Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

3701.

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2):}|=4a^2b^2c^2

Answer»


ANSWER :`4a^2b^2c^2`
3702.

Solve abs(x-1) gt 1 and represent the solution on the number line.

Answer»

Solution :`abs(x-1) gt 1`
`rArr -1 gt x-1 gt 1`
`rArr 0 gt x gt 2`
`rArr x lt 0` and `x gt 2`
`therefore` The solution set is
S = {x:x `in` R, x `lt`0 and x `gt` 2}
= `(-infty, 0) CUP (2, infty)`
we can SHOW this solution in number line as
3703.

Forevery twice differentiablefunction f(x)the valueof |f(x)| le 3 AA x in R and for some alpha f(alpha) + (f'(alpha))^(2) =80. Number of integral values that (f'(x))^(2) can takebetween (0,77) are equal to "________"

Answer»


ANSWER :76
3704.

int_0^(pi/4) xsinxdx

Answer»

Solution :`int_0^(pi/4) xsinxdx`
[integrating by PARTS taking xas FIRST and sinx as second function]
`[x-(-cosx)]_0^(pi/4)-int_0^(pi/4)(-cosx)DX`
`(-pi/4)cos(pi/4)+[sinx]_o^(pi/4)`
`(-pi/4)cos(pi/4)+sin(pi/4)-sin0=(1/sqrt2)(1-(pi/4))`
3705.

If (1+i) is a root of the equation x^(2)-x+(1-i)=0, then the other root is

Answer»

`1-i`
`i`
`-i`
`2I`

ANSWER :C
3706.

Find the angle between the lines whose d.c's are related by l + m + n = 0 & l^(2) + m^(2) - n^(2) = 0

Answer»


ANSWER :`(PI)/(3)`
3707.

Find the maximum or minimum values of the following expressions on R i) x^(2) + 6x – 27 ii) 3x^(2) + 2x + 7 iii) x^(2) - 12x + 32 iv) 2x^(2) + 3x + 1

Answer»


Answer :i) MINIMUM value = -36 ii) minimum value = `(20)/(3)` iii) minimum value = -4 iv) minimum value = `-(1)/(8)`
3708.

If the height of the cone is constant then find the rate of change of its curved surface area with respect to its radius.

Answer»


Answer :`(pi(2R^(2)+H^(2)))/(SQRT(2r^(2)+h^(2)))`
3709.

Let a,b and c be distinct real numbers. If a,b,c are in geometric progression and a+b+c=xb, then x lies in the set

Answer»

(1,3)
`(-1,0)UU(1,2)`
`(-oo,-1)uu(3,oo)`
(0,1)

ANSWER :C
3710.

p ^^ (q ^^ r) is logically equivalent to

Answer»

<P>`p VV (q ^^ r)`
`(p ^^ q) ^^ r`
`(p vv q) vv r`
`p RARR (q ^^ r)`

ANSWER :B
3711.

Find number of othe ways in which word 'KOLAVARI' can be arranged, if allvowels are separate from each other ?

Answer»

289
2880
1439
1440

Answer :A
3712.

If the function f(x)=sin^(-1)x+cos^(-1)x and g(x) are identical, then g(x) can be equal to

Answer»

`sin^(-1)|x|+|cos^(-1)x|`
`tan^(-1)x+cot^(-1)x`
`|sin^(-1)x|+cos^(-1)|x|`
`(SQRT(sin^(-1)x))^(2)+(sqrt(cos^(-1)x))^(2)`

Solution :`F(x)=sin^(-1)x + cos^(-1)x=(pi)/(2), AA x in [-1,1]`
If `g(x)=|sin^(-1)x|+cos^(-1)|x|={{:(-sin^(-1)x +pi-cos^(-1)x, -1le x lt 0),(=pi-(pi)/(2)=(pi)/(2)),(sin^(-1)x + cos^(-1)x, 0LE x le 1),(=(pi)/(2)):}`
3713.

A company sells its product at the rate of Rs. 6 per unit. The variable costs are estimated to run 25% of the total revenue received. If the fixed costs for the product are Rs. 4500. Find the total cost function.

Answer»


ANSWER :`2.1`
3714.

Find the value of |{:(cos((2pi)/(63)),,cos((3pi)/(70)),,cos((4pi)/(77))),(cos((pi)/(72)),,cos((pi)/(40)),,cos((3pi)/(88))),(1,,cos((pi)/(90)),,cos((2pi)/(99))):}|

Answer»

Solution :`Delta= |{:(cos((pi)/(7)-(pi)/(9)),,cos((pi)/(7)-(pi)/(10)),,cos((pi)/(7)-(pi)/(11))),(cos((pi)/(8)-(pi)/(9)),,cos((pi)/(8)-(pi)/(10)),,cos((pi)/(8)-(pi)/(11))),(cos((pi)/(9)-(pi)/(9)),,cos((pi)/(9)-(pi)/(10)),,cos((pi)/(9)-(pi)/(11))):}|`
`|{:(cos((pi)/(7)-(pi)/(9)),,cos((pi)/(7)-(pi)/(10)),,cos((pi)/(7)-(pi)/(11))),(cos((pi)/(8)-(pi)/(9)),,cos((pi)/(8)-(pi)/(10)),,cos((pi)/(8)-(pi)/(11))),(cos((pi)/(9)-(pi)/(9)),,cos((pi)/(9)-(pi)/(10)),,cos((pi)/(9)-(pi)/(11))):}|`
`=0`
3715.

Value of lamda so that point (lamda,lamda^(2)) lies between the lines |x+2y|=3 is

Answer»

`(-1/2,2)`
`(-3/2,2)`
`(-3/2,1)`
`(-1,3/2)`

SOLUTION :
`2lamda^(2)+LAMDA+3gt0implieslamdaepsilonR`
`2lamda^(2)+lamda+3gt0implieslamdaepsilonR`
`2lamda^(2)+lamda-3lt0`
`lamda EPSILON(-3/2,1)`
3716.

Find (dy)/(dx) in the following 2x+ 3y= sin x

Answer»


ANSWER :`(COS x-2)/(3)`
3717.

The number of ways in which 5 boys and 3 girls can be seated on a round table if a particular boy B_(1)and a particular girl G_(1)never sit adjacent to each other is

Answer»

`7!`
`5 XX 6 !`
`6 xx 6 !`
`5 xx 7 !`

Answer :B
3718.

Identify the quantifier in the following statements and write the negation of the statement.(iii)There exists a capital for every state of india

Answer»

SOLUTION :There EXISTS
3719.

Find the domain and range of those relations in a which are functions. {(a,2),(b,1),(c,1)}

Answer»

SOLUTION :RANGE of the FUNCTION is {1,2}
3720.

Equation of plane passing through (1,1,1) and the line of intersection of planes x+2y-z+1=0 and 3x-y-4z+3=0 is

Answer»

8X+ 5Y - 11Z +8=0
8x+5y + 11z +8=0
8x-5y-11z+8=0
8x+5y +11z =24

Answer :C
3721.

If a straight line through C(-sqrt(8),sqrt(8)) making an asngle 135^(@) with the x-axis and cuts the circle x=5cos theta, y = 5 sin theta in points A and B AB=

Answer»

5
10
25
16

Answer :B
3722.

There are 15 bulbs in a room .Each one of them can be operated independently .The number of ways in which the room can be lighted

Answer»

`8^(5)-1`
`(32)^(2)-1`
`(32)^(4)-1`
`8^(4)-1`

ANSWER :A
3723.

If overline(a), overline(b), overline(c) are non-coplanar vectors and overline(a)=lambda(overline(b)timesoverline(c))+mu(overline(c)timesoverline(a))+gamma(overline(a)timesoverline(b)) then lambda=

Answer»

`(OVERLINE(a)*overline(B))/([[overline(a), overline(b), overline(C)]])`
`(overline(b)*overline(c))/([[overline(a), overline(b), overline(c)]])`
`(overline(c)*overline(a))/([[overline(a), overline(b), overline(c)]])`
`(overline(a)*overline(a))/([[overline(a), overline(b), overline(c)]])`

ANSWER :D
3724.

The smallest positive integer p for which expression x ^(2)- 2px +3p[+4 is negative for atleast one real x is:

Answer»

3
4
5
6

Answer :C
3725.

If1 , omega , omega^(2) are the cube roots of unity , then find the values of the following . ( 1 - omega + omega^(2))^(3)

Answer»


ANSWER :-8
3726.

If the lines 2x+3y+12=0, x-y+k=0 are conjugate with respect to the parabola y^(2)=8 then k is equal to

Answer»

10
`7/2`
`-12`
`-2`

ANSWER :C
3727.

The sum of two non - zero numbers in 12. The minimum sum of their reciprocals is …………

Answer»

`(1)/(10)`
`(1)/(4)`
`(1)/(2)`
`(1)/(3)`

ANSWER :D
3728.

lim_(xto0)(sqrt(1+xsinx)-sqrt(cosx))/(tan^(2)2x)=

Answer»

3
`(3)/(2)`
`(3)/(4)`
`(3)/(16)`

ANSWER :D
3729.

In theinteriorof aforestthereare someapes . Oftheirtotalnumbersquareof1/9thareplayingat oneplace. Theremainingare onthehills. Thetotalnumberof apesis

Answer»

27 or 54
`16 or32`
`28 or56`
` 185or36`

ANSWER :A
3730.

If theanglesof triangleare in theratio4 :1:1 , thentheratioof thelongestsideto the perimeter is

Answer»

`SQRT(3) :2 + sqrt(3)`
`1:6`
`1: 2 + sqrt(3)`
` 2 :3`

ANSWER :A
3731.

If p =a + bomega + comega^(2),q = b + comega+ aomega^(2), and r =c + aomega +bomega^(2), where a,b,c ne 0 and omega is the complex cuberoot of unity , then .

Answer»

If p,Q,r lie on the CIRCLE|z|=2, the trinagleformed by these POINTIS equilateral.
`p^(2)+q^(2)+r^(2) =a^(2)+b^(2)+c^(2)`
`p^(2)+q^(2) + r^(2) = 2 (pq+qr + rp)`
NONE of these

Solution :`p+q+r=a + bomega + comega^(2) + b + aomega^(2)+ c + aomega + bomega^(2)`
`therefore p +q+ r = (a+b+c)(1+ omega + omega^(2))=0`
p,q,r lie on the circle `|z|=2`, whosecircumcenter is origin. Also `(p+q+ r)//3=0` . Hence the cenroidwith cicumcenter. So, the triangle is equilateral.
Now ,`(P +q+ r)^(2)= 0`
`rArr p^(2) +q^(2) + r^(2) = -2pqr[(1)/(p)+(1)/(q) +(1)/(r)]`
`=-2pqr[(1)/(a+bomega+comega^(2))+(1)/(omega(bomega^(2)+c+aomega^(2)))+(1)/(c+aomega +bomega^(2))]`
`=2pqr[(1)/(omega^(2)(aomega +bomega^(2)+c))+(1)/(omega(bomega^(2) + c+ aomega))+(1)/(c+aomega+bomega^(2))]`
`(-2pqr)/(aomega+ bomega^(2)+c)[(1)/(omega^(2))+(1)/(omega)+ (1)/(1)]= 0""(2)`
Hence `p^(2)+q^(2) + r^(2) = 2` (pq + qr + rp)`
3732.

Number of ways of selecting two squares having common side in a chess board is (1 unit size squares)

Answer»

112
124
64
80

Answer :A
3733.

Evaluate the following integrals (iii) int_(2)^(3)(2x)/(1+x^(2))dx

Answer»


ANSWER :`LOG 2`
3734.

Approximately whatpercent of the mining industries' average annual production from 1991 - 1995 came from production of aluminium?

Answer»

`4%`
`7%`
`11%`
Cannot be determined

Answer :D
3735.

If z = 3- 5i then z^(2) - 10z + 30=

Answer»

20i-16
1
2
3

Answer :A
3736.

If A = {a,b,c,d} and the function f ={(a,b),(b,d) , (c,a) ,(d,c) } . Write f^(-1).

Answer»


SOLUTION :N/A
3737.

show that the matrix A=[[0,1,-1],[-1,0,1],[1,-1,0]] is a skew symmetric matrix

Answer»

SOLUTION :`A^T = [(0,-1,1),(1,0,-1),(-1,1,0)] = -[(0,1,-1),(-1,0,1),(1,-1,0)] = -A therefore A` is skew symmetric
3738.

Show thatthe functionf : N to Ndefinedby f(x) = {[x-1 \ if \x \ is \ even], [x +1 \ if \ x is \ odd]} is one-oneand onto.

Answer»

SOLUTION :Suppose `f(x_(1))= f(x_(2))`
Case 1when`x_(1) ` isodd and `x_(2)`is even
In THISCASE `f(x_(1)) =f(x_(2)) rArr x_(1) +1 =x_(2)-1`
`rArr x_(2) - x_(1)=2`
Thisis acodtradicationsince thatdifferencebetween anodd interger and anevenintegercan neverbe 2.
Thusin this case`f(x_(1))NE f(x_(2))`
Similarlywhen `x_(1)`is evenand `x_(2)`is oddthen `f(x_(1)) ne f(x_(2))`
Case 2when `x_(1)" and " x_(2)`are bothodd
In thiscase`f(x_(1))=f(x_(2)) rArr x_(1)+ 1 =x_(2) -1`
`rArr x_(1)=x_(2)`
`:.` f isone-one
Case 3When `x_(1) " and " x_(2)`are both even
In thiscase `f(x_(1))=f(x_(2))rArr x_(1) -1 =x_(2) -1`
`rArr x_(1)= x_(2)`
`:.`f is one-one In orderto showthat FIS ontolet `y in N`(the codomain)
Case 1 wheny is odd
In thiscase `(y +1)` is even
`:. f( y+1) =(y+1)-1 =y`
Case 2wheny is even
In thiscase `(y-1) ` is odd
`:. f (y-1)=y-1 +1=y`
Thuseach `y in N`(codomain of f)has itspre-imagein dom (f)
`:. ` f is onto.
Hence f is one-oneonto.
3739.

If (4 cos^(2)9^(@)-3)(4 cos^(2)27^(@)-3)=tanK^(@) , then K is equal to

Answer»


ANSWER :9
3740.

Prove that the radius of the circle whose centre is (-4,0) and which cuts the parabola y^(2) = 8x at A and B such that its common chord AB subtends a right angle at the vertex of the parabola is equal to ''4''.

Answer»


Answer :`rArr 16 - r^(2) = 0 rArr r=4`
3741.

Let a triangle ABC be inscribed in a circle of radius 2 units. If the 3 bisectors of the angles A, B and C are extended to cut the circle atA_(1), B_(1) and C_(1) respectively, then the value of[(A A_(1) "cos"(A)/(2)+ B B_(1) "cos"(B)/(2)+C C_(1) "cos"(C)/(2))/(sin a + sin B + sin C)]^(2)=

Answer»

4
16
25
1

Answer :B
3742.

Statement 1 : Consider the statements p : Delhi is in India q : Mumbai is not in Italy Then the negation of the statement p vv q, is 'delhi is not in India and Mumbai is in Italy' Statement 2: For any two statement p and q ~(p vv q) = ~p vv ~q

Answer»

Statement 1 and statement 2 are both false
Statement 1 and staement 2 are both TRUE
statement 1 is true and statement 2 is false
statement 1 is false and statement 2 is true

Answer :C
3743.

If overline(a)*overline(b)=overline(b)*overline(c)=overline(c)*overline(a)=0, then overline(a)*(overline(b)timesoverline(c))=

Answer»

a non-zero vector
`1`
`-1`
`|OVERLINE(a)||overline(b)||overline(C)|`

ANSWER :D
3744.

By using the properties of definite integrals evaluate the integrals in exercise. overset(1)underset(0)int x(1-x)^(n)dx

Answer»


ANSWER :`(1)/((n+1)(n+2))`
3745.

Let f(x)=0 be a polynomial equation with real coefficients. Then between any two distinct real roots of f(x)=0, there exists at least one real root of the equation f'(x)=0. This result is a consequence of the celebrated Rolle's theorem applied to polynomials. Much information can be extracted about the roots of f(x)=0 from the roots of f'(x)=0. If the roots of x^(3)-12x+k=0 lie in (-4, -3),(0, 1) and (2, 3), then the range of valuesof k is

Answer»

`4 lt K lt 11`
`9 lt k lt 11`
`8 lt k lt 13`
`4 lt k lt 13`

ANSWER :B
3746.

If the solutoin of the differential equation e^(x/y(1-y^(2)))[y (dx)/(dy)-x]+[xy^(2)+y^(3)(dx)/(dy)]=0 is Ae^(xy)+Be^(x/y)+C=0, Then A+B is

Answer»

`-1`
`0`
`2`
none of these

Solution :`E^(XY)[xy^(2)+y^(3)(DX)/(dy)]+e^(x/y)[y/(dx)/(dt)-x]=0`
`d(e^(xy))+d(e^(x/y))=0`
`e^(xy)+e^(x/y)+c=0`
`A+B=1`
3747.

If the sum of first three numbers in G.P. is 21 and their product is 216 , then the numbers are

Answer»

3,6,12
5,7,9
6,2,213
6,12,24

Answer :A
3748.

The solution of (xdx + ydx)/(x^(2) + y^(2)) = 0 is

Answer»

LOG(XY) = c
log(x+y) = c
`log(x^(2) + y^(2)) = c`
`log((x)/(y)) = c`

ANSWER :C
3749.

int sin(sqrt((x)/(x+a)))dx

Answer»


ANSWER :`:. I=(x+a) tan^(-1)(sqrt((x)/(a)))- sqrt(AX)+C`
3750.

Fundamental theorem of definite integral : int_(0)^(pi/4)(sin^(9)x)/(cos^(11)x)dx=........

Answer»

`(1)/(2)`
`(1)/(10)`
`(1)/(5)`
`(1)/(15)`

ANSWER :B