Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

35751.

Find the point on the x-axis which is equidistant from (2,-5) and (-2,9)

Answer» X=8 chk your calculation
Let the point of x-axis be P(x, 0)Given A(2, -5) and B(-2, 9) are equidistant from PThat is PA = PBHence PA2 = PB2 \xa0→ (1)Distance between two points is\xa0√[(x2 - x1)2 +\xa0(y2\xa0- y1)2]PA =\xa0√[(2\xa0- x)2\xa0+\xa0(-5\xa0- 0)2]PA2\xa0= 4 - 4x +x2 + 25 =\xa0x2 - 4x + 29Similarly,\xa0PB2\xa0=\xa0x2\xa0+ 4x + 85Equation (1) becomesx2\xa0- 4x + 29 =\xa0x2\xa0+ 4x + 85- 8x = 56x = -7Hence the point on x-axis is (-7, 0)
35752.

Is 51 tearm of the AP 5,8,11

Answer» Here the first term; a = 5Common difference; d = 11 - 8 = 8 - 5 = 3So, nth term is given by;tn = a + (n − 1)d = 5 + (n − 1) × 3Now to prove whether 51 is term of this A.P, taking tn = 5151 = 5 + (n − 1) × 3⇒ 51 = 5 + 3n − 3⇒ 3n = 51 + 3 − 5⇒ 3n = 49n = 49/33Now we know that number of terms can\'t be in fraction.So, 51 is not term of this A.P.
35753.

5x-6x-2=o by quadratic formula

Answer» Ur ques is wrong...as it doesn\'t form any quadratic equation
Bohot simple hai
35754.

What is the square of (math)

Answer» ?????
35755.

If sec A+ tan A= x.find secretary A

Answer»
35756.

If sec A + tan A= x. Find sec A

Answer» X=1
By formula,secA +tanA=1
35757.

Factorise: *-45*+324

Answer»
35758.

√34×√55

Answer» 43.87
43.24567
35759.

Identification of sin cos tan

Answer»
35760.

The area of the longest trangle the can be incribed a semi circle of radius r is

Answer» Hypotenuse
35761.

if an AP, if the common difference (d) -4 and the seventh term A7 is 4 then find the first term

Answer» D = -4A7 =4 = AnAn = a+ (n-1)d4=a+(7-1)-44= a+(6)-44= a-24a=4+24a=28
a1= 28
35762.

4x+ py+8=0

Answer» Given linear equation is 4x + py + 8 = 0 and 2x + 2y + 2 = 0.So, 4x + py + 8 = 0 ...(1)and 2x + 2y + 2 = 0 ...(2)a1 = 4, b1 = p, c1 = 8, a2= 2 , b2 = 2 and c2 = 2The condition of unique solution,\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } \\neq \\frac { b _ { 1 } } { b _ { 2 } }{/tex}Hence,{tex}\\frac { 4 } { 2 } \\neq \\frac { p } { 2 } \\text { or } \\frac { 2 } { 1 } \\neq \\frac { p } { 2 }{/tex}{tex}p \\neq 4{/tex}The value of p is other than 4 it may be 1,2,3, - 4 ,.... etc.
35763.

Ch 8 8.2.ka example 8

Answer» Sin(A-B)=1/2Sin30`=1/2So,A-B=30=eq1Cos(A+B)=1/2Cos60`=1/2So,A+B= 60=eq2Add eq 1 and 2,we getA-B=30 + A+B=60We get,A=45` and B=15`
35764.

sin(A+B)=1 and Sin(A-B)=1/2

Answer» sin(A+B)=1 , =› A+B= 90°...........(i)and sin(A-B)=1/2 , =› A-B=30°.............(ii)solving (i) and (ii) we get A=60, B=30
35765.

Under root of (1+x)+under root of (1-2) divided by under root of (1+x)+under root of (1-x).solve

Answer»
35766.

If sin A + cos A = root 2 cos A, find the value of cot A.

Answer» O Bhai copy le ke aa??
35767.

2+√3 is irrational number proove it

Answer» See example of chapter 1
Irrational
35768.

How to find centroid of a triangle

Answer» X1 + x2 + x3 /3 = X & y1 + y2 + y3/3= Y of centroid
35769.

What is the degree of zero polynomial????

Answer» 1
35770.

If the ratio of a5 and a10 term is 2:5then find the ratio of a15 and a7 term

Answer»
35771.

13/2125

Answer» 0.00611764705
35772.

1/a+b+x = 1/a +1/b +1/x

Answer» Given,{tex}\\frac { 1 } { ( a + b + x ) } = \\frac { 1 } { a } + \\frac { 1 } { b } + \\frac { 1 } { x }{/tex}{tex}\\Rightarrow \\quad \\frac { 1 } { ( a + b + x ) } - \\frac { 1 } { x } = \\frac { 1 } { a } + \\frac { 1 } { b } \\Rightarrow \\frac { x - ( a + b + x ) } { x ( a + b + x ) } = \\frac { b + a } { a b }{/tex}{tex}\\Rightarrow \\quad \\frac { - ( a + b ) } { x ( a + b + x ) } = \\frac { ( a + b ) } { a b }{/tex}On dividing both sides by (a+b){tex}\\Rightarrow \\quad \\frac { - 1 } { x ( a + b + x ) } = \\frac { 1 } { a b }{/tex}Now cross multiply{tex}\\Rightarrow{/tex}\xa0x(a + b + x) = -ab\xa0{tex}\\Rightarrow{/tex}\xa0x2 + ax + bx + ab = 0{tex}\\Rightarrow{/tex}\xa0x(x +a) + b(x +a) = 0{tex}\\Rightarrow{/tex}\xa0(x\xa0+ a) (x + b) = 0{tex}\\Rightarrow{/tex}\xa0x + a = 0 or x + b = 0{tex}\\Rightarrow{/tex}\xa0x = -a or x = -b.Therefore, -a and -b\xa0are the roots of the equation.
35773.

Marked price

Answer»
35774.

Write a rational no. Between √2 and √3 . plzz answer my question

Answer» √2 = 1.414√3= 1.732So, a rational number between those two would be 1.5 (3/2). But there are several more, in fact, infinite number of rational numbers between √2 and √3.
35775.

2 ki power x+3 =2 ki power x+5 +12 find value of x

Answer»
35776.

Why is pi taken as 22/7

Answer» Pi is actually the ratio of the circumference of the circle to its diameter. On actual measurement, it has been found to be 3.14592635...,i.e., irrational. For the ease of calculation, it is considered 22/7 which is a rational number.
35777.

5x-4y+8=07x+6-9=0Find the velu of x and y

Answer»
35778.

If -1and 2 are two zeroes of the polynomial 2x^3-x^2-5x-2,find the third zero

Answer» Given polynomial is p(x) = 2x3\xa0- x2- 5x - 2\xa0and -1 and 2 are zeroes of polynomial.{tex}\\therefore{/tex}\xa0{x - (-1)} (x - 2)= ( x + 1) (x - 2) = x2 - 2x + x - 2 = x2- x - 2 is a factor of p(x)For other zeroes, 2x\xa0+ 1 = 0{tex}\\Rightarrow x = \\frac { - 1 } { 2 }{/tex}{tex}\\therefore{/tex}\xa0Other zero = {tex}\\frac { - 1 } { 2 }{/tex}
35779.

formula of Ap chaptar

Answer» wasa nahi bata sakta ho
see in book....
35780.

(tan+2)(2tan+1)=5tan+sec2

Answer»
35781.

An integer is chosen at random between 1and 100. Find the probability that it is divisible by 8

Answer» Total number is 98Divisible by 8 are 8,16,24,32,40,48,56,64,72,80,88,96So 12 numbers are divisibleSo probability of divisible numbers = 12/98 = 6/49
35782.

Ch 4 ex 4.3 qu 1

Answer»
35783.

Solve for x and y : 2(3x-y)=5xy, 2(x+3y)=5xy

Answer» 2(3x - y) = 5xy .(i)2(x + 3y) = 5xy ..(ii)Divide eqns. (i) and (ii) by xy,{tex}\\frac { 6 } { y } - \\frac { 2 } { x } = 5{/tex} ....(iii)and\xa0{tex}\\frac { 2 } { y } + \\frac { 6 } { x } = 5{/tex}\xa0.....(iv)Let\xa0{tex}\\frac { 1 } { y } = a \\text { and } \\frac { 1 } { x } = b{/tex}then equations (iii) and (iv) become6a - 2 b = 5 ......(v)2a -6b = 5 ...(vi)Multiplying eqn. (v) by 3 and then adding with eqn. (vi),18a - 6b + 2a - 6b = 15 + 520a = 20{tex}\\therefore {/tex}\xa0a=1Substituting this value of a in eqn. (v),{tex}b = \\frac { 1 } { 2 }{/tex}Now\xa0{tex}\\frac { 1 } { y } = a = 1{/tex}or, y=1and\xa0{tex}\\frac { 1 } { x } = b = \\frac { 1 } { 2 }{/tex}or, x=2Hence, x = 2, y = 1
35784.

( x+1)²+(x-1)²=3x-3

Answer»
35785.

HOW TO SOLVE CO ORDINATE GEOMETERY DISTANCE FORMULA QUESTIONS

Answer» By using the distance formula
35786.

Fugg

Answer»
35787.

Is the point p(x,y) is equidistant pointA(5,1)B(_-1,5)prove that 3x=2y

Answer» \xa0The distances of P (x, y) from A (5,1) and B (-1,5) are equal, then we have to prove that 3x = 2y.PA = PB{tex}\\therefore{/tex}\xa0PA2\xa0= PB2By distance formula,(5 - x)2\xa0+ (1 - y)2= (-1 - x)2\xa0+ (5 - y)2{tex}\\Rightarrow{/tex}25 - 10x + x2\xa0+ 1 - 2y + y2\xa0= 1 + 2x + x2\xa0+ 25 - 10y + y2{tex}\\Rightarrow{/tex}\xa0-10x - 2y = 2x - 10y{tex}\\Rightarrow{/tex}\xa08y = 12x{tex}\\Rightarrow{/tex}4(2y)= 4(3x){tex}\\Rightarrow{/tex}3x = 2yHence Proved.
35788.

32+32(-32)

Answer» -992 by BODMAS
-992
35789.

find the quadratic polynomial, the sum and product of whose zeros are root 2 and -12 respectively.

Answer» let ,alpha and bita are zeroesso,alpha+bita= 2 and alpha•bita=-12f(x)= xsquare-(alpha+bita)x+alpha•bita =x² -2x+(-12) =x²-2x-12 required polynomial= x²-2x-12
Kya Aaisha tumhe itna bhi nahi aata.Ans. Braket me X ka square phir _ braket me sum of zeroes braket close phir × X phir + product of zeroes braket close
35790.

44⁴44+5555

Answer» 49999
35791.

What is the formula of a3+b3

Answer» I am sorry
a3+b3=a3+b3+3a2b+3ab2
(a+b)^3 - 3ab (a+b)
(a+b)3 -3(ab)(a+b)
(a+b)(a2+b2-ab)
a3+b3+3ab(a+b).
35792.

When x3+2x2 + kx +3 is divided by ( x-3) then the remainder is 21

Answer» Let p(x) ={tex} x^3 + 2x^2 + kx + 3{/tex}Now, x - 3 = 0\xa0{tex}\\Rightarrow{/tex}\xa0x = 3By the remainder theorem, we know that when p(x) is divided by (x - 3), the remainder is p(3).Now, p(3) = (3)3\xa0+ 2(3)2\xa0+ k(3) + 3= 27 + 2(9) + 3k + 3= 30 + 18 + 3k\xa0= 48 + 3kBut, remainder = 21\xa0{tex}\\Rightarrow{/tex}\xa048 + 3k = 21{tex}\\Rightarrow{/tex} 3k = 21 - 48{tex}\\Rightarrow{/tex}\xa03k = -27{tex}\\Rightarrow{/tex} k = {tex}\\frac{-27}3{/tex}{tex}\\Rightarrow{/tex} k = -9So, the value of k is -9.
35793.

7sin2tita +3cos2tita =4then proved that tantita =1/root2

Answer» Hii
35794.

HCF of 29 and 56

Answer» 1
1
35795.

Find the zeros of the polynomial if two zeros are

Answer» Where is the full question bro
35796.

If x+a is factor of 2xsquare+2ax+5x +10 then find A

Answer» Here the given polynomial f(x)=2x2 + 2ax + 5x +10If x+a is a factor of f(x) then x+a=0 or x = -a{tex}\\Rightarrow{/tex}f(-a) = 0{tex}\\Rightarrow{/tex}2(-a)2 + 2a.(-a) + 5(-a) + 10 =0{tex}\\Rightarrow{/tex}2a2 - 2a2 -5a +10 =0{tex}\\Rightarrow{/tex}-5a = -10{tex}\\Rightarrow{/tex}a=2.
35797.

what is Rational Number?

Answer» A number which is in the form of p/q, where p and q are integer and q is not equal to 0 is called Rational Number.
35798.

Prove that product of three consecutive positive integers is divisible by 6

Answer» 6q+1
35799.

The quadrtic polynomial whose equation are 2 and 3

Answer» X² -2x+3
What we do in this question?
35800.

If a and B are the zeros of the polynomial such that a+b=-6 and ab=5 then find tha polynomial

Answer» x^2+6x+5