 1gt 0`
`=>((x-1)-(x-2))/(x-2) gt 0`
`=>1/(x-2) gt 0`
It will be possible, when `x gt 2`.
So, `x in (2,oo)` is the solution for this equation.
69.

Find the value of the following: (i) ` log_(10) 2 + log_(10) 5` (ii) ` log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2)` (iii) ` log_(7) 35 - log_(7) 5`

Answer» (i) `log_(10)2+ log_(10) 5 = log_(10)(2 xx 5)= log_(10) 10 = 1`
`(ii) log_(3)(sqrt11-sqrt2)+log_(3)(sqrt11+sqrt2)`
` " "= log_(3) (sqrt11-sqrt2) xx (sqrt11+sqrt2)`
`" "= log_(3) (11-2)=log_(3)9=2 (as 3^(2) = 9)`
`(iii) log_(7)35-log_(7) 5 = log _(7). 35/5 = log_(7) 7 = 1`
70.

Solve `(log)_2(3x-2)=(log)_(1/2)x`

Answer» `log_(2)(3x-2)=log_(1//2)x=-log_(2)x=log_(2)x^(-1)`
`or3x-2=x^(-1)or3x^(2)-2x=1`
`rArrx=1orx=-1//3`.
But `log_(2)(3x-2)` and `log_(1//2)x` are meaningful if `xgt2//3`. Hence, x=1
71.

` log_(x-1)x*log_(x-2)(x-1)*...*log_(x-12)(x-11) = 2`,x is equal toA. 9B. 16C. 25D. none of these

Answer» Correct Answer - B
`log_((x-12)) x = 2`
` x = (x-12)^(2)`
` x ^(2) - 25_(x) + 144 = 0`
` x = 9, 16`
but ` x ne 9, x = 16`
72.

The value of `((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2)`is3 (b) 0(c) 2 (d) 1A. 3B. 0C. 2D. 1

Answer» Correct Answer - A
Let ` log_(2) 12 =a`, then
` 1/(log_(96)2) = log_(2) 96 = log_(2) 2^(3) xx 12 = 3 + a`
` log_(2) 24=1+a`
` rArr log_(2) 192 = log_(2) (16xx12) = 4 + a`
` and 1 /(log_(12)2) = log_(2) 12 = a` .
Therefore, the given expression is:
` (1+a)(3+a)-(4+a) a = 3`
73.

The value of `((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2)`is3 (b) 0(c) 2 (d) 1

Answer» `[log_2^24*log_2^96]-[log_2^192]*[log_2^12]`
`[log_2^(2^2*3)]*[log_2^(2^5^3)]*[log_2^(2^6*3)]*[log_2^(2^2*3)]`
`[log_2^(2^3)+log_2^3][log_2^(2^5)+log_2^3)]-[log_2^(2^6)+log_2^3]*[log_2(2^2)+log_2^3]`
`[3+log_2^3][5+log_2^3]-[6+log_2^3][2+log_2^3]`
`15+8log_2^3+(log_2^3)^2-12-8log_2^3-(log_2^3)^2`
`=15-12`
`=3`
Option A is correct.
74.

Find the value of 7 ` log(16/15) + 5 log (25/24) + 3 log (81/80)`.

Answer» `7 log(16/15)+5 log(25/24)+3 log (81/80)`
` =log [(16/15)^(7)(25/24)^(5)(81/80)^(3)]`
` = log.2^(28)/(3^(7)5^(7))5^(10)/(2^(15)3^(5))3^(12)/(2^(12)5^(3))`
` = log 2`
75.

Find the value of`(1/(49))^(1+(log)_7 2)+5^(-1(log)_((1/5))(7))`

Answer» `(1/49)^(1+log_7^2)`
`1/7^2(1+log_7^2)`
`7^2(1+log_7^2)`
`7^2*7^(2log_7^2)`
`7^2*7^(log_7^4)`
`7^2*4`
`1/(7^2*4)`
`5^(-log_(1/5)^7`
`7`
Answer=`7+1/(4*7^2)`.
76.

Prove that ` log_(10) 2" lies between " 1/4 and 1/3`.

Answer» We have to prove that`1/4 lt log_(10)2 lt 1/3`.
Consider ` log_(10) 2 gt 1/4`
` rArr 2 gt 10^(1/4)`
`rArr 2^(4) gt 10`, which is true
Now consider ` log_(10) 2 lt 1/3`
` rArr 2 lt 10^(1/3)`
` rArr 2^(3) lt 10 `, which is true.
Thus, ` 1/4 lt log_(10) 2 lt 1/3`
77.

Consider the system of equations ` log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) =1 and xy^(2) = 9`. The value of 1/y lies in the intervalA. `(5, 7)`B. `(7, 10)`C. `(11, 15)`D. `(25, 30)`

Answer» Correct Answer - B
`log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) = 1`
` rArr log_(3) (log_(2)x)-log_(3)(-log_(2)y) = 1`
` rArr log_(3)(-(log_(2)x)/(log_(2)y)) = 1`
` rArr -(log_(2)x)/(log_(2)y) = 3`
` rArr xy^(3) = 1`
Also, ` xy^(2) = 9`
` rArr y = 1/9`
` :. x = 729`
78.

Consider the system of equations ` log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) =1 and xy^(2) = 9`. The value of x in the intervalA. `(200, 300)`B. ` (400, 500)`C. `(700, 800)`D. none of these

Answer» Correct Answer - C
`log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) = 1`
` rArr log_(3) (log_(2)x)-log_(3)(-log_(2)y) = 1`
` rArr log_(3)(-(log_(2)x)/(log_(2)y)) = 1`
` rArr -(log_(2)x)/(log_(2)y) = 3`
` rArr xy^(3) = 1`
Also, ` xy^(2) = 9`
` rArr y = 1/9`
` :. x = 729`
79.

If `log_(y) x + log_(x) y = 2, x^(2)+y = 12` , then the value of xy isA. 9B. 12C. 15D. 21

Answer» Correct Answer - A
Let ` t=log_(y) x(x, y gt 0, and ne 1)," then " t+1/t = 2 or (t-1)^(2) = 0`
` :. T = log_(y) x = 1 , i.e., x = y `.We get
` x^(2) + x - 12 = 0 x = -4, 3`.
x = 3 only (-4 rejected)
` :. Y = 3`,
` :. X = 9`
80.

If `xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1` , then x equalsA. 4B. 8C. 16D. 64

Answer» Correct Answer - D
`log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)= 1`
`or log_(3)(log_(2)x)-log_(3)(log_(1//2)y) = 1`
` or log_(3)(log_(2)(4//y^(2)))-log_(3)(log_(1//2)y) = 1`
` or log_(2)(4//y^(2))=3(log_(1//2)y)`
` or log_(2)(4//y^(2))=- 3 (log_(2)y)`
`or log_(2)(4//y^(2))+(log_(2)y^(3))=0`
` or 4y = 1`
` or y = 1//4`
` rArr x = 64`
81.

The least integer greater than ` log_(2) 15* log_(1//6 2* log_(3) 1//6` is _______.

Answer» Correct Answer - 3
` log_(2) 15 * log_(1//6) 2* log_(3) 1//6`
` = (log 15)/(log 2) *(log 2)/(-log 6) * (-log 6)/(log 3) `
` = log_(3) 15`
82.

If `log_(4)A=log_(6)B=log_(9)(A+B)," then "[4(B//A)]("where "[*]` represents the greatest integer function ) equals _______.

Answer» Correct Answer - 6
Let ` log_(4)0A=log_(6)B=log_(9)(A+B) = x`
`rArr A = 4^(x), B=6^(x) and A+B=9^(x)`
` A+B = 9^(x) rArr 4^(x) + 6^(x) = 9^(x)`
` rArr 2^(2x)+2^(x)*3^(x)=3^(2x)`
`rArr (3/2)^(2x)-(3/2)^(x) -1=0`
` rArr(3/2)^(x) = (1+sqrt5)/2`
` rArr B/A = (3/2)^(x) = (1+sqrt5)/2`
` rArr 4B/A = 4((1+sqrt5)/2)`
` rArr [4B/A] = 6`
83.

The value of `(log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3)` is _______.

Answer» Correct Answer - 1
Let ` log_(10)2 = p and log_(10) 5 = q`
Hence, p+q = 1
` x = p^(3) + 3pq + q^(3)`
` = (p+q)^(3) - 3 pq(p+q)+3 pq`
` = 1-3pq+3pq`
= 1
84.

If ` log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3)` a,then the value of c/(ab)is ________.

Answer» Correct Answer - 3
` log_(3) c = 3 + log _(3) a `
` or log_(3) c/a = 3 or c = 27 a ` …(i)
` log_(a) b = 2, log_(b) c = 2`
` rArr log_(a) b* log _(b) c = 4`
` rArr log_(a) c = 4`
` rArr c = 4^(4)`...(ii)
From Eqs.(i) and (ii), we get a = 3, c = 81.
From ` log_(a) b = 2," we have " b = a^(2) = 9`.
Hence, c/(ab) = 3.
85.

If `log_a(ab)=x` then `log_b(ab)` is equals to

Answer» `log_(a) (ab) = x or log_(a) a+ log_(a) b = x or log_(a) b= x - 1`
Now, ` log_(b)(ab) = log_(b) a+ log_(b) b`
` = 1/(log_(a) b) + 1 = 1/(x-1) + 1 x/(x-1)`
86.

Prove that ` log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2`.

Answer» `log_(7) log_(7) sqrt(7sqrt((7sqrt7))) = log_(7) log_(7) 7^(1/2+1/4+1/8)`
` = log_(7) (1/2+1/4+1/8)`
` = log_(7) (7/8)`
` = 1- log_(7) 8`
` = 1-3 log_(7) 2`
87.

Solve for x:` 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x)`.

Answer» `11^(4x-5)*3^(2x)= 5^(3-x) * 7^(-x)*`
` or (4x-5)log 11+2xlog3 = (3-x)log 5-x log 7`
` or x= log(11^(5) xx 5^(3))/(log(11^(4) xx 315))`
88.

If ` log_(10) x = y ," then find "log_(1000)x^(2)" in terms of " y`.

Answer» Correct Answer - `2/3 y`
` log_(1000)(x^(2)) = 2/3 log_(10) x =- 2/3 y`
89.

Which is greater : `x=log_3 5or y= log_17 (25)`

Answer» `1/y = log_(25) 17 = 1/2 log_(5) 17 and 1/x = log_(5) 3 = 1/2log_(5) 9`
`:. 1/y gt 1/x or x gt y`
90.

If ` log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4`.

Answer» If ` log_(a) 3 = 2`
` rArr 3 = a^(2)`
` rArr a = sqrt3`
If ` log_(b) 8 = 3`
` rArr 8 = b^(3)`
` rArr b = 2`
So, ` log_(a) b = log_(sqrt3) 2 = x(let)`
` rArr 2 = (sqrt3)^(x)`
` rArr 4 = 3^(x)`
` rArr x = log_(3) 4`
91.

If characteristic of three numbers a, b and c and 5, -3 and 2, respectively, then find the maximum number of digits in N = abc.

Answer» Correct Answer - 7
According to the given information,
` log a = 5+p`
` log b =- 3+ q`
` log c = 2 + r`
where p,q and r are mantissas.
`:. P,q,r in [0, 1)`
Adding the above equations, we get
` log(abc) = 4 + (p+q+r)`
` (p+q+r) in [0, 3)`
` :. log (abc) in [4, 7)`
`rArr log N in [4, 7)`
` :. ` Maximum possible characteristic of log N = 6
`:. ` Maximum number of digits in `N = 6 +1 = 7`
92.

Find the value of `log" " tan 1^(@) log" " tan 2^(@) … log" " tan 89^(@)`.

Answer» `log tan 1^(@) log tan 2^(@)* * * log tan 89^(@)`
`" "=log tan 1^(@) log tan 2^(@)* * * log tan 45^(@) * * * log tan 89^(@)`
`" "= log tan 1^(@) log tan 2^(@) * * * (log 1) * * * log tan 89^(@)`
` " "=0 (as log 1 = 0)`
93.

There are 3 number a, b and c such that ` log_(10) a = 5.71, log_(10) b = 6.23 and log_(10) c = 7.89`. Find the number of digits before dicimal in ` (ab^(2))/c`.

Answer» Correct Answer - 11
`N = (ab^(2))/c`
`:. Log_(10) N = log_(10) a+ 2log_(10) b - log_(10) c = 10.28`
So, characteristic of N is 10`.
So, number of digits before decimal is 11.
94.

The `x , y , z`are positive real numbers such that `(log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3,`then the value of `(1/(2z))`is ............

Answer» Correct Answer - 5
` z = 8x^(3), z = 5^(6)y^(6), z = x^(2//3) y^(2//3)`
` rArr x = (z^(1//3))/2, y = (z^(1//6))/5`
` rArr z = 1/(2^(2//3)) z^(2//9) * (z^(2//18))/(5^(2//3))`
` rArr z^(2//3) = 1/((10)^(2//3)) or z = 1/(10)`
95.

If x and y are positive real numbers such that ` 2log(2y - 3x) = log x + log y," then find the value of " x/y`.

Answer» Correct Answer - `4/9`
We have ` 2log(2y - 3x)= log x + log y`
` rArr log(2y-3x)^(2) = log xy`
` rArr 4y^(2) - 12xy + 9x^(2) = xy`
`rArr 4y^(2) - 13xy + 9x^(2) = 0`
` rArr (4y-9x)(x-y) = 0`
` rArr 4y = 9x ` (As for x = y , LHS is not defined)
` rArr x/y = 4/9`
96.

If `xa n dy`are real numbers such that `2log(2y-3x)=logx+logy` ,then find `x/y`.

Answer» `2log(2y-3x)=logx+logy`
`log(2y-3x)^2=logxy`
`(2y-3x)^2=xy`
`y^2[2-3x/y]^2=xy`
`4+9(x/y)^2-12x/y=x/y`
Let `x/y=t`
`4+9t^2-12t-t=0`
`9t^2-13t+4=0`
`9t^2-9t-4t+4=0`
`9t(t-1)-4(t-1)=0`
`(t-1)(9t-4)=0`
`t=1,4/9`
`x/y=1,4/9`.
97.

If `(logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b)`, then which of the following is/are true?`z y z=1`(b) `x^a y^b z^c=1``x^(b+c)y^(c+b)=1`(d) `x y z=x^a y^b z^c`A. ` xyz = 1`B. ` x^(a)y^(b)z^(c) = 1`C. ` x^(b+c) y^(c+a) z^(a+b) = 1`D. ` xyz = x^(a) y^(b) z^(c)`

Answer» Correct Answer - A::B::C::D
Let `(log_(k)x)/(b - c) = (log_(k)y)/(c-a) = (log_(k) z)/(a-b) = p`
` rArr x = k^(p(b-c)),y=k^(p(c-a)),z = k^(p(a-b))`
` rArrxyz = k^(p(b-c))k^(p(c-a))k^(p(a-b))`
` = k^(p(b-c)+p(c-a)+p(a-b))=k^(0) = 1`
`x^(a)y^(b)z^(c) = k^(pa(b-c))k^(pb(c-a))k^(pc(a-b))=k^(0)=1`
` x^(b+c)y^(c+a)z^(a+b) = k^(p(b+c)(b-c))k^(p(c+a)(c-a))k^(p(a+b)(a-b))`
` =k^(0) = 1`
98.

If `a^2+ b^2=7ab`, prove that `log(1/3 (a+ b)) =1/2 (log a+ log b)`

Answer» `a^2+b^2=7ab`
adding 2ab on both sides
`a^2+b^2+2ab=7ab+2ab`
`(a+b)^2=9ab`
`(a+b)=3sqrt(ab)`
`(a+b)/3=(ab)^(1/2)`
taking log both sides
`log((a+b)/3)=log(ab)^(1/2)`
`log;1/3(a+b)]=1/2logab`
`log[1/3(a+b)]=1/2[loga+logb]`.
99.

Prove that `(2^(log_(2^(1//4))x)-3^(log_(27)(x^(2)+1)^(3))-2x)/(7^(4log_(49)x)-x-1)gt0,AAx in(0,oo)`.

Answer» `(2^(log2^(1//4)x)-3^(log_(27)(x^(2)+1)^(3))-2x)/(7^(4log_(49)x)-x-1)`
`=(2^(log_(2)x^(4))-3^(log_(3)(x^(2)+1))-2x)/(7^(log_(7)x^(2))-x-1)`
`(x^(2)-(x^(2)+2x+1))/(x^(2)-x-1)`
`=x^(2)+x+1`
`(x+(1)/(2))^(2)+(3)/(4)gt0,AAx inR`
100.

Solve: `(log)_(0. 5)(3-x)/(x+2)

Answer» ` log_(0.5).(3-x)/(x+2) lt 0`
` or (3-x)/(x+2) gt (0.5)^(0)`
` or (3-x)/(x+2) gt 1 `
` or (3-x)/(x+2 ) - 1 gt 0`
` or (3-x-x-2)/(x+2) gt 0`
` or (2x-1)/(x+2) lt 0`
` or -2 lt xlt 1//2`