Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

35651.

Value of tan60

Answer» Root 3=1.732
Root 3
Under root 13
_/3
_/3
Root 3
35652.

Pythagoures formula

Answer» H sq.=b sq.+p.sq
Hsp=Psq+Bsq
AC sq = AB sq + BC sq
AC sq.=AB sq.+BC sq.
35653.

Largest source of bauxite in india name the state

Answer» Odisha
Oddisha
Orissa is the largest source of bauxite
35654.

√3x^2-2√2^x-2√3=0 solvethe equ by quadratic formula

Answer»
35655.

What is a section formulA

Answer» The section formula is X=mx2nx1/m+n and Y=my2ny1/m+n
35656.

Who is the most important book for maths . RS aggraval ,R D Sharma. Or Ncert?

Answer» Examination point of view . ?%is best
I agree with ncert
RD Sharma because it contains all questions of ncert and RS Aggarwal
Ncert
Ncert
Rs Aggarwal
Of course ncert
35657.

a3_b3+ab+1 solve this problem

Answer» Please solve this problem this is the challenge for class 10 given by teacher
Really Sunidhi chauhan is in 10 class.
I don\'t know if I know I can solve this is the problem
35658.

In fig. 6. 36, QR/QS =QT/PR and.‹1=‹2.Show that triangle PQS is similar to triangle TQR

Answer» Given:\xa0In figure, {tex}\\frac{{QR}}{{QS}} = \\frac{{QT}}{{PR}}{/tex}and {tex}\\angle{/tex} 1 = {tex}\\angle{/tex} 2To prove: {tex}\\triangle PQS \\sim \\triangle TQR{/tex}Proof: In {tex}\\triangle {/tex} PQR {tex}\\because {/tex}{tex}\\angle{/tex} 1= {tex}\\angle{/tex} 2{tex}\\therefore {/tex} PR = QP (1).......[ {tex}\\because {/tex} sides opposite to equal angle of a triangle are equal]Now, {tex}\\frac{{QR}}{{QS}} = \\frac{{QT}}{{PR}}{/tex} ......given{tex} \\Rightarrow \\frac{{QR}}{{QS}} = \\frac{{QT}}{{QP}}{/tex} (2).......Using(1)Again in {tex}\\triangle PQS{/tex} and {tex}\\triangle TQR{/tex}{tex}\\because \\frac{{QR}}{{QS}} = \\frac{{QT}}{{QP}}...........From(2){/tex}{tex}\\therefore \\frac{{QS}}{{QR}} = \\frac{{QP}}{{QT}}{/tex} and {tex}\\angle SQP = \\angle RQT{/tex}{tex}\\therefore \\triangle PQS \\sim \\triangle TQR{/tex}...........SAS similarity criterion
35659.

What is the sum of all natural numbers from 1 to 100 .

Answer» Use formula n(n+1)divided by 2
5050
AND The Answer will be 5050
35660.

find the least no. which is divisible by all the numbers from 1 to 10.

Answer» 2520 by taking l.c.m of all no 1 to 10 you will get the answer
Vaishnavi
1
35661.

Find the value of p if the difference of square of the zeroes of polynomial x2 +px+45 is 144

Answer» If the squared difference of the zeroes of the quadratic polynomial f(x) = x2 + px + 45 is equal to 144, then ,we have to find the value of p.Let {tex}\\alpha{/tex}\xa0and {tex}\\beta{/tex}\xa0be the zeroes of the given quadratic polynomial.{tex}\\therefore{/tex}\xa0{tex}\\alpha{/tex} + {tex}\\beta{/tex} = - p and {tex}\\alpha\\beta{/tex}= 45 ...(i)Given, ({tex}\\alpha{/tex} - {tex}\\beta{/tex})2 = 144or, ({tex}\\alpha{/tex} + {tex}\\beta{/tex})2- 4{tex}\\alpha{/tex}{tex}\\beta{/tex}\xa0= 144or, (-p)2\xa0- 4 {tex}\\times{/tex}\xa045 = 144 [Using (i)]p2\xa0- 180 = 144p2 = 144 + 180 = 324{tex}\\therefore{/tex}\xa0p = ± {tex}\\sqrt{324}{/tex}= ± 18Hence,\xa0the value of p is ± 18.
35662.

9-5

Answer» 4
Xxx
Sususijsksk
35663.

Show that the polynomial f(x)= x^4+4x^2 +6 has no zeros

Answer» f(x) = x4\xa0+ 4x2\xa0+ 6= (x2)2\xa0+ 4x2\xa0+ 6Let x2\xa0=n,Then, f(x) = n2\xa0+ 4n + 6,Here a=1,b=4,c=6The discriminant(D) = {tex}\\text{b}^2-4\\mathrm{ac}=\\;(4)^2-4\\times1\\times6=16-24=-8{/tex}Since the discriminant is negative so this polynomial has no zerosHence, f(x) = x4\xa0+ 4x2\xa0+ 6 has no zero.
35664.

How to draw BD perpendicular to AC in right triangle ABC??

Answer» Bisect angle ABC
35665.

159%......=15900

Answer» 10000
35666.

If √6+√6+√6+.............Infinite

Answer» 1
35667.

In a triangle abc de parallel to bc find the value of x

Answer» As DE\xa0{tex}\\parallel{/tex} BC{tex}\\therefore \\frac{AD}{AB}=\\frac{AE}{AC}{/tex},\xa0{tex}{/tex}.{tex}\\frac{x}{2x+1}=\\frac{x+3}{2x+8}{/tex}(x + 3)(2x + 1) = x(2x + 8)2x2 + x + 6x + 3 = 2x2 + 8x3 = 8x - 7xx = 3
35668.

Sin^2 20+sin^2 70- tan^2 45

Answer» Sin^2 20°+sin(90°-20°)-tan^2 45°Sin^2 20°+cos^2 20°-tan^2 45°Now ,. Sin2 A + cos2 A = 1 ( identity)And tan 45 °= 1 tan2 45°= 1^21 - 1 =0.
35669.

Find the value of k for which the system of equtionsx-2y=3 and 3x+ky=1has a unique solution

Answer» for unique solutions a1/a2 is not equal to b1/b2 so 1 /3 is not equal to -2/k so k is not equal to -6 so k is all values except -6
1/3=-2/k1/3×2/kK=6
35670.

2x+3y=√2

Answer» 2x+3y=√2Squaring both side(2x+3y)²=24x²+9y²+2.2x.3y=24x²+9y²+12xy=24x²+12xy+9y²=24x²+6xy+6xy+9y²=22x(2x+3y)+3y(2x+3y)=22x+3y=22x+3y=2
35671.

14 lesson mai a kya hota h

Answer» Middle value of xi if it has two values then we can take any of them
35672.

Prove that Sin1° × sin2°× ..............× sin89° × sin90°=√3/2

Answer»
35673.

The sum of pth terms of AP is q and qth terms of AP is p show that p+q th term of AP is -(p+q).

Answer» Let a be the first term and d the common difference of the given A.P.{tex}\\therefore S_{p}=\\frac{p}{2}{/tex}\xa0[2a + (p - 1)d] = q\xa0{tex}\\Rightarrow{/tex}\xa02a + (p - 1)d\xa0{tex}=\\frac{2 q}{p}{/tex} ….(i)And\xa0{tex}S_{q}=\\frac{q}{2}{/tex}\xa0[2a + (q - 1)d] = p{tex}\\Rightarrow{/tex}\xa02a + (q - 1)d\xa0{tex}=\\frac{2 p}{q}{/tex}\xa0….(ii)Subtracting eq. (ii) from eq. (i) we get(p - q)d =\xa0{tex}\\frac{2 q}{p}-\\frac{2 p}{q}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0(p - q)d\xa0{tex}=\\frac{2\\left(q^{2}-p^{2}\\right)}{p q}{/tex}{tex}\\Rightarrow{/tex}\xa0(p - q)d\xa0{tex}=\\frac{-2}{p q}{/tex}(p2\xa0- q2){tex}\\Rightarrow{/tex}\xa0(p - q)d\xa0{tex}=\\frac{-2}{p q}{/tex}\xa0(p + q)(p - q)\xa0{tex}\\Rightarrow d=\\frac{-2}{p q}{/tex}\xa0(p + q)Substituting the value of d in eq. (i) we get2a + (p - 1)\xa0{tex}\\left[\\frac{-2(p+q)}{p q}\\right]=\\frac{2 q}{p}{/tex}{tex}\\Rightarrow 2 a=\\frac{2 q}{p}+\\frac{2(p-1)(p+q)}{p q}{/tex}{tex}\\Rightarrow a=\\frac{q}{p}+\\frac{(p-1)(p+q)}{p q}{/tex}{tex}a=\\frac{q^{2}+p^{2}+p q-p-q}{p q}{/tex}Now\xa0Sp+q\xa0{tex}=\\frac{p+q}{2}{/tex}\xa0[2a + (p + q - 1)d{tex}=\\frac{p+q}{2}\\left[\\frac{2 q^{2}+2 p^{2}+2 p q-2 q-2 q}{p q}+\\frac{(p+q-1)[-2(p+q)}{p q}\\right]{/tex}{tex}=\\frac{p+q}{2}\\left[\\frac{2q^{2} + 2p^{2} + 2pq - 2p - 2q -2p^{2} -2 p q+2 p-2 p q-2 q^{2}+2 q}{p q}\\right]{/tex}{tex}=\\frac{p+q}{2}\\left[\\frac{-2 p q}{p q}\\right]{/tex}\xa0= -(p + q)\xa0hence proved.
35674.

x^5+a^5 is divided by x+a

Answer» x5 + a5 by x + aWe stop here since the remainder is zero,So,quotient\xa0{tex}= x ^ { 4 } - a x ^ { 3 } + a ^ { 2 } x ^ { 2 } - a ^ { 3 } x + a ^ { 4 }{/tex}remainder = 0Therefore,{tex}\\text { Quotient } \\times \\text { Divisor } + \\text { Remainder }{/tex}{tex}= \\left( x ^ { 4 } - a x ^ { 3 } + a ^ { 2 } x ^ { 2 } - a ^ { 3 } x + a ^ { 4 } \\right) ( x + a ) + 0{/tex}{tex}= x ^ { 5 } + a x ^ { 4 } - a x ^ { 4 } - a ^ { 2 } x ^ { 3 } + a ^ { 2 } x ^ { 3 }{/tex}{tex}+ a ^ { 3 } x ^ { 2 } - a ^ { 3 } x ^ { 2 } - a ^ { 4 } x + a ^ { 4 } x + a ^ { 5 }{/tex}{tex}= x ^ { 5 } + a ^ { 5 }{/tex}= DividendTherefore, the division algorithm is verified.
35675.

√2is irrational no.

Answer» Ya √2 is an irrational number and u can prove it
Yes
No
Yes
35676.

What is the surface area

Answer» In general, the surface area is the sum of all the areas of all the shapes that cover the surface of the object.
howmuch place covered by figure thats called its area
35677.

SolveaX + bY = a - b and bX - aY = a + b

Answer» Ritik Chaudhary?
Multiply whole equation (1) by \'b\' and multiply whole equation (2) by \'a\' , Then solve by elimination method.HOPE THIS HELP YOU!
35678.

Dipesh I am not fail in mathematics .I am the top score In class .now I am so happy

Answer» Harshita sry your exam is over
Harshita your is over
Out of 30 ,28.5
How much marks u got ....
35679.

Converse of bpt theorm

Answer»
35680.

The common difference of an A.P is -2.find it\'s sum,if first term is 100and last term is-10.

Answer» 2520
Varun pornia your answer is wrong
The formula of sn is ~1/2{2a+(n-1)d} And another formula is sn~{1/2(a+l)} So\' I use second formula Given; a=100 l=10 Put value in formula; we get 1/2 (100+10) = 1/2×110 =55 is anwer
152
35681.

Can 6n end with zero

Answer» 6n =(2.3)n=2n.3n. (.means multiply) Therefore prime factorization of 6n cannot end with 0
35682.

Find the medianof distribution

Answer» Incomplete question
35683.

In a

Answer»
35684.

Prove that 1-cos=sin

Answer»
35685.

For what value of p are 2p+1, 13,5p-3of AP find AP

Answer» Let a1=2p+1, a2=13, and a3=5p-3 Solve it a2-a1=a3-a2 Find, 13-(2p+1)=5p-3-(13)13-2p-1=5p-3-1312-2p=5p-1612+16=5p+2p28=7pP=28/7P=4
Math in hindi
35686.

12×12

Answer» 144
144
Are you serious , you are in grade 10
144
144
144
144
35687.

√2 is irrational

Answer» Yes
Yes
Please complete ur ques.
35688.

In ΔABC, AD is perpendicular to BC such that AD^2 =BD. CD. prove that ΔABC is right angles at A

Answer» AD2\xa0= BD\xa0{tex}\\times{/tex}\xa0CDor,\xa0{tex}\\frac { A D } { C D } = \\frac { B D } { A D }{/tex}Therefore,\xa0{tex}\\triangle A D C \\sim \\triangle B D A{/tex}\xa0(by SAS)or,\xa0{tex}\\angle{/tex}BAD =\xa0{tex}\\angle{/tex}ACD;{tex}\\angle{/tex}DAC =\xa0{tex}\\angle{/tex}DBA\xa0(Corresponding angles of similar triangles){tex}\\angle{/tex}BAD\xa0+ {tex}\\angle{/tex}ACD + {tex}\\angle{/tex}DAC + {tex}\\angle{/tex}DBA = 180o [sum of angles of ∆]or, 2{tex}\\angle{/tex}BAD + 2{tex}\\angle{/tex}DAC = 180oor,\xa0{tex}\\angle{/tex}BAD + {tex}\\angle{/tex}DAC = 90oTherefore,\xa0{tex}\\angle{/tex}A = 90o
35689.

Find the ratio in which p p(4,m)divides the line segment joining the point m(2,3)(6,-3)

Answer» Let us assume that point P divides the line segment AB in the ratio (k : 1)Using section formula,P(4, m) =\xa0{tex}\\frac{6k+2}{k+1} , {/tex}{tex}\\frac{-3k+3}{k+1}{/tex}{tex}\\therefore{/tex}\xa0{tex}\\frac{6 \\mathrm{k}+2}{\\mathrm{k}+1}{/tex}\xa0= 4\xa0{tex}\\Rightarrow 6k+2=4k+4 \\Rightarrow 2k=2{/tex}{tex}\\Rightarrow{/tex}\xa0k = 1{tex}\\therefore{/tex}\xa0The ratio is 1 : 1Now, m =\xa0{tex}\\frac{-3k+3}{k+1}{/tex}\xa0=\xa0{tex}\\frac{-3+3}{2}{/tex} = 0
35690.

Form a cubic polynomial with zeroes 3,2,_1

Answer»
35691.

Prove cosec2fjfjjddjxkckicjcudnsksoz

Answer» What is this umang ????
Tere bap ne ye type kiya tha kya
35692.

If tanx=sin 45° cos45°+ sin30°,then find x

Answer» x=45°
35693.

What is root of 13

Answer» 169
169
35694.

Find the area of figure formed by joining the points A(-4,-2) B(-3,-5) C(3,-2) and D(2,4)

Answer»
35695.

If the ratio of areas of 2 triangles is 81:100 then what is the ratio of their corresponding sides

Answer» 9:10
35696.

What is the Euclid\'s division lemma

Answer» Boring chapter
This formula valid when r is equal to or greater than 0 and b must be greater than r .
a= b q + r
Ooo
Divident = Divisor × Quotient + Remainder
35697.

Prove that SinA - cosA + 1 / sinA + cosA -1 = 1 / secA -tanA using identity sec2A = 1 + tan2A

Answer»
35698.

Section of clockwise Revolution does the hour hand of a clock when it goes from 3 to 9 and 427

Answer»
35699.

X2*658837x

Answer»
35700.

If Sn dwnotes the sum of an AP whose common difference is d and first term is a find Sn-2,Sn-1,Sn-2

Answer» Refer the example in RS AGARWAL BOOK