InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 73001. |
show that the function f: N to N defined by f(x) = 2x-1 is one to one but not onto |
|
Answer» f(X)=2x-1; f(1)=2(1)-1=2-1=1; f(2)=2(2)+1=5; f(2)=2(2)-1=4-1=3; f(3)=(3)^2-1=9-1=8 |
|
| 73002. |
24. Find the Domain of functionx + 2x +1f(n)=1x? - 8x + 12 |
| Answer» | |
| 73003. |
1. Find the acute angle between the following nlines :(i) x + 3y + 5 = 0 and 2x + y - 1 = 0 |
| Answer» | |
| 73004. |
(1) 2x92x92(11) 2x(27) 115) +(12)22.8255 = (32)(iii)22+2n find the value of x.49 |
|
Answer» x=153 is correct answer x=153 is the right answer bhaiyya jii x= 153 is the correct answer |
|
| 73005. |
Fint the area of an isosceoles triangle having the base a cm and one side y cm |
| Answer» | |
| 73006. |
6. I)2ax-b when divided by x 1, the remainder is 6, then fintthe value of a +b |
| Answer» | |
| 73007. |
(b)It x-ll) 1× (-4)", find the value of 1-6.11. Ifxs(21'÷(21', find the value of :Maths -8 44 |
| Answer» | |
| 73008. |
17. Prove - SecA (1- SinA ) (SecA +tanA) = 1. |
|
Answer» Seca(1-sina)(1/cosa+Sina/cosa) => seca(1-sina)(1-sina)/cosa => seca(1-sin²a)/cosa => seca cos ²a/cosa => 1/cos a×cosa =1 Like my answer if you find it useful! |
|
| 73009. |
secA —tanA _ cosecA - ८०८.I Rovethat ————————— =. cosecA + cotA secA +tanA |
| Answer» | |
| 73010. |
secA —tanA _ cosecA —cotAB Provethat —————— =E~‘ cosecA + cotA secA +tanA |
| Answer» | |
| 73011. |
\int \frac { 2 + x + x ^ { 2 } } { x ^ { 2 } ( 2 + x ) } + \frac { 2 x - 1 } { ( x + 1 ) } d x |
|
Answer» answer is this plz reply OK I got it it's correct ans thank you Where was the mistake ??? nowhere is the mistake ur ans. is correct |
|
| 73012. |
\frac { 2 x + 4 } { 2 x + 1 } = \frac { 2 x + 1 } { 2 x + 4 } |
| Answer» | |
| 73013. |
\frac { 2 } { x - 1 } - \frac { 1 } { x - 1 } = - \frac { 3 } { x - 1 } |
| Answer» | |
| 73014. |
tanA +secA -1÷tanA-secA+1 |
|
Answer» tanA + secA -1 / tanA -secA + 1= (sinA +1-cosA) /(sinA+cosA-1 ) × (sinA+cosA +1)/(sinA+cosA+1) = (sinA+cosA )(sinA-cosA)+sinA+cosA-cosA+1+sinA-cosA/(sinA+cosA)2-12) after simplification this is equal to = 2sinA(1+sin A)/ 2sinA cosA = (1+sin A)/ cosA =1/cosA+sinA/cosA=secA+tanA |
|
| 73015. |
(secA + tanA-1)(secA + tanA + 1) = 2tanA |
| Answer» | |
| 73016. |
tanA+secA =1/4find value of tanA |
|
Answer» We know, tan²A - sec²A = - 1 Given :tan A + sec A = 1/4 .....(1) Let tan A - sec A = x ....(2) So, eq(1) × eq (2) tan²A - sec²A = x/4 -1 = x/4 x = - 4 So, tan A - sec A = - 4 ...(3) Now, adding (1) and (3) 2 tan A = 1/4 - 4 2 tan A = -15/4 tan A = -15/8 hit like if you find my solution useful |
|
| 73017. |
ZT7 sec θ + tane-34ZT 0° < θ <う70, sin θ-4T 찌阿角啊 |
| Answer» | |
| 73018. |
SecA + TanA - 1/TanA-SecA +1= CosA / 1- SinA |
|
Answer» (tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cos A multiply LHS by cosA /cosA to get(sinA+1-cosA) / (sinA-1+cosA) multiply again by cosA/cosA to get(sinA.cosA+cosA-cos^2A) / cosA(sinA-1+cosA) = ( cosA(1+sinA) - (1-sin^2A) ) / cosA(sinA-1+cosA)= ( cosA(1+sinA) - (1+sinA)(1-sinA) ) / cosA(sinA-1+cosA)= ( (1+sinA)(cosA-1+sinA) ) / cosA(sinA-1+cosA)= (1+sinA)/cosA |
|
| 73019. |
2. If p(x) = x3 + 3x2-2x + 4, then find the value of p(2)+p(-2)-p(U) |
| Answer» | |
| 73020. |
\tan ^ - 1 x %2B \tan ^ - 1 ( \frac 2 x 1 - x ^ 2 ) = \tan ^ - 1 ( \frac 3 x - x ^ 3 1 - 3 x ^ 2 ) |
|
Answer» Like if you find it useful |
|
| 73021. |
1. Calculate the compound interest and amount, byusing the formula, if interest is compoundedannually.(a) Principal 5000, time = 3 years,12% pa.rate |
| Answer» | |
| 73022. |
Fig. 6.16In Fig. 6.17, POQ is a line. Ray OR is perpendicularto line PQ. OS is another ray lying between raysOP and OR. Prove that5.CI2It is given that 2 XYZ = 64° and XY is producedto point P. Draw a figure from the giveninformation. Ifray YQ bisects ZZYP, find 2XYQFig. 6.17 |
| Answer» | |
| 73023. |
In Fig. the graph of polynomial p(x) is given. Find the zeroes of the polynomial.13+++ |
|
Answer» Here the graph ( parabola) touches the x- axis at two points , so the no. of zeroes will be :- 2(✌️) |
|
| 73024. |
If sec θ + tan θ =p, then find the value of sin θ interms of p. (R- |
|
Answer» Given : secx + tanx = p ................................... (i)Now, we know that : sec²x - tan²x = 1or, (secx + tanx)(secx - tanx) = 1 Putting (i)in the equation, we get :-p(secx- tanx) = 1or, secx - tanx = 1/p .........................................(ii) Now adding (i) and (ii), we get :-secx + tanx + secx - tanx = 1/p + por, 2secx = (1+p²)/por, secx = (1+p²)/2p On subtracting (ii) from (i), we get :-(secx + tanx) - (secx - tanx) = p -1/por, 2tanx = (p² - 1)/por, tanx = (p² - 1)/2p [Ans 2] We know that sinx = sinx/cosx x cosxor, sinx = tanx x 1/secxor, sinx = tanx/secxor, sinx = [(p² - 1)/2p]/[(p²+1)/2p] ..(Inthe next step both the 2p get cancelled)or, sinx = (p²-1)/(p²+1) |
|
| 73025. |
( \frac { 6 } { 15 } ) ^ { 3 } \div ( \frac { 25 } { 32 } ) ^ { 2 } \times ( \frac { 45 } { 16 } ) ^ { 3 } |
|
Answer» (6/15)³*(32/25)²*(45/16)³ = 6*6*6*32*32*45*45*45/15*15*15*25*25*16*16*16 = 6³*2²*3³/25²*16 = 6³*3³/25²*4 = 5832/2500 6/15 is divided by 25/32 not multiply pleas do again this question |
|
| 73026. |
If \sec \theta+\tan \theta=p, then find the value of csc theta. |
| Answer» | |
| 73027. |
\sec \theta+\tan \alpha=P then findcoseco |
|
Answer» cosec theta = 1/sin thetaP = tanФ + secФp -secФ = tanФp² + sec²Ф - 2 p secФ = tan²Ф= sec²Ф - 1So secФ = (p² + 1) / 2p so cosФ = 2p/(1+p²)sinФ = √[1 - cos²Ф ] = (p²-1)/(1+p²)cosec theta= 1/(p²-1)/(1+p²)= (p^2+1)/(p^2-1) |
|
| 73028. |
sec x + tan x = pfind value of cosec x |
|
Answer» Like if you find it useful |
|
| 73029. |
30. If sec tane p, then find the value of coseco, |
|
Answer» Secθ+tanθ=p ----------------------(1)∵, sec²θ-tan²θ=1or, (secθ+tanθ)(secθ-tanθ)=1or, secθ-tanθ=1/p ----------------(2)Adding (1) and (2) we get,2secθ=p+1/por, secθ=(p²+1)/2p∴, cosθ=1/secθ=2p/(p²+1)∴, sinθ=√(1-cos²θ)=√[1-{2p/(p²+1)}²]=√[1-4p²/(p²+1)²]=√[{(p²+1)²-4p²}/(p²+1)²]=√[(p⁴+2p²+1-4p²)/(p²+1)²]=√(p⁴-2p²+1)/(p²+1)=√(p²-1)²/(p²+1)=(p²-1)/(p²+1)∴, cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1) |
|
| 73030. |
Worksheet-1Operatie2. Tick (V) the correct answer1. The value of (-20) + (-4)+(-1) + O is(1) - 700 (1) 512. The value of 2 x(-3)*(-1) is:(1) - 72O () 723. On adding (-8) to 3, we get:(i) 10Find the sum :1. -85 and -- 73.-25 and 35 |
| Answer» | |
| 73031. |
EXAMPLE 3.12Find the derivative of coseo a using first principal. |
| Answer» | |
| 73032. |
7. The principal value of cosec (2) is |
|
Answer» cosec inverse (2) pi/6 30° |
|
| 73033. |
i m p bord gujrat gandhinagar calls paepar 10 |
|
Answer» Please visit our blog for details related to examination and study materials. |
|
| 73034. |
" How much pure alcohol must be added to 400 mL of a 15% solution to make itsstrength 32%? |
| Answer» | |
| 73035. |
ABCD. Show that ar (APB)- ar (BQC).. In given fig., P is a point in the interior of a parallelogram A(a) ar (APB) + ar (PCD)- 5 ar (ABCD)(b) ar (APD) + ar (PBC)- ar (APB) + ar (PCD)Hint: Through P draw a line parallel to AB.]nd X is any point on side BR. Show |
| Answer» | |
| 73036. |
MATHEMATICSTHE TREASURE HUNTA man has hidden his treasure in his garden. His children wish to find it. You canhelp them to locate it by solving the following puzzle.Begin with the square marked START and solve the sum given in it. Then move tothe square with the same number as the sum. Your clue is the letter writtenbeside the number. For example, the answer to the sum in the START square is10. Hence, you will move to the square with 10 written on top and your clue willbe letter B. Now do the sum given in the square and move on. Note down eachletter in the boxes below as you move on to solve the puzzle.( if the clue is -instead of a letter, it means blank space.)START 12:8 , 97:9S RL2017 7X980: 26:R 21:1 17:E 35:T 11:A 31-B 27:065-42 16-5 38 16 27X397-48 16X 2 60+7 13X 237:- 33: E 50: A 92:$ 10:25 X 2 20+21 87-28 125-25 32 2 6 7START48:T6145255+296 - 5041: H89.07X1099:-99-1040: A54+215-3mathsENDWWW15:D81:-105:6K460:E4X 1950+ 4249:10+ 5234:2100-113-23:-79 + 1025:GX7100: A63.14160 13R12X39+1263:T 75:-100-6951:120+ 247:20. 2946-11 45X27:30: A14X2 70-5262 ED44X2Answer to the puzzle--------------------- |
|
Answer» hi I can't understand |
|
| 73037. |
Select me best answer for the que4. Simplifyooв. 43oo |
| Answer» | |
| 73038. |
isdivisibleFindbythefirstleastfivenumber thateven number. |
|
Answer» I think that is 1 or 0 required no. =LCM (2, 4,6,8,10).=120 |
|
| 73039. |
(a) The measure of an acute angle less than 90 degree |
|
Answer» True. The measure of an acute angle < 90 |
|
| 73040. |
The sides AB and AC of the ΔABC are produced to P and Q respectively.The bisectors of <PBC and angle QCB intersect at O. Prove that<BOC = 90°-angle BAC. |
| Answer» | |
| 73041. |
in triangle PQR ,angle Q=90 degree ,sin R=3/5 find sec P |
|
Answer» cos(P)= cos (90°-R)= sin(R)= 3/5 therefore, sec(P)= 1/cos(P)= 5/3 |
|
| 73042. |
G A straight highway leads to the foot of a tower. A man standing at the top of the towerofserves a car at an angle of depression of 30°, which is approaching the foot of theobtower with a uniform speed. Six seconds later, the angle of depression of the car is foundto be 60°. Find the time taken by the car to reach the foot of the tower from this p |
| Answer» | |
| 73043. |
is a root of the equations aand yyb0. then abequals:036. I |
|
Answer» if 1 is the root then2a= -3and b= -2then ab = (-3/2)(-2)3/4 |
|
| 73044. |
Using principal value, evaluate the following:-1Sin Sin-1+ tantan |
|
Answer» Use the equalitysin(π−θ)=sinθand note that 5π/6=π−π/6 Sosin(π/6)=sin(π−π/6)=sin(5π/6) Soarcsin(sin(5π/6))=π/6 and tan^-1(π/6) = π/6 => π/6 +π/6 = 2π/6 = π/3
|
|
| 73045. |
unu prove its converse.In the figure,AB= EC = BC, prove that(İ) LA :LB = 1 : 3(ii) ZAED LBCEHint: ZECD 2ZA]16.-AC, D is a point on AC and E on AB such thatAD EL7. In the figure, if AB divides ZDAC in th rnt |
|
Answer» From 3 and 4, we get angle AED = angle BCE |
|
| 73046. |
there is 15 Lpop shop in airport surbhi serves 400 ml in each bawal full stop if she feels 28 balls how much is left in the pot. |
|
Answer» what is the question about the answer is 3.8L...... 3.8 is the correct answer |
|
| 73047. |
If & gallon of paint covers z of the house,then how much paint is needed for the entirehouse?7 A smoothie recipe calls for 24 cups of frozemango. If the recipe serves two, how manycups of frozen mango is needed to serve one?RED YELLOW PINKBLU |
|
Answer» Cups needed = 2 1/4 * 2= 4 1/2 = 4.5 |
|
| 73048. |
+19) Lind the value of x ef Bar |
|
Answer» please write the question clearly |
|
| 73049. |
Encircle the odd numbers in each row112633485291226550837456179683995185424438240118192087974910288Encircle the even numbers in2033 34 |
|
Answer» 1, 3, 5, 7, 11, 13, 17, 19, 23, 26, 29, 31, 37, 41, 43, 47, 51, 53, 57, 59, 61, 67, 70, 73, 74, 76, 78, 81, 83, 87, 89, 91, 94, 97, 99 11,33,91,7,3,65,17,9,39,95,43,82,1,19,97,49,72 11,33,91,7,3,65,83,17,9,39,9543,1,19,,97,49, |
|
| 73050. |
is an even number?(A) Sometimes(B) Yes(C) No(D) Yes. When expressed as2 |
|
Answer» No, even number must be in 2n form where n is an whole number. (C) option is correct |
|