Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2001.

Find the area of a quadrant of a circle whose circumference is 44cm

Answer» Circumferences of a circle\xa0{tex}= 2 \\pi r{/tex}{tex}\\Rightarrow 2 \\pi r = 44{/tex}{tex}\\Rightarrow 2 \\times \\frac { 22 } { 7 } \\times r = 44{/tex}{tex}\\Rightarrow{/tex}\xa0r = 7 cm{tex}\\therefore{/tex}\xa0Area of the quadrant{tex}= \\left( \\frac { 1 } { 4 } \\times \\frac { 22 } { 7 } \\times 7 \\times 7 \\right) \\mathrm { cm } ^ { 2 }{/tex}{tex}= \\frac { 77 } { 2 } \\mathrm { cm } ^ { 2 }{/tex}{tex}= 38.5 cm^2{/tex}
2002.

Kx?+2x+1 Find value of x

Answer»
2003.

Express each number as a product of its prime factor 140

Answer» So, the prime factors of 140 = 2 {tex}\\times{/tex}\xa02 {tex}\\times{/tex}\xa05 {tex}\\times{/tex}\xa07 = 22\xa0{tex}\\times{/tex}\xa05 {tex}\\times{/tex}\xa07.
2004.

In A.P the sum of first "n" terms is 3n^2/2+13n/2. Find the 25 term of A.P

Answer» Sum of n terms = 3n2/2 +13n/2Put n = 1, we get sum of 1 term = first term = 3/2+13/2= 16/2= 8So first term =8\xa0put n = 2, we get S2 =\xa03(2)2/2 +13*2/2 = 3*4/2 +13*2/2 = 6+13= 19So second term = 19-8 = 11So A.P is 8 ,11,14,17.........\xa0a= 8 and d=3a25 =\xa0a+(25-1)d = 8+24*3= 8+72 = 80\xa0
Put the value of n
Ans will be 80
2005.

Related number system

Answer»
2006.

Cosec / cosec - 1 + cosec / cosec + 1=2sec

Answer» Cross multiply first then you will get,Cosec2+cosec+cosec2-cosec/cosec2-1= 2cosec.squard theta/cot squard thetaNext expand it,2× 1/sin× 1/sin ÷ cos/ sinSin theta will be cancelled.You will get, 2×1/cos= 2Sec theta
2007.

Horrible

Answer»
2008.

x+h/x-h =tanA/tanB;=2x/2h=tanA+tanB/tanA-tanB how

Answer» tan A +tan B/ tan A-tan BDivide numerator and denominator by tan B, we gettan A/tanB +tanB/tanB/tanA/tanB - tan B/tanBx+h/x-h+1/x+h/x-h-1x+h+x-h/x+h-x+h2x/2hhence proved\xa0
2009.

Completing the square

Answer»
2010.

Kya Hindi mein Kabhi Parichay ayege

Answer» Nhi kabhi nhi
anwser me
2011.

Sin square theta + cos square theta equal to 1

Answer»
2012.

Board exam date

Answer»
2013.

Which books I have follow for getting 95% in 10the board exam results

Answer» NCERT because it\'s our Bible and to score more consult S.chan for science and R.S. Aggarwal or R.D.Sharma for maths and solve as many sample paper as possible to score more.
2014.

If in a ΔABC,AD is median and AM is perpendicular to BC ,then prove that AB^2+AC^2=2AD^2+1/2BC^2

Answer»
2015.

Exam me kis strategy se likhe jisse 30question ka paper 3hours me complete ho jaye

Answer» Always start from back so that u won\'t miss a good wheightage of marks !!
2016.

The mth term of an Ap is n and the nth term is n . Find the rth term

Answer» Let a be the first term and d be the common difference of the given AP. Then, in general the mth and nth terms can be written as\xa0Tm = a + (m - 1) d and Tn = a + (n - 1)d respectively.According to the question,we are given that,(m.Tm) = (n.Tn){tex}\\Rightarrow{/tex}\xa0m.{a + (m - 1)d} = n.{a + (n - 1)d}{tex}\\Rightarrow{/tex}\xa0a.(m - n) + {(m2 - n2) - (m - n)} . d = 0{tex}\\Rightarrow{/tex}\xa0(m - n).{a + (m + n - 1)}d.{tex}\\Rightarrow{/tex}\xa0(m - n).Tm+n = 0{tex}\\Rightarrow{/tex}Tm+n = 0 [{tex}\\because{/tex}\xa0(m-n){tex}\\neq{/tex}0].Hence, the (m + n)th term is zero.
2017.

If a, b, c, d, e, f are in A.P., then find the value of e - c

Answer» According to the question, we have\xa01st term = a and common difference = 3{tex}\\therefore{/tex}\xa0b = a + 3, c = a + 2(3) = a + 6d = a + 3(3) = a + 9,e = a + 4(3) = a + 12Now, e - c = (a + 12) - (a + 6) = 6
2018.

Find the sum of 3 digit number which are not Divisiable by 7

Answer»
2019.

The product of two successive integral multiples by5is300 determine the multiple

Answer» Let the successive multiples of 5 be 5x and 5x + 5. Then according to question we have,\xa05x {tex}\\times{/tex} (5x + 5) = 300{tex}\\Rightarrow{/tex}\xa025x2 + 25x = 300{tex}\\Rightarrow{/tex}25x2 + 25x - 300 = 0{tex}\\Rightarrow{/tex}25(x2 + x - 12) = 0{tex}\\Rightarrow{/tex}x2 + x - 12 = 0Solve by factorization method we have,x2 + 4x - 3x - 12 = 0{tex}\\Rightarrow{/tex}x(x + 4) - 3(x + 4) = 0{tex}\\Rightarrow{/tex}(x + 4)(x - 3) = 0Therefore, either x = -4 or x = 3 If x = -4, we have 5x = 5 {tex}\\times{/tex} (-4) = -20 and 5x + 5 = 5 {tex}\\times{/tex} (-4) + 5 = -15 Aslo If x = 3, we have 5x = 5 {tex}\\times{/tex} 3 = 15 and 5x + 5 = 5 {tex}\\times{/tex} 3 + 5 = 20 Hence, the required multiples of 5 are 15, 20. or\xa0-20, -15
2020.

How to prove root 2 irrational

Answer» Suppose\xa0{tex}\\sqrt2{/tex}\xa0is a rational number. That is ,\xa0{tex}\\sqrt2{/tex}\xa0=\xa0{tex}\\frac{p}{q}{/tex}\xa0for some p{tex}\\in{/tex}Z and q {tex}\\in{/tex}Z.\xa0We can assume the fraction is in lowest fraction, That is p and q shares no common factors.Then {tex}\\sqrt2q=p{/tex}\xa0Squaring both side we get,\xa0{tex}2q^2=p^2{/tex}So\xa0{tex}p^2{/tex}\xa0is a multiple of 2,let\'s assume\xa0{tex}p=2m{/tex}\xa0Then,\xa0{tex}2q^2=\\left(2m\\right)^2{/tex}\xa0{tex}2q^2=4m^2{/tex}Or {tex}q^2=2m^2{/tex}So {tex}q^2{/tex}\xa0is a multiple of 2,{tex}\\therefore{/tex} q is multiple of 2Thus p and q shares a common factor.This is contradiction.{tex}\\Rightarrow {/tex}{tex}\\sqrt { 2 }{/tex}\xa0is an irrational number.
2021.

How sin is equal tp cos

Answer»
2022.

4x-5

Answer»
2023.

Prove that sin theata /1-1/sintheata

Answer» LHS = {tex}\\sqrt { \\frac { 1 + \\sin \\theta } { 1 - \\sin \\theta } } + \\sqrt { \\frac { 1 - \\sin \\theta } { 1 + \\sin \\theta } }{/tex}{tex}= \\sqrt { \\frac { ( 1 + \\sin \\theta ) } { ( 1 - \\sin \\theta ) } \\times \\frac { ( 1 + \\sin \\theta ) } { ( 1 + \\sin \\theta ) } }{/tex}+\xa0{tex}\\sqrt { \\frac { ( 1 - \\sin \\theta ) } { ( 1 + \\sin \\theta ) } \\times \\frac { ( 1 - \\sin \\theta ) } { ( 1 - \\sin \\theta ) } }{/tex}{tex}= \\sqrt { \\frac { ( 1 + \\sin \\theta ) ^ { 2 } } { 1 - \\sin ^ { 2 } \\theta } } + \\sqrt { \\frac { ( 1 - \\sin \\theta ) ^ { 2 } } { 1 - \\sin ^ { 2 } \\theta } }{/tex}{tex}= \\sqrt { \\frac { ( 1 + \\sin \\theta ) ^ { 2 } } { \\cos ^ { 2 } \\theta } } + \\sqrt { \\frac { ( 1 - \\sin \\theta ) ^ { 2 } } { \\cos ^ { 2 } \\theta } }{/tex}\xa0{tex}[\\because sin^2\\theta+cos^2\\theta=1]{/tex}{tex}= \\frac { 1 + \\sin \\theta } { \\cos \\theta } + \\frac { 1 - \\sin \\theta } { \\cos \\theta }{/tex}\xa0{tex}= \\frac { 1 + \\sin \\theta + 1 - \\sin \\theta } { \\cos \\theta }{/tex}{tex}= \\frac { 2 } { \\cos \\theta }{/tex}=\xa0{tex}2sec\\theta{/tex}= RHS
2024.

Their are any important question which will come in class 10 board exam in2018

Answer» solve cbse sample paper
Check it on official website of CBSE
2025.

2+3-536+

Answer»
2026.

If the point A (K+1,2k), B (3K,2k+3) and C (5K-1,5K) are collinear, then find the value of K

Answer» Given points will be collinear, if area of the triangle formed by them is zero.Area =\xa0{tex}\\frac { 1 } { 2 } \\left[ x _ { 1 } \\left( y _ { 2 } - y _ { 3 } \\right) + x _ { 2 } \\left( y _ { 3 } - y _ { 1 } \\right) + x _ { 3 } \\left( y _ { 1 } - y _ { 2 } \\right) \\right]{/tex}{tex}\\Rightarrow 0 = \\frac { 1 } { 2 } {/tex}[(k + 1)(2k + 3 - 5k) + 3k(5k - 2k) + (5k - 1) (2k - 2k - 3)]{tex}\\Rightarrow {/tex}\xa00 = (k + 1)(3 - 3k) + 3k(3k) +(5k - 1)(-3){tex}\\Rightarrow {/tex}\xa00 =\xa03k - 3k2\xa0+ 3 - 3k + 9k2\xa0- 15k + 3{tex}\\Rightarrow {/tex}0 = 6k2\xa0- 15k + 6{tex}\\Rightarrow {/tex}0 = 2k2\xa0- 5k + 2{tex}\\Rightarrow {/tex}0 = 2k2\xa0- 4k - k + 2\xa0{tex}\\Rightarrow {/tex}0 = 2k(k - 2) - 1(k - 2){tex}\\Rightarrow {/tex}0 = (2k - 1)(k - 2){tex}\\Rightarrow {/tex}2k - 1 = 0 or k - 2 = 0{tex}\\Rightarrow k = \\frac { 1 } { 2 }{/tex} Or k = 2
2027.

Under root 660 whole square + 660 whole square

Answer»
2028.

Under root 660 is whole square + 660 whole square

Answer»
2029.

Which value of n in 2^n× 5^n make the unit place as 5

Answer» {tex}\\begin{array}{l}(2\\times5)^{\\mathrm n}=2^{\\mathrm n}\\times5^{\\mathrm n}\\end{array}{/tex}{tex}\\text{=10}^n{/tex}{tex}\\text{If n=0 then 10}^0\\text{=1}{/tex}{tex}\\text{If n>0 then 10}^n\\text{ will end with 0 }{/tex}{tex}\\mathrm{If}\\;\\mathrm n<0\\;\\mathrm{then}\\;10^{\\mathrm n}\\;\\mathrm{ends}\\;\\mathrm{with}1\\;(\\mathrm e.\\mathrm g.\\;0.1,0.01,0.001){/tex}Hence for all values of n, {tex}2^n\\times 5^n{/tex} can never end with 5.
2030.

Px^2-2√5px+15=0

Answer» We have, px2\xa0-\xa0{tex}2\\sqrt{5}{/tex}px + 15 = 0\xa0Since the roots of equation are equal. Then,Discriminant, D = 0{tex}\\Rightarrow{/tex}\xa0({tex}2\\sqrt{5}{/tex}p)2\xa0- 4(p)(15) = 0{tex}\\Rightarrow{/tex}\xa020p2\xa0- 60p = 0{tex}\\Rightarrow{/tex}\xa020p(p -3) = 0{tex}\\Rightarrow{/tex}\xa020p = 0 or p - 3 = 0{tex}\\Rightarrow{/tex}\xa0p = 3 [since p\xa0{tex}\\neq{/tex}\xa00]
2031.

What is the volome of wire?

Answer» V = πr2L, where "r" is the wire radius and "L" is its length.Remembering that radius is half of diameter, the expression becomes\xa0V = (πd2L)/4.
2032.

Please tell some ncert important question of ch trigonometry

Answer» Solve the last exercise
2033.

Statics

Answer»
2034.

Mid point theorem of triangle

Answer»
2035.

Prove that S12 =3 (S8-S4)

Answer» So simple On Lhs. 3(s8-s4)=3(s4)=s12So, s12=s12OkOk
So simple On Lhs. 3(s8-s4)=3(s4)=s12So, s12=s12Ok
2036.

On +de + fear +kf+6545 =

Answer»
2037.

Areas related to circle

Answer»
2038.

If a+c+e =0 and b+d=0 then find zeroes of ax4+bx3+cx2+dx+e

Answer»
2039.

Chapter. Circle

Answer» Related with tangent
2040.

If sin theta= 2/5 , then find the value of 4+4cot² theta.

Answer»
2041.

If sin theta=2/5, then find the value of 4+4tan² theta.

Answer» Sin A= 2/5 it means P = 2 and Hypotenuse = 5 . So base = √52\xa0-22\xa0= √25-4 = √21. So tan A= P/B = 2/√21So 4+4tan2A = 4+4(2/√21)2 = 4+4*4/21 = 4+16/21 = 84+16/21 = 100/21
2042.

If tan30\' --

Answer»
2043.

√3 is rational number?explain

Answer»
2044.

2x2+2x+5=0

Answer»
2045.

Similar triangle had same ratio of similar sides

Answer» Yes
2046.

How to find area of segment when angle of theta is 110?

Answer»
2047.

When we used the formula b2-4ac and when we used b2+-(b2-4ac)/2a

Answer» Hmko ye kuch v samaj ni aa rha kya h yeee
It is =0.5748
2048.

Give me All the formulas in chapter surface area and Volume accept the volume

Answer» (a+b)sq==????(a-b)sq==??.??
2049.

The sum of 4 th and 8th term is 24 and the sum of 6th and 10 th term is 44 .Find AP

Answer» Let the first term and the common difference of the AP be a and d respectively.Then,4th term = a + (4 - 1)d = a + 3d\xa0{tex}\\because {a_n} = a + (n - 1)d{/tex}8th term = a + (8 - 1)d = a + 7d\xa0{tex}\\because {a_n} = a + (n - 1)d{/tex}6th term = a + (6 - 1)d = a + 5d\xa0{tex}\\because {a_n} = a + (n - 1)d{/tex}and 10th term = a + (10 - 1)d = a + 9d\xa0{tex}\\because {a_n} = a + (n - 1)d{/tex}According to the question,4th term + 8th term = 24{tex} \\Rightarrow {/tex}\xa0(a + 3d) + (a + 7d) = 24{tex} \\Rightarrow {/tex}\xa02a + 10d = 24{tex} \\Rightarrow {/tex}\xa0a + 5d = 12 .......... (1) (Dividing throughout by 2)6th term + 10th term = 24{tex} \\Rightarrow {/tex}\xa0(a + 5d) + (a + 9d) = 44{tex} \\Rightarrow {/tex}\xa02a + 14d = 44{tex} \\Rightarrow {/tex}\xa0a + 7d = 22 .......... (2) (Dividing throughout by 2)Solving (1) and (2), we geta = -13d = 15So, First term = -13Second term = -13 + 5 = -8Third term = -8 + 5 = -3Hence, the first three terms of the given AP are -13, -8 and -3.
2050.

X+1/2 +y-1/2=4 find x and y

Answer»