InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 73351. |
sin 5x + sin 3x=tan4xcos5x + cos 3 |
| Answer» | |
| 73352. |
1. sin 2x2. cos 3x3. e24. (ax by5. sin 2x - 4 e |
|
Answer» 1. -cos2x/22. sin3x/33. e^2x/24. (ax+b)^3/3a5. -cos2x/2-4/3e^3x |
|
| 73353. |
Find the value ofcos 56sin 34° |
|
Answer» Since 56 and 34 are complementary angles cos56°/sin34°= sin (90-56)/sin 34= sin 34°/sin34°= 1 |
|
| 73354. |
The position vectors of the points A,B, C arerespectively i+x] + 3k , 31 +4/+7k andi-2j-5k. IfA,B and C are collinear, then |
| Answer» | |
| 73355. |
34+32+30+.. . +10 |
| Answer» | |
| 73356. |
(i) 34 +32+30+...+10 |
|
Answer» a=34 d=-2 tn=a+(n-1)d 10=34+(n-1)-2 -14=(n-1)(-2) n-1=7 n=8 Sn=n(2a+(n-1)d)/2 S8 =8(2×34+(8-1)(-2))/2S8=8(68-14)/2S8=4(54) S8 = 216 |
|
| 73357. |
34 + 32 + 30 + \ldots + 10 |
| Answer» | |
| 73358. |
Anti derivtive of function cos3x using inspection |
| Answer» | |
| 73359. |
sinSx + sin 3x 3 =tandxcos5x + cos3x |
|
Answer» LHS : apply SIN A+ SIN B and COS A + COS B formulae 2sin4xcosx / 2cos4xcosx ( 2 and cos x get cancelled ) we are left with : sin4x / cos 4x = tan4x ( since , sinx / cosx = tanx ) |
|
| 73360. |
Solve for xcos x+cos2x+cos3x=0 |
|
Answer» comment below if any doubt |
|
| 73361. |
sin 2x = 1而砌师訶君2323sin3x + cos3x +可 nHHTrf而言 |
|
Answer» 1 + sin^3x + cos^3x =3/2*sin2x 1+(sinx+cosx)(sin^2x-sinxcosx+cos^2x)=3sinxcosx 1+(sinx+cox)(1-sinxcosx)=3sinxcosx Let s=sinx+cosx s²=1+2sinxcosx 1+s(1-(1-s²/2))=3(1-s²/2) s^3+3s^2-3s-5=0 (s+1)(s^2+2s-5)=0 range of s is [-√2,√2] s=-1 s=√2(sin(x+π/4))=-1 (sin(x+π/4))=-1/√2 x+π/4=-π/4+n(-1)^nπ |
|
| 73362. |
(d) aló - 616 + asEXERCISE 7.4Factorize the following:(a) 1+ 2x + x2(e) 9c2-? +4ab – 462 (f)(i) (x + 3)2 – 8(x + 3) + 16 (1)Factorization of Quadratic PolynoStep 1: In the quadratic polynorStep 2: Find two numbers p andStep 3: Split the middle term |
|
Answer» 3x + x power 2 ggyyyyhhuhhhjjjjjjjiiiiiiiiiooiiiiiiii x²+2x+1factors(x+1)(x+1)is the best answerx+1) i) let (X+3) be m m²-8m+16m²-4m-4m+16m(m-4)-4(m-4)(m-4)(m-4)(m-4)²replace m by (X+3)((X+3)-4)²(X+3-4)² |
|
| 73363. |
Step 2Convert the following decimals into fractions.(a) 0.2 (b) 0.7 (c) 0.25 (d) 0.245(1) 3.8 (8) 5.03 (h) 3.75 (i) 83.25Step(e) 3.C) 455Ste.. |
|
Answer» a)2/10b)7/10c) 25/100=1/4d)245/1000e)301/100f)38/10g) 503/100 (a) ans=Answer: 0.2 written as a fraction is210which simplifies to15 Explanation: When changing a decimal to a fraction, think of the decimal "out of 1." In mathematical terms, "out of" generally suggests division. For example on this question, think of 0.2 as 0.2 out of 1, which would be shown as0.21 To more easily simplify this, multiply both the top and bottom by 10: 0.21⋅1010 You are able to do this because1010is equal to1and multiplying by a number and1results in the same number. Then you get210. Both2and10are divisible by2: 22=1and102=5 So the final answer is15. h)375/100i) 83.25/100j)4356/100 2/10. 7/10. 25/100. 245/10000. 301/100 . 38/10. 503/100. 375/100. 8325/100 please mark it as best 2/107/1025/100245/1000310/10038/100503/100375/1008325/1004556/100 2/10 . ... 7/1025/100245/1000310/10038/100503/100375/1008325/1004556/100 a) 0.2 = 2/10 = 1/5b) 0.7 = 7/10c) 0.25 = 25/100 = 1/4d) 0.245 = 245/1000e) 3.01 = 301/100f) 3.8 = 38/10g) 5.03 = 503/100h) 3.75 = 375/100i) 83.25 = 8325/100j) 45.56 = 4556/100 |
|
| 73364. |
Meena Bina and Lena are climbing the steps to do a Hilltop Mina Mina is at step S Bina is 8 step ahead and Lena 7 step behind Meena look at the position of Bina and Meena on the hill the total number of steps to Hilltop is 10 less than 4 time where Nina has reached Express the total number of steps using s |
|
Answer» Meena 's position :- sBeena is 8 step aheadBeena ' s position :- s+8Leena is 7 step behindLeena ' s position :- s-7Total number of steps :- 4s-10 |
|
| 73365. |
I. (a) cos 24 + cos 2B + cos 2C=-1-4 cos A cos B cos C. |
|
Answer» The result should be : If A + B + C = π, then cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C._______________________________ ... LHS = ( cos 2A + cos 2B ) + cos 2C = [ 2 cos (A+B) cos (A-B) ] + cos 2C = [ 2 cos (π-C) cos (A-B) ] + ( 2 cos² C - 1 ) = [ 2( -cos C ) cos (A-B) ] + 2 cos² C - 1 = -1 - 2 cos C cos (A-B) + 2 cos² C = -1 - 2 cos C [ cos (A-B) - cos C ] = -1 - 2 cos C [ cos (A-B) - ( -cos (A+B)) ] = -1 - 2 cos C [ cos (A+B) + cos (A-B) ] = -1 - 2 cos C [ 2 cos A cos B ] = -1 - 4 cos A cos B cos C = RHS ........................................... Q.E.D. |
|
| 73366. |
Prove that:\cos ^{4} \pi / 8+\cos ^{4} 3 \pi / 8+\cos ^{4} 5 \pi / 8+\cos ^{4} 7 \pi / 8=3/2 |
|
Answer» Cos⁴π/8+cos⁴3π/8+cos⁴5π/8+cos⁴7π/8 =cos⁴π/8+cos⁴3π/8+{cos(π/2+π/8)}⁴+{cos(π/2+3π/8)}⁴ =cos⁴π/8++cos⁴3π/8+(-sinπ/8)⁴+(-sin3π/8)⁴ =sin⁴π/8+cos⁴π/8+sin⁴3π/8+cos⁴3π/8 ={(sin²π/8)²+(cos²π/8)²}+{(sin²3π/8)²+(cos²3π/8)²} ={(sin²π/8+cos²π/8)²-2sin²π/8cos²π/8}+{(sin²3π/8+cos²3π/8)²- 2sin²3π/8cos²3π/8} =1-2sin²π/8cos²π/8+1-2sin²3π/8cos²3π²/8 =(1/2){4-(2sinπ/8cosπ/8)²-(2sin3π/8cos3π/8)²} =(1/2)[4-(sinπ/4)²-(sin3π/4)²][∵, sin2A=2sinAcosA] =(1/2)[4-(1/√2)²-(cosπ/4)²][∵, sin3π/4=sin{(π/2×1)+π/4}=cosπ/4] =(1/2)[4-1/2-(1/√2)²] =(1/2)[4-(1/2+1/2)] =(1/2)(4-1) =3/2 (Proved) |
|
| 73367. |
\sec ^{6} x-\tan ^{6} x=1+3 \sec ^{2} x \times \tan ^{2} x |
|
Answer» a³-b³=(a-b)³+3ab(a-b)1+tan²x=sec²x(sec²x)³-(tan²x)³=(sec²x-tan²x)³+3sec²xtan²x(sec²x-tan²x) =1³+3sec²xtan2x(1) =1+3tan²xsex²xhence proved |
|
| 73368. |
stsnsinsin(iv)sin 10° sin30° sin50° sin70%163r(vi) (1+cos)(1+cos-) (1-cos--.) (1+cos-)-.tan 5A+tan 3.4tan 5,4-tan3A4 cos 2A cos 4A |
|
Answer» Sol-Given: Sin 10 Sin 30 Sin 50 sin 70⇒ (1/ 2) Sin 10 Sin 50 sin 70 multiply and divide with 2 Cos 10 ⇒2 Cos 10 Sin 10 Sin 50 sin 70/ (2 x 2 Cos 10) { 2SinA Cos A = Sin2A } ⇒ Sin 20 Sin 50 sin 70 /(4 Cos 10)multiply and divide with 2 ⇒ 2 x Sin 20 Sin 50 sin (90 - 20) /(2 x 4 Cos 10) ⇒ 2 Sin 20 Cos 20 Sin 50 / 8Cos 10 ⇒ Sin 40 Sin 50 / 8Cos 10{ 2SinA Cos A = Sin2A } Againmultiply and divide with 2. ⇒ 2 x Sin 40 Sin ( 90 - 40) / 2 x 8Cos 10. ⇒ 2 x Sin 40 Cos 40 / 2 x 8Cos ( 90 - 80) ⇒ Sin 80 / 16Sin 80 = 1 / 16. ii baala karo solve |
|
| 73369. |
\begin{array}{l}{4\left(\sin ^{4} 30^{\circ}+\cos ^{4} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)=2} \\ {\sin 60^{\circ}=2 \sin 30^{\circ} \cos 30^{\circ}}\end{array}\begin{array}{l}{\cos 2 A=\cos ^{4} A-\sin ^{4} A} \\ {\frac{\cos ^{3} A-\cos 3 A}{\cos A}+\frac{\sin ^{3} A+\sin 3 A}{\sin A}=3}\end{array} |
|
Answer» thanx aap mujhe hamesha answer dete ho |
|
| 73370. |
4 cos A 3 cos A, when A-30verity cos 34-4Verily |
|
Answer» cos3A=4cos³A-3cosAA=30 Cos90=4cos³30-3cos30 0=4(√3/2)³-3(√3/2)0=4(3√3/8)-3√3/20=3√3)2-3√3/20=0 Verified |
|
| 73371. |
Simplify, cot2 sec2 π cos2 πA = 60。.. B-300 verifyπ ππ πCOS4 COs 6plify, cot2 즈 snd π- 15 sincos -4 cos cos cos |
|
Answer» in the first expressioncos^2π/2=00-15*1*1/√2-4*√3/2*1/√2*1/2-15/√2-√3/√2-15-√3/√2 don't understand it |
|
| 73372. |
t. The number of boys and girls in a school are 480and 720 respectively. Find the ratio of the numberof boys to the number of girls.ns8,000 a month and Sunita earns |
| Answer» | |
| 73373. |
4.cos (x-y) = cos x cos y + sin x sin y |
|
Answer» by replacing y with -ycos(x-(-y))=cosxcos(-y)+sinxsin(-y)cos(x+y)=cosxcosy-sinxsiny |
|
| 73374. |
Verify cos 3A4 cos A-3 cos A, when A-30° |
|
Answer» cos30=√3/2and cos3*30=cos90=0hence4cos^330-3cos30=4*3√3/8-√3/2=√3/2-√3/2=0LHS=RHS |
|
| 73375. |
Prove that \cos 3 x=4 \cos ^{3} x-3 \cos x |
| Answer» | |
| 73376. |
\frac { ( \cos 3 \theta + i \sin 3 \theta ) ^ { 2 } ( \cos 4 \theta - i \sin 4 \theta ) ^ { 3 } } { ( \cos 2 \theta + i \sin 2 \theta ) ^ { 3 } ( \cos 3 \theta - i \sin 3 \theta ) ^ { 4 } } = |
|
Answer» thanks |
|
| 73377. |
\int_{0}^{\pi / 2} \frac{(\sin x-\cos x)}{(1+\sin x \cos x)} d x=0 |
| Answer» | |
| 73378. |
\operatorname { sec } ^ { 4 } x - \operatorname { sec } ^ { 2 } x = \operatorname { tan } ^ { 4 } x + \operatorname { tan } ^ { 2 } x |
| Answer» | |
| 73379. |
| Zercor O ० _ o«aro K ‘L*Ot‘ e - |
|
Answer» Compare x² + 4x + 2a with ax² +bx + c , a = 1 , b = 4 , c = 2a According to the problem given , α and α / 2 are the zeroes of the polynomial , 1 ) sum of the zeroes = - b / a α + α/ 2 = - 4 / 1 ( 2α + α ) / 2 = 4 3α = 8 α = 8 / 3 α² = 64 / 9 -----( 1 ) Product of the zeroes = c / a α × α / 2 = 2a / 1 α² = 4a -------( 2 ) Therefore , Equation ( 1 ) = equation ( 2 ) 64 / 9 = 4a 64 / ( 9 × 4 ) = a 16 / 9 = a a = 16 / 9 I hope this helps you. |
|
| 73380. |
There are 200 parking spaces in a car park. 10% are for trucks, 75% arofor cars and the rest are for motorcycles, How many parking spaces arofor motorcycles? |
|
Answer» Number of parking spaces = 200Truck parking spaces =(10/100)*200 = 20Car parking spaces = (75/100)*200 = 150 Motorcycle parking spaces= 200 - (150 +20)= 200 - 170 = 30 |
|
| 73381. |
ravi works in an office and gets Rs. 4500.he saves Rs. 720 per month from his pay. Find the ratio of. 1 his savings to his pay. 2 his expenditure to his pay3 his expenditure to his pay |
|
Answer» Ratio of his saving to his pay720/45000.16Ratio of his expenditure to his pay(4500-720)/45003780/45000.84 |
|
| 73382. |
A and B invest in a business in the ration 5:7. If B getsRs.1370/- as profit, what is the total profit of the business? |
|
Answer» Total investment is in the ratio of 5:7so A 's part will be5/12 of totaland B part will be 7/12 part of totalso if 7/12 part is 1370if 7/12 or (58.33) percentage is 1370then total profit (or 100 percentage)will be (1370/58.33*100=2348.70) |
|
| 73383. |
\frac { 1 } { \operatorname { sec } x - \operatorname { tan } x } - \frac { 1 } { \operatorname { cos } x } = \frac { 1 } { \operatorname { cos } x } - \frac { 1 } { \operatorname { sec } x + \operatorname { tan } x } |
|
Answer» 1/(sec x - tan x) - 1/cos x = 1/cos x - 1/(sec x + tan x) 1/sec x - tanx + 1/sec x + tan x= 2/cos x LHS:1/sec x - tanx + 1/sec x + tan x=sec x + tanx + sec x - tan x/ sec ^2 c + tan^2 x= 2sec x /1= 2/cos x= RHS Hence proved |
|
| 73384. |
4*(cos(x)*tan(x)) - 5*tan(x) - 3*cot(x)*sec(x) %2B 2*sec(x) - 13 |
|
Answer» tanx=sinx/cosxcotx=cosx/sinxsecx=1/cosx-5tanx+4sinx-3/sinx+2/cosx-13-5sinx/cosx+2/cosx+4sinx-3/sinx-13-5sinx+2/cosx+4sinx-3/sinx-13 |
|
| 73385. |
(cos(x) %2B 1)/(-cos(x) %2B 1)=tan(x)^2/(sec(x) - 1)^2 |
| Answer» | |
| 73386. |
91- cot x 1- tan x(a) tan x + cot x(c) 1 + sec x cosecxX(b) 1 - sin x cos x(d) 1- sec x cosec x |
| Answer» | |
| 73387. |
\frac { \operatorname { sin } x - \operatorname { cos } x + 1 } { \operatorname { sin } x + \operatorname { cos } x - 1 } = \operatorname { sec } x + \operatorname { tan } x |
|
Answer» plz give full explanation |
|
| 73388. |
(Oosecx-sin x) (sec x -cos x) (tan x + cot x s 1 |
| Answer» | |
| 73389. |
AB 1ar.Δ ABCara pQRGiven ΔABC ~ Δ PQR, if, then find |
|
Answer» The ratio of the areas of two similar triangles is equal to the square of ratio of their corresponding sides.so it will be (1/3)²= 1/9 |
|
| 73390. |
24.Rs.1210 were divided among A, B, C so thatA:B=5:4 and B:C=9:10, then C gets Rs._ ? |
|
Answer» The answer is thatC gets rs.400 |
|
| 73391. |
12 The curved surface area of a cylinder is 1210 cm and its diameter is20 cm. Find its height and volume. |
| Answer» | |
| 73392. |
STT e SELOD 105 1 951 (1)fie (onon) 4DIT Be MRJEpsk) B LB bayush धन्य Seah 0 |
|
Answer» 2)135 and 225Since 225 > 135, we apply the division lemma to 225 and 135 to obtain225 = 135 × 1 + 90Since remainder 90 ≠ 0, we apply the division lemma to 135 and 90 to obtain135 = 90 × 1 + 45We consider the new divisor 90 and new remainder 45, and apply the division lemma to obtain90 = 2 × 45 + 0Since the remainder is zero, the process stops.Since the divisor at this stage is 45,Therefore, the HCF of 135 and 225 is 45. 1)We know that 504 > 156 so,504=156×3+46156=46×3+1846=18×2+1018=10×1+810=8×1+28=2×4+0Hence, now the remainder has become zero so pur procedure stops and thus we get the HCF = 2 |
|
| 73393. |
cos θcos θ + sin θsin θ-v/2 sin θ,-/ 2 cos θ22. afeertrU fiE. |
| Answer» | |
| 73394. |
\int \operatorname { sec } x \operatorname { log } ( \operatorname { sec } x + \operatorname { tan } x ) d |
| Answer» | |
| 73395. |
y = \operatorname { log } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { x } { 2 } ) , \text { then show that } \frac { d y } { d x } - \operatorname { sec } x = 0 |
|
Answer» 1 |
|
| 73396. |
27cos xsec x+ tan xsec x- tan xcos x |
|
Answer» Step-by-step explanation: Consider 1/secA-tanA - 1/cosA Multiplying by secA + tanA in the numerator and denominator of first term, we get secA + tanA/(secA +tanA)(secA - tanA) - 1/cosA = secA + tanA - secA (Since sec²A - tan²A = 1) = tanA Adding and subtracting secA , we get secA + tanA - secA = 1/cosA - (secA - tanA) Now multiplying and dividing (secA - tanA) by (secA + tanA), we get 1/cosA - (sec²A - tan²A)/(secA + tanA) = 1/ cosA - 1/secA + tanA = R.H.S Hence, Proved. Hope, it helps ! |
|
| 73397. |
oxidation number of 2NH4CL and 2NH4OH |
|
Answer» question not clear. state properly |
|
| 73398. |
what is L'Hospital rule?can u explain basic please! |
|
Answer» Inmathematics, and more specifically incalculus,L'Hôpital's ruleorL'Hospital's rule(French:[lopital]) usesderivativesto help evaluatelimitsinvolvingindeterminate forms. Application (or repeated application) of the rule often converts an indeterminate form to an expression that can be evaluated by substitution, allowing easier evaluation of the limit. related sums please |
|
| 73399. |
DS Im THow many bricks measaningD0 plihted out of the paint in the container?sions of a rectangular sheet of metal are 6.5 m x 3 m. Out of this sheet, closed boses ofns 15 cm x 6 cm x 5 cm are made. How many such boxes can be made in altdimensio |
| Answer» | |
| 73400. |
(CU212What is an oxidation reaction ? identify in the following reactions:(i) The substance oxidized and(ii) The substance reducedZnO + C → Zn + CO |
| Answer» | |