Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

40201.

Sin theta= Cos (theta-6)

Answer» Given: sintheta = cos(theta-6)Now sintheta = cos(90- theta)So, cos(90- theta) = cos(theta-6)So, 90 - theta = theta-6 90 + 6 = theta + theta96 = 2theta96/2 = theta48 = theta.
Sin theta=sin 6Theta=6
40202.

x² - a² > 0 Then x < -a or x > a Explain why?

Answer» Then how x < -a ?
Since x^2 - a^2 > 0So, x^2 > a^2 So, this implies x > a.
40203.

What is the CSA of cylinder

Answer» 2πrh
2 pie r.h
40204.

Cos(15)=

Answer» U can find it by using this formula: cos(A−B)=cos(A)cos(B)+sin(A)sin(B)[Divide cos15 as cos[45-30]]
40205.

Find HCF of 144 &90

Answer» 90 = 2 x\xa03 x\xa03 x\xa05 = 2 x\xa032\xa0x\xa05144 = 2 x\xa02 x\xa02 x\xa02 x\xa03 x\xa03 = 24\xa0x\xa032HCF (90, 144) = 2 x\xa032 = 18
40206.

12.2 question 2

Answer» Ncert book
40207.

Find the value of m so that the quadratic equation mx(x-7) + 49=0 has two equal roots.

Answer» M=4
40208.

If nth term of an ap is (2n+1), what is the sum of its first three terms ?

Answer» The sum is 15
3,5,7
40209.

Find value of cot square theta minus one upon tan square theta

Answer» Answer is 0
40210.

The tangent at any point of a circle is perpendicular to the radius the point of contact

Answer» Let APB be the tangent and take O as centre of the circle.Let us suppose that MP{tex}\\bot{/tex}AB does not pass through the centre.Then,{tex}\\angle OPA = 90^\\circ{/tex} [{tex}\\because{/tex} Tangent is perpendicular to the radius of circle]But {tex}\\angle MPA = 90^\\circ{/tex} [Given]{tex}\\therefore \\angle OPA = \\angle MPA{/tex}This is only possible when point O and point M coincide with each other.Hence, the perpendicular at the point of contact to the tangent to a circle passes through the centre of the circle.
40211.

If2sinA=1then find the value of A

Answer» Given that 2sin A=1 sinA =1/2 sin A=sin30 A=30
2sinA =1 sinA =1/2 sinA = sin30 A = 30
40212.

If (x+1) is a factor of 2xcube+axsquare +1 then find the value of a& b given that 2a-3b=4

Answer» Since {tex}(x + 1){/tex} is a factor of {tex}2x^3 + ax^2 + 2bx + 1{/tex}{tex}\\Rightarrow{/tex}{tex}x = -1{/tex} is a zero of {tex}2x^3 + ax^2 + 2bx + 1{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}2(-1)^3 + a(-1)^2 + 2b(-1) + 1 = 0 {/tex}{tex}\\Rightarrow{/tex}\xa0{tex}a - 2b - 1 = 0{/tex}{tex}\\Rightarrow{/tex}\xa0a - 2b = 1 ...(i)Given that {tex}2a - 3b = 4{/tex} ...(ii)Multiplying equation (i) by 2, we get{tex}2a - 4b = 2{/tex} ...(iii)Subtracting equation (iii) from (ii), we getb = 2Substituting b = 2 in equation (i), we havea - 2(2) = 1{tex}\\Rightarrow{/tex}\xa0a - 4 = 1{tex}\\Rightarrow{/tex}\xa0a = 5Hence, a = 5 and b = 2.
40213.

What is sin2thita

Answer» Its 2sinA means 2XsinA
40214.

Solve the equation for x (X+3/X-2)

Answer»
40215.

Find hcf of 52and 117and express it in the form 52x+117y

Answer»
40216.

If sinB =12/13,then find cot B

Answer» hiaja
5/13
40217.

Describe me triangle

Answer» A triangle is a polygon with three sides
40218.

Mathematics made triangle Theorem proof Karne Ka Tarika

Answer»
40219.

Area theoram State and proove

Answer»
40220.

Why py value are 3.14

Answer» Bcz of divide of 22/7
The ratio of circumference to diameter of a circle is approx this
40221.

Given geomatric progressions find the common ratio r and an is _1,_3,_9,_27.....

Answer» 1:3
40222.

Cossin

Answer»
40223.

solve for x and yX+6/y=6 :3x-8/y=5

Answer» Full solution bhej mohit kumar
X=6 and y=2
40224.

Plz give rd sharma solutions

Answer»
40225.

Chapter no.1 ex-1

Answer»
40226.

Will there be two sets of paper in maths in 2019 board

Answer» Yes ,low grade and high grade
Yes
Yes
no
40227.

Prove that the pointsA (0,1)B (-2,3) C(6,7) and D(8,3) are the vertices of a rectangle ABCD

Answer» According to properties of rectangle its opposite sides are equal AB=CD and AD=BC and diagonals are equal AC=BD so here opposite sides are not equal and diagonals are not equal.
40228.

If sin. Theta =cos theta then find the theta

Answer» Sin45=cos45=1by root2so theeta=45
We know,Sin(90°-θ) = cos θAnd, Sin θ = cos θ [ Given ]Then, Sin θ = sin (90°-θ)On comparing, θ =90° - θ 2θ = 90° θ = 45°
40229.

Write the all formulae of surface area and volume

Answer» Check formulae in the revision notes :\xa0https://mycbseguide.com/cbse-revision-notes.html
40230.

What is the sum of all the natural numbers

Answer» Yes it\'s -1/12
Ans is infinite number
_ 1/12
40231.

What is the distance of point p(x,y) from the origin.

Answer» {tex}\\sqrt{x^2 + y^2}{/tex}
40232.

In an ap the first term is 8 n term is 33 and sum of first n term is 123 find n and d

Answer» Given First term (a) = 8and, nth term (an) = 33{tex}\\Rightarrow{/tex} a + (n - 1)d = 33{tex}\\Rightarrow{/tex} 8 + (n - 1)d = 33{tex}\\Rightarrow{/tex} (n - 1)d = 33 - 8{tex}\\Rightarrow{/tex} (n - 1)d = 25 .....(i)and, Sum of first n terms = 123{tex} \\Rightarrow \\frac{n}{2}\\left[ {a + {a_n}} \\right] = 123{/tex}{tex}\\Rightarrow \\frac{n}{2}\\left[ {8 + 33} \\right] = 123{/tex}{tex} \\Rightarrow \\frac{n}{2} \\times 41 = 123{/tex}{tex} \\Rightarrow n = \\frac{{123 \\times 2}}{{41}}{/tex}{tex}\\Rightarrow{/tex} n = 6Put value of n in equation (i)(6 - 1)d = 25{tex}\\Rightarrow{/tex} 5d = 25{tex}\\Rightarrow d = \\frac{{25}}{5} = 5{/tex}
40233.

How many terms of the ap: 9,17,25... Must be taken to give a sum of 636?

Answer» Use the formula Sn=n/2[2a+(n-1)×d] and you will get the value of n.
40234.

Product of HCF and LCM of two natural no. Is 19800 find the two no.s

Answer»
40235.

Is in boardexamnation in math the question comes only from ncert book

Answer» NCERT book and its extra qestion come in board exaamination
40236.

Let m be a natural number for how many values of m 4m+1 is a perfect square

Answer» Let a be any positive integer.Applying Euclid’s division lemma with divisor = 2, we get{tex}\\begin{array}{l}a=2q+r\\;\\;\\;\\;\\;\\;\\;\\;\\;0\\leq r<2\\\\So\\;r=0,1\\\\\\end{array}{/tex}When r = 0,a = 2qSo a2= (2q)2 = 4q2 = 4m--------(1) ( where\xa0m = q2, which is an integer)When r = 1Then a= 2q+1a2= (2q + 1) 2 = 4q2 + 4q + 1 = 4(q2 + q ) +1 = 4m+1 --------(2) (where m = q2 + q, which is an integer)From (1) and (2) We Can conclude that\xa0The square of any positive integer is of the form 4m or 4m +1 for some integer m.
40237.

Maths board exam of class 10

Answer» Check Question Papers from here :\xa0https://mycbseguide.com/cbse-question-papers.html
40238.

In triangle PQR ST perallel QR PS/SQ=3/5 and PR=28cm.find PT

Answer» given PS/SQ=3/5 SO PQ=3+5=8 ST parallel QR PT= in triangle PQR (by bpt corollary PQ/PS=PR/PT 8/3=28/PT PT=28×3÷8 PT=21/2
40239.

Prove that√3 is irrrational number

Answer» Let us assume that √3 is a rational numberThat is, we can find integers a and b (≠ 0) such that √3 = (a/b)Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime.√3b = a⇒\xa03b2=a2 (Squaring on both sides) → (1)Therefore, a2 is divisible by 3Hence \x91a\x92 is also divisible by 3.So, we can write a = 3c for some integer c.Equation (1) becomes,3b2 =(3c)2⇒\xa03b2 = 9c2∴ b2 = 3c2This means that b2 is divisible by 3, and so b is also divisible by 3.Therefore, a and b have at least 3 as a common factor.But this contradicts the fact that a and b are coprime.This contradiction has arisen because of our incorrect assumption that √3 is rational.So, we conclude that √3 is irrational.
40240.

How to make the table of tignomantry ratio

Answer» √0/4,√1/4,√2/4,√3/4,√4/4√0/4=0 sin0°=0√1/4=sin30°=1/2√2/4=sin45°=1/√2√3/4=sin60°=√3/2√4/4=sin90°=1CosCos0°=1Cos30°=√3/2Cos45°=1/√2Cos60°=1/2Cos90°=0Just u have to recprocial the sin value.TanTan=sin/cosTan0°=0/1=0Tan30°=1/2/√3/2=1/√3Tan45°=1/√2/1/√2=1Tan60°=√3Tan90°=not definedCosecCosec=1/sinCosec0°=not difinedCosec30°=3Cosec45°=√2Cosec60°=2/√3Cosec90°=0SecSec1/cosSec0°=not difinedSec30°=2/√3Sec45°=√2Sec60°=2Sec90°=0CotCot=1/tanCot0°=not difinedCot30°=√3Cot45°=0Cot60°=1/√3Cot90°=1I hope this would help u...
40241.

(x+1)² =2(x-3)

Answer» (x + 1) 2 = 2(x -3)x2 + 2x + 1 = 2x - 6x2 + 1 + 6 = 0x2 + 7 = 0x2 = - 7x = - √
40242.

If a=2and b=3 then a×b =ab then 2×3=23......is it right....simple logic

Answer» No, this logic is wronga×b=ab2×3=6
2*3=6
No
40243.

If a×b=ab,then 2×3=6.consider a=2 and b=6.

Answer» Very simple a=2 and b=6,a×b=ab,2×6=12
40244.

Kis kisko Maths se dar lgta h ya jabardasti pdhna pdta h

Answer» Maths koi bhooth to h nhi agr ap usko ache se smajenge to darne ki jarurat nhi h.
maths ko agar dhiyan se padhe to easy h yar
Math mat pado hishab mai galti kar diya karna 10 ka 1 Rs. Lagana
Are you a foolish
40245.

(Sectheta +tantheta)2=cosectheta+1/cosectheta-1

Answer» Cbse science
40246.

Sec²theta + cosec²theta = sec²theta cosec ²theta

Answer» We have,LHS = cosec2{tex}\\theta{/tex}\xa0+ sec2{tex}\\theta{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { 1 } { \\sin ^ { 2 } \\theta } + \\frac { 1 } { \\cos ^ { 2 } \\theta }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\cos ^ { 2 } \\theta + \\sin ^ { 2 } \\theta } { \\cos ^ { 2 } \\theta \\sin ^ { 2 } \\theta } = \\frac { 1 } { \\sin ^ { 2 } \\theta \\cos ^ { 2 } \\theta } = \\frac { 1 } { \\sin ^ { 2 } \\theta } \\times \\frac { 1 } { \\cos ^ { 2 } \\theta } = \\operatorname { cosec } ^ { 2 } \\theta \\sec ^ { 2 } \\theta{/tex}\xa0= RHS
40247.

Tan²theta *cos²theta = 1- cos²theta

Answer» tan^2theta = sin^2theta/cos^2thetaThis implies tan^2theta × cose^2theta = sin^2theta& 1 - cos^2 theta also = sin^2thetaLHS = RHS , Hence Proved
40248.

Solve for x , 2(2x+3÷x-3)-25(x-3÷2x-3)=5

Answer»
40249.

If Sec theta +tan theta = p, find cosec theta

Answer» Given,{tex}sec\\ \\theta+ tan\\ \\theta = p{/tex} ...(i)Also, we know that,\xa0{tex}sec^2\xa0\\theta - tan^2 \\theta = 1{/tex}{tex}\\Rightarrow{/tex}\xa0(sec\xa0{tex}\\theta{/tex}\xa0- tan\xa0{tex}\\theta{/tex}) (sec\xa0{tex}\\theta{/tex}\xa0+ tan\xa0{tex}\\theta{/tex}) = 1 [{tex}\\because a^2-b^2=(a+b)(a-b){/tex}]{tex}\\Rightarrow{/tex}\xa0(sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex})p = 1 [using equation (i)]{tex}\\Rightarrow{/tex}\xa0sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{1}{p}{/tex}\xa0...(ii)(i)+(ii), we get,{tex}sec\\theta + tan\\theta+ sec\\theta - tan\\theta = p+ \\frac{1}{p}{/tex}{tex}\\Rightarrow 2sec\\theta = \\frac{p^2+1}{p}{/tex}{tex}\\Rightarrow sec\\theta = \\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow \\frac{1}{cos\\theta} =\\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow cos\\theta =\\frac{2p}{p^2+1}{/tex}------(iii)Now, we know that,{tex}sin\\theta = \\sqrt( 1- cos^2\\theta) {/tex}put the value of\xa0{tex}cos\\theta{/tex}\xa0from eq. (iii), we get,{tex}sin\\theta = \\sqrt(1-(\\frac{2p}{p^2+1})^2){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(1-\\frac{4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{(p^2+1)^2-4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{p^4+1+2p^2-4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{p^4+1-2p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{(p^2-1)^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\frac{p^2-1}{p^2+1}{/tex}{tex}cosec\\theta = \\frac{p^2+1}{p^2-1} [\\because cosec\\theta =\\frac{1}{sin\\theta}]{/tex}hence, {tex}cosec\\\xa0\\theta{/tex}\xa0{tex}=\\frac{1+p^{2}}{1-p^{2}}{/tex}
40250.

Volume of frustum of cone =

Answer» 1/3pie×h(r1^2+r2^2+r1×r2)
The Formula v=πh/3(R²+Rr+r²)