Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1951.

3x square -2_/¯6x+2 by completing square method

Answer»
1952.

Practicals of maths have to be done

Answer»
1953.

If sin(A+B)=1 and cos(A-B)=1 , find the values of A and B.Given that 0=< 90° and A>=B

Answer» Sin(A+B)=1, cos( A-B)=1A+B=90. A-B=0 A=BThen ,A=B=45
Both are 45
1954.

Can anyone tell me the datesheet of board exam?

Answer»
1955.

Define sector?

Answer» Covered by two radius in circle
1956.

What is segment?

Answer»
1957.

If the sum of n terms of an ap is given by Sn=3n^2+4n. Determine the ap and the nth term

Answer» Sn = 3n2 + 4n.a1\xa0= S1 = 3(1)2\xa0+ 4(1) = 7a1\xa0+ a2\xa0= S2\xa0= 3(2)2 + 4(2)= 12 + 8= 20a2 = S2- S1\xa0= 20 - 7 = 13or, {tex}a + d = 13{/tex}or, {tex}7 + d = 13{/tex}{tex}\\therefore{/tex}\xa0{tex}d = 13 - 7 = 6{/tex}{tex}\\therefore{/tex}\xa0A.P. becomes 7,13,19,......\xa0Now, {tex}a_n =a + (n - 1 )d{/tex}{tex}= 7 + (n - 1)(6){/tex}{tex}= 7 + 6n - 6{/tex}{tex}= 6n + 1{/tex}or, an = 6n + 1
1958.

If the point on the y axis which is equidistance from the point (5,-2)and (-3,2)

Answer» Let the given points be A(5, -2 ) and B(-3, 2) and let the required point be P(x, 0). Then,PA = PB\xa0{tex}\\Rightarrow{/tex}\xa0PA2\xa0= PB2{tex}\\Rightarrow{/tex}\xa0(x - 5)2\xa0+ (0 + 2)2= (x + 3)2\xa0+ (0 - 2)2{tex}\\Rightarrow{/tex}\xa0(x - 5)2\xa0+ 4 = (x + 3)2 + 4{tex}\\Rightarrow{/tex}\xa0(x - 5)2 - (x + 3)2 =0{tex}\\Rightarrow{/tex}\xa0(x 2 -10x + 25) - (x2 + 6x + 9)=0{tex}\\Rightarrow{/tex}\xa0-16x + 16 =0{tex}\\Rightarrow{/tex}\xa016x = 16\xa0{tex}\\Rightarrow{/tex}\xa0x = 1.Hence, the required point is P(1, 0).
1959.

Find the eleventh term from the last term of the AP,27\'23,19,...,65

Answer» -209 is this correct
105 is it right
1960.

What is G. P.

Answer» Geometrical Progressions
1961.

If alpha and beta are the zeroes of the equation 6x^2+x-2, find alpha/beta + beta/alpha

Answer» f(x) = 6x2\xa0+ x - 2a = 6, b = 1, c = -2Let zeroes be {tex}\\alpha{/tex}\xa0and β.ThenSum of zeroes=\xa0{tex}\\alpha{/tex} +\xa0β {tex}=\\;-\\frac ba\\;=-\\frac16{/tex}Product of zeroes {tex}\\alpha{/tex}× β {tex}=\\;\\;\\frac ca\\;=\\;\\frac{-2}6\\;=\\;-\\frac13{/tex}{tex}\\frac { \\alpha } { \\beta } + \\frac { \\beta } { \\alpha } = \\frac { \\alpha ^ { 2 } + \\beta ^ { 2 } } { \\alpha \\beta }{/tex}{tex}= \\frac { ( \\alpha + \\beta ) ^ { 2 } - 2 \\alpha \\beta } { \\alpha \\beta } \\left[ \\because ( \\alpha + \\beta ) ^ { 2 } = \\alpha ^ { 2 } + \\beta ^ { 2 } + 2 \\alpha \\beta \\right]{/tex}{tex}= \\frac { \\left[- \\frac { 1 } { 6 } \\right] ^ { 2 } - 2 \\left[ - \\frac { 1 } { 3 } \\right] } { \\left[ - \\frac { 1 } { 3 } \\right] }{/tex}{tex}= \\frac { \\frac { 1 } { 36 } + \\frac { 2 } { 3 } } { - \\frac { 1 } { 3 } }{/tex}{tex}= \\frac { \\frac { 1 + 24 } { 36 } } { - \\frac { 1 } { 3 } }{/tex}{tex}= \\frac { 25 } { 36 } \\times \\frac { - 3 } { 1 }{/tex}{tex}= \\frac { - 25 } { 12 }{/tex}
1962.

Find the rational numbers between underoot 2and underoot3

Answer»
1963.

Find the value of p in equation px²-5x+p and both the roots are same

Answer» B²-4ac= 0, (-5)²-4*p*p= 0, 25-4p² = 0, p= 5/2
1964.

Cos45÷sec30+cos30

Answer» 0
1965.

If the sum of the zeros of the quadratic polynomial kx2-3x+5is 1 then find k

Answer» K=-3 is the correct answer
K = -2
1966.

SecA(1_sinA)(secA+tanA)=1

Answer» LHS\xa0{tex}= \\sec A(1 - \\sin A)(\\sec A + \\tan A){/tex}{tex} = (\\sec A - \\sec A \\times \\sin A)(\\sec A + \\tan A){/tex}{tex} = \\left( {\\sec A - \\frac{1}{{\\cos A}} \\times \\sin A} \\right)\\left( {\\sec A + \\tan A} \\right){/tex}\xa0{tex}\\left[ {\\because \\sec A = \\frac{1}{{\\cos A}}} \\right]{/tex}{tex} = \\left( {\\sec A - \\frac{{\\sin A}}{{\\cos A}}} \\right)(\\sec A + \\tan A){/tex}{tex} = (\\sec A - \\tan A)(\\sec A + \\tan A){/tex}\xa0{tex}\\left[ {\\because \\frac{{\\sin A}}{{\\cos A}} = \\tan A} \\right]{/tex}Using identity (a - b)(a + b) = a2 - b2= sec2 - tan2A= 1\xa0{tex}\\left[ {\\because {{\\sec }^2} - {{\\tan }^2}A = 1} \\right]{/tex}= RHSHence proved
1967.

If cos A=2/3 find the value of 4+4 tan A

Answer» Oh.. Prabhas aa gaye
1968.

Find coordinates of y axis which is nearest to the point (-2,5)

Answer» It is (0,5)
1969.

X2-48x+343 =0 find x ...p...t.....y

Answer» Ans is 24-√233 & 24+√233.
1970.

The area of acircle inscribed in an equilateral triangle is 154cm2 find the perimeter of triangle

Answer» Aprrox 73 ..
72.7cm
1971.

X²+y²=25What is the value of x+y

Answer»
1972.

X2+y2 = 25 then find x+y =?? Answer quickly ..

Answer»
1973.

5x=secA and 5/x=tanA find the value of 5(x*x-1/x*x)

Answer» 1/5
1974.

Exercise 14.3

Answer»
1975.

Find the number of terms of AP 54,51,48..............so that their sum is 513

Answer» a=54; d=-3; n=?; Sn=513 Sn=n÷2{2a+(n-1)d}513 =n÷2{2(54)+(n-1)(-3)}513×2=n{108-3n+3} 1026=n{111-3n}1026=111n-3n^23n^2-111n+1026=0Divide by 3n^2-37n+342=0n^2-19n-18n+342=0n(n-19)-18(n-19)=0(n-18)(n-19)=0therefore;n=18or19 Answer
bhai sn wale formula par rakhoaajayega.pakka
No. Of n term is 19..
1976.

Find the root of the equation 16x-10/x=27

Answer» 16x-10/x = 2716 x2\xa0-10 = 27 x16x2\xa0-27x -10 = 0Here a= 16, b= -27 and c= -10x= -b+√ b2\xa0- 4ac/ 2a and x = -b-√b2-4ac/2ax = -(-27)+√(-27)2\xa0-4 *16*(-10)/ 2*16 and x= -(-27) - √(-27)2\xa0-4*16*-10/2*16x= 27 +√729+640/32 and x = 27-√729+640/32x = 27+37/32 and x = 27-37/32x = 64/32 and x = -10/32x = 2 and x = -5/16\xa0\xa0
1977.

Chapter 13 exercise 13.2

Answer»
1978.

If the areas of 2 similar triangles are equal ,then prove that they are congruent

Answer» Prove one angle common and take another two angles equal.
1979.

Prove that Sec power 4 theta - secsquare theta = tan power4 +tansquare theta

Answer» Sec4A - Sec2A = tan\xa04A + tan\xa02ASec4A - Sec2A = Sec2A( Sec2A-1) = (1+tan2A) tan2A = tan\xa02A+ tan\xa04A
Sec⁴A- sec² = sec²( sec² - 1 ) = sec²*tan² = 1/cos²*sin²/cos² = sin²*sec⁴ LHS.. Now, tan⁴+ tan² = tan² (tan²+1) = tan²*sec² = sin²/cos²*1/cos² = sin²*sec⁴ = RHS. Hence LHS=RHS.
1980.

Locate some important center of trade and artisanal production in the political map of india

Answer»
1981.

Explain why 7×11×13+13 is a composite number

Answer» Because it has more than two factors ... 13{7×11+1}+ 1
1982.

How to study without maths any guide

Answer» Without any body help maths is very difficult
1983.

If cosec +cotò show that cosecò -cotò=1/q and hence find tge value os secòand sinò

Answer»
1984.

a3+b3=10a2+b2=7a+b=?

Answer»
1985.

Two book rs 500 if 5book rs is find

Answer» cost of 2 books = Rs500cost of 1 book = 500/2cost of 5 books = 500 x5/2cost of 5 books = 2500/2= 1250
1250
1986.

How much paper I get from only ncear questions as it is

Answer»
1987.

1+3-4/6+66-45

Answer» 0
1988.

Find the value of p of a e

Answer»
1989.

Find the area (in square units) of the triangle whose vertices are (a, b+c),(a, b-c) &(-a, c) .

Answer» 0
1990.

Derivation of mode

Answer»
1991.

What is a number?

Answer»
1992.

Date sheet 10th class

Answer»
1993.

cos/1-tan + sin/1-cot=?

Answer» Cos+sin
1994.

Detu+1234=

Answer»
1995.

246789×3355

Answer» 827977095
1996.

What is the distance between two parallel tangent of circle of radius 14 cm

Answer»
1997.

Area of eq triangle

Answer» A = √3/4 × a2
√3/4 × (side)2
1998.

If m th term of AP is 1/n and n th term is 1/m.find sum of first term

Answer» Smn=1/2(1+MN)
1999.

Evaluate cosecQ- sec²Q÷cosec²Q+sec²Q

Answer»
2000.

If tan

Answer»