Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

27051.

4X ki power 2+5underoot2X-3

Answer»
27052.

Solve the equation 3x_5y+1=0 by cross multiplication

Answer» No.2 equation kaha gya?
27053.

x-3y =33x-9y =2This of linear equation in two variable

Answer»
27054.

Hlo koi h ..m aa gyi pdh ke ... Or ab fir se jaa rhi hu pdne...

Answer» Byy..
Okk bye
27055.

abx2+(b2-ac)x-bc=0 yeh jo 2 hai vo x ka square hai..or b mai bhi..

Answer» {tex}abx^2 + (b^2 - ac)x - bc = 0\xa0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}abx^2 + b^2x - c(ax + b) = 0\xa0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}bx(ax + b) - c(ax + b) = 0\xa0{/tex}{tex}\\Rightarrow{/tex}{tex}(bx - c)(ax + b) = 0\xa0{/tex}x =\xa0{tex}\\frac{c} {b}{/tex},\xa0{tex}\\frac{-b}{a}{/tex}
27056.

(CosecA -cot A)2=1-cos A÷1+cosA

Answer» LHS=(cosecA - cotA)2\xa0=\xa0{tex}\\left( \\frac { 1 } { \\sin A } - \\frac { \\cos A } { \\sin A } \\right) ^ { 2 }{/tex}{tex}= \\left( \\frac { 1 - \\cos A } { \\sin A } \\right) ^ { 2 }{/tex}{tex}= \\frac { ( 1 - \\cos A ) ^ { 2 } } { \\sin ^ { 2 } A }{/tex}{tex}= \\frac { ( 1 - \\cos A ) ^ { 2 } } { 1 - \\cos ^ { 2 } A }{/tex}{tex}= \\frac { ( 1 - \\cos A ) ^ { 2 } } { ( 1 - \\cos A ) ( 1 + \\cos A ) }{/tex}{tex}= \\frac { 1 - \\cos A } { 1 + \\cos A }{/tex}Hence proved
27057.

what is the simplest form of justification

Answer»
27058.

Explaination of practice paper 3 level 1 question 5

Answer»
27059.

Question of 3.3 of question 1 ka 3rd in Linear equation in two variable

Answer» Abe kutte tujhe dekh ke samajh Nahi aa raha Kya saale
27060.

Exercise 15.1

Answer»
27061.

-x+3=5

Answer» X=-3=2
27062.

Ye 3696 kon h bhai ... Ya bhen ... Thanks hi mil rhe h ...yaha se..

Answer»
27063.

1÷7x+1÷6y=3 and 1÷2x-1÷3y=5 solve by reducing method

Answer» {tex}\\frac{1}{7x}{/tex}\xa0+\xa0{tex}\\frac{1}{6y}{/tex}\xa0= 3 .......(i)and\xa0{tex}\\frac{1}{2x}{/tex}\xa0-\xa0{tex}\\frac{1}{3y}{/tex}\xa0= 5 ...........(ii)Multiplying equation (ii) by\xa0{tex}\\frac{1}{2}{/tex}, we get\xa0{tex}\\frac{1}{4x}{/tex}\xa0-\xa0{tex}\\frac{1}{6y}{/tex}\xa0=\xa0{tex}\\frac{5}{2}{/tex} ..........(iii)Adding eq. (i) and (iii), we get{tex}\\frac{1}{4x}{/tex}\xa0+\xa0{tex}\\frac{1}{7x}{/tex}\xa0=\xa0{tex}\\frac{5}{2}{/tex}\xa0+ 3{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{7 + 4}{28x}{/tex}\xa0=\xa0{tex}\\frac{11}{2}{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac{11}{28x}{/tex}\xa0=\xa0{tex}\\frac{11}{2}{/tex}{tex}\\Rightarrow{/tex}\xa028x = 2\xa0{tex}\\Rightarrow{/tex}\xa0x =\xa0{tex}\\frac{1}{14}{/tex}Putting the value of x in eq.(i), we get{tex}\\frac{1}{7(\\frac1{14})}{/tex}\xa0+\xa0{tex}\\frac{1}{6y}{/tex}\xa0= 3y =\xa0{tex}\\frac{1}{6}{/tex}Hence x = {tex}\\frac{1}{14}{/tex} and y = {tex}\\frac{1}{6}{/tex} is the solution of given system of equations.
27064.

Byee.... thodi der mai aati hu...????????????????

Answer» Ok
Bilkul..bbye
27065.

Find the largest number which divides 245 and 1245 leaving remainder 5 in each case

Answer» Why kharif crops cannot be grown in rabi season
27066.

If -2 is a zero of polynomial 3x2+4x+2k,find the value of k

Answer» Let f(x)=3x2 + 4x +2kIf -2\xa0is zero of f(x) then f(-2)=0 then f(-2)=0{tex}\\Rightarrow{/tex}\xa03 × (-2)² + 4 × -2 + 2k = 0{tex}\\Rightarrow{/tex}\xa012 - 8 + 2k = 0{tex}\\Rightarrow{/tex}\xa04 + 2k = 0{tex}\\Rightarrow{/tex}\xa02k = -4{tex}\\Rightarrow{/tex}\xa0k =\xa0{tex}\\frac{{ - 4}}{2}{/tex}{tex}\\Rightarrow{/tex}\xa0k = -2
27067.

It being given that 1 is zero of the polynomial 7x-x3-6 find its other zeroes.

Answer» The given polynomial is -x3 + 7x - 6 and let\xa0f (x) = -x3 + 7x - 6 .Since 1 is a zero of f(x), so (x - 1) is a factor of f(x).Now we divide f(x) = -x3 + 7x - 6\xa0by (x - 1), we obtain\xa0Where quotient =\xa0(-x2\xa0- x + 6){tex}\\therefore{/tex}\xa0f(x) = (-x3\xa0+ 7x -\xa06) = (x - 1)(-x2\xa0- x + 6){tex}= - ( x - 1 ) \\left( x ^ { 2 } + x - 6 \\right) = - ( x - 1 ) \\left( x ^ { 2 } + 3 x - 2 x - 6 \\right){/tex}{tex}= ( 1 - x ) [ x ( x + 3 ) - 2 ( x + 3 ) ] = ( 1 - x ) ( x + 3 ) ( x - 2 ){/tex}{tex}\\therefore{/tex}\xa0f(x) = 0 {tex}\\Rightarrow{/tex}\xa0{tex}( 1 - x ) ( x + 3 ) ( x - 2 ){/tex} = 0{tex}\\Rightarrow{/tex}\xa0(1 - x ) = 0 or (x + 3) = 0 or (x - 2) = 0{tex}\\Rightarrow{/tex}\xa0x =\xa01 or x = -3 or x = 2.Thus, the other zeros are -3 and 2
27068.

Factorise X square + 11 x + 13

Answer» b² - 4ac = (11)² - 4(1)(13) = 121 - 52 = 69x = -b +/- √69/2a. =. -11+/-√69/2 So x = -11 + √69/2. Or. x = -11-√69/2
27069.

Find the centre of the circle passing through the point A,

Answer»
27070.

Definition of polynomial

Answer»
27071.

√17640

Answer» Bcoz last mei sirf 1 zero hai
Perfect nhi ho skta
27072.

10 board me kya aya hai

Answer» Check the syllabus here :\xa0https://mycbseguide.com/cbse-syllabus.html
27073.

M dekhu teri photo 100 100 baaaaaar kude .......❤️❤️❤️????????

Answer» ?
Dekhu teri photo infinity times.....munde
???
Hi...gungun...bestie..
Yeah...!
27074.

Given that √2 is a zero of cubic polynomial 6x^3+√2x^2-10x-4√2, find its other two zeros

Answer» Assume f(x) = {tex}6{x^3} + \\sqrt 2 {x^2} - 10x - 4\\sqrt 2{/tex}If {tex}\\sqrt 2{/tex}\xa0is the zero of f(x), then {tex}(x - \\sqrt 2 ){/tex}\xa0will be a factor of f(x). So, by remainder theorem when f(x) is divided by {tex}(x - \\sqrt 2 ){/tex}, the quotient comes out to be quadratic.Now we divide {tex}6{x^3} + \\sqrt 2 {x^2} - 10x - 4\\sqrt 2{/tex}\xa0by\xa0{tex}(x - \\sqrt 2 ){/tex}.{tex}\\therefore \\;f(x) = (x - \\sqrt 2 )(6{x^2} + 7\\sqrt 2 x + 4){/tex}\xa0(By Euclid’s division algorithm){tex}= (x - \\sqrt 2 )(6{x^2} + 4\\sqrt 2 x + 3\\sqrt 2 x + 4){/tex}\xa0( By factorization method )For zeroes of f(x), put f(x) = 0{tex}\\therefore (x - \\sqrt 2 )(6{x^2} + 4\\sqrt 2 x + 3\\sqrt 2 x + 4) = 0{/tex}{tex}\\Rightarrow \\;(x - \\sqrt 2 )[2x(3x + 2\\sqrt 2 ){/tex}\xa0{tex}+ \\sqrt 2 (3x + 2\\sqrt 2 )] = 0{/tex}{tex}\\Rightarrow (x - \\sqrt 2 )(3x + 2\\sqrt 2 )(2x + \\sqrt 2 ) = 0{/tex}{tex}\\Rightarrow x - \\sqrt 2 = 0{/tex}\xa0or {tex}3x + 2\\sqrt 2 = 0{/tex}\xa0or {tex}2x + \\sqrt 2 = 0{/tex}{tex}\\Rightarrow x = \\sqrt 2{/tex}\xa0or {tex}x = \\frac{{ - 2\\sqrt 2 }}{3}{/tex}\xa0or {tex}x = \\frac { - \\sqrt { 2 } } { 2 }{/tex}So, other two roots are {tex}= \\frac{{ - 2\\sqrt 2 }}{3}{/tex}\xa0and {tex}\\frac{{ - \\sqrt 2 }}{2}{/tex}.
27075.

Sin60°+cos30°

Answer» Sin60° + cos30°(√3/2) + (√3/2)= ( (√3+ √3)/ 2= 2√3/2= √3
27076.

A cube of side 5 cm is painted all slongbits faces...

Answer»
27077.

Find the zeroes of polynomial x2-6x+1

Answer»
27078.

Using euclid algorithm to find the HCF of 595 and 252 and then express it in the form of 595m + 252n

Answer» Given integers,595 and 252Applying Euclid division algorithm to 595 and 252 we get,595=252×2+91.........................................1Now applying ,Euclid division algorithm to 252 and 91 we get,252=91×2+70.....….………...........................2Now applying Euclid division algorithm to 91 and 70,we get91=70×1+21…...............................................3Now applying Euclid division algorithm to 70 and 21 we get,70=21×3+7...................................................4Now applying Euclid division algorithm to 21 and 7 we get,21=7×3+0......................................................5The remainder at this stage is zero.Hence HCF of 595 and 252 is 7.eq1,eq2,eq3, and eq4 can be written as,595-(252×2)=91..........................................6252-(91×2)=70.............................................791-(70×1)=21...................................................870-(21×3)=7.....................................................9Now eq9 we have,(as we express HCF in the form of a equation that is the reason we start from eq9)7=70-(21×3)By putting eq8 in above equation we have,7=70-(91-70×1)37=70-91×3+70×37=70×4-91×3By putting eq7 in above equation we have,7=(252-91×2)4-91×37=252×4-91×8-91×37=252×4-91×11By putting eq6 in above equation we have,7=252×4-(595-252×2)117=252×4-595×11+252×227=252×26-595×117=595(-11)+252(26)7=595m+252n, where m=-11 and n=26.Hence HCF of 595 and 252 is in the form of 595m+252n,where m=-11 and n=26.
27079.

What are the types of linear eq.in two variables?

Answer»
27080.

Identity of equation

Answer» Euclid\'s algorithm
27081.

Prove that square of any positive integer is of the form 5q,5q+1,5q+2,5q+3,5q+4 for some integer

Answer» Any integer can be written in the form 5m , 5m+1, 5m+2 (where m is any integer)(5m)² = 25m² = 5 × 5m² = 5q (where q = 5m²)(5m+1)² = (5m)² + 2 ×5m × 1 + 1² [by using identity- (a+b)²= (a²+ 2ab +b² )] = 25m² + 10 m + 1 = 5 (5m²+ 2m) +1 = 5q +1 ( where q= 5m²+2m)(5m+2)²= (5m)² + 2× 5m × 2 +2² [by using identity- (a+b)²= (a²+ 2ab +b² )] = 25m² + 20 m +4 = 5 (5m²+4m ) + 4 = 5q+4 (where q= 5m²+4m)Hence proved
27082.

2$53

Answer» What is this
27083.

Ch3 3.1 question 1

Answer»
27084.

I did not understand page 30 question example 2 plus explain

Answer»
27085.

Cramers rule

Answer» Cramer\'s Rule is a method that uses determinants for solving systems of linear equations. To explain the method and how these determinants are generated, this lecture will first illustrate the solution to a system of linear equations by the addition/elimination method without simplifying the indicated products and sums of the coefficients. The intent is to demonstrate that these products and sums can be represented by determinants.
27086.

What are polynomial

Answer» A polynomial is a mathematical expression that consists of variables and constants combined using addition, subtraction and multiplication. Variables may have non-negative integer exponents. Although division by a constant is allowed, division by a variable is not allowed.The degree of a polynomial is the exponent of the highest degree term.\tA polynomial of degree 0 is called a constant polynomial.\tA polynomial of degree 1 is called a linear polynomial.\tA polynomial of degree 2 is called a quadratic polynomial.\tA polynomial of degree 3 is called a cubic polynomial.
A polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables.
27087.

ex4.4 qno.8

Answer»
27088.

Why use costita

Answer»
27089.

Find whether -1 is a zero of the polynomial p(x) =5xsquare-3x-1

Answer» X=-1P(x)=5x^2-3x-1=5(-1)^2-3(-1)-1=5+3-1=8-1=7 Hence,x=-1 is not a zero of p(x)
putting x=-1we observe that the remainder of equation comes 7. so it is not zeroes of polynomial
27090.

Find the mean median and mode of 2,3,5,8,2,5,9,1,4,7,3,7,6,4,4,8

Answer» Please answer friends
27091.

2+2-2=2

Answer» 0
27092.

Sllabus

Answer»
27093.

If alpha and beta are the zeroes of polynomial 3x2-4x-4 find (alpha +1)(beta+1)

Answer»
27094.

In graphical formx+2y=702x+y=95

Answer»
27095.

Guys what are internal exam?

Answer»
27096.

60/x+240/y=4,100/x+200/y=25/6 find x&y

Answer» X=0 ,y=0
27097.

What is the rational number between root 2 ND root3

Answer» There r infinity rational no.
27098.

Solve equation by cross mulyiplication method

Answer» Where\'s equation.?
Equation kaha h
27099.

(x2-y2)2

Answer» (x2-y2)2= (x2)2 - 2x2y2 + (y2)2= x4 - 2x2y2 + y4
27100.

When class 10 result declared?

Answer» No info has been given
Kisi v din result aa sakta hai jaise 12 ka aaya tha