 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. | Show that among all positive numbers `x`and `y`with `x^2+y^2=r^2,`the sum `x+y`is largest when `x=y=r/(sqrt(2))`. | 
| Answer» Here, `x^2+y^2 = r^2` `=> y = sqrt(r^2-x^2)` Let `S = x+y` `=> S = x+sqrt(r^2-x^2)` For `S` to be largest, `(dS)/dx =0`. `:. (dS)/dx = 1+1/sqrt(r^2-x^2)(-2x)` `:. 1+1/(2sqrt(r^2-x^2))(-2x) = 0` `=>x = sqrt(r^2-x^2)` `=>x^2 = r^2-x^2` `=>2x^2 = r^2` `=>x = +-r/sqrt2` As `x` is a positive number, `:. x = r/sqrt2`. Now, `y = sqrt(r^2-x^2) = sqrt(r^2-r^2/2) = r/sqrt2` To further prove, that this is largest sum, we can take `(d^2S)/dx^2` at `x = r/sqrt2`. It will come negative, which proves sum `S` is largest at these values. So, `x+y` is largest when `x = y = r/sqrt2`. | |
| 2. | The total cost of producing `x`radio sets per day is `R sdot((x^2)/4 35 x+25)`and the price per set at which they may be sold is `R sdot(50-x/2)dot`Find the daily output to maximize the total profit. | 
| Answer» Here, total cost of `x` radios ` = x^2/4+35x+25` Rs Selling price of `x` radios ` = x(50-x/2) = 50x-x^2/2` Rs `:.` Profit `(P)= 50x-x^2/2 - (x^2/4+35x+25)` Rs `=> P = -3/4x^2 + 15x -25` `=>(dP)/dx = -3/2x + 15` For, maximum profit, `(dP)/dx` should be `0`. `=> -3/2x + 15 = 0` `=> x = 10` So, to maximize the total profit, `x` should be `10`. | |
| 3. | Prove that the semi-vertical angle of the right circular cone of givenvolume and least curved surface is `cot^(-1)(sqrt(2))dot` | 
| Answer» `V=1/3pir^2h` `h=(3V)/(pir^2)` `CSA=pirl` `=pirsqrt(h^2+r^2)` `=pirsqrt((9V^2+pi^2r^6)/(pir^2)` `CSA=sqrt((9V^2+pi^2r^6)/r` Differentiate with respect to r `d/(dr)(CSA)=(3pi^2r^6-9V^2-pi^2r^6)/(r^2sqrt(9V^2+pi^2r^6)=0` `2pi^2r^6-9V^2=0` `r^6=(9V^2)/(2pi^2)` `r=(9/2)^(1/6)*(V/pi)^(1/3)` `cottheta=B/P=r/h=r/((3V)/(pir^2))` `=pi/(3V)*[(n/2)^(1/6)*(V/pi)^(1/3)]^3` `tantheta=1/sqrt2` `cottheta=sqrt2` ``theta=cot^(-1)sqrt2`. | |
| 4. | A straight line is drawn through a given point `P(1,4)dot`Determine the least value of the sum of the intercepts on thecoordinate axes. | 
| Answer» `y-y_1=m(x-x_1)` `(x_1,y_1)=(1,4)` `y-y_!=m(x-1)` at y intercept,x=0 `y=4-m` at x intercept,y=0 `x-1=-4/m` `x=(m-4)/m` `S=((m-4)/m)+(4-m)` `(dS)/(dm)=(0+4/m^2-1)=0` `4/m^2=1` `m=pm2` `(d^2S)/(dm^2)=-8/m^3` When m=2,`(d^2S)/(dm^2)=-8/8=-1<0` This will be maximum When m=-2,`(d^2S)/(dm^2)=-8/-8=1>0` This will be minimum `x=(m-4)/m=(-2-4)/(-2)=3` `y=4-m=4+2=6` S=3+6=9. | |
| 5. | The strength of a beam varies as the product of its breadth and squareof its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius `adot` | 
| Answer» `b^2/4+d^2/4=a^2` `d^2=4a^2-b^2` `(dS)/(db)=b(-2b)+(4a^2-b^2)` `=-2b^2+4a^2-b^2` `=4a^2-3b^2=0` `b^2=4/3a^2` `b=pm2/sqrt3` `d^2=4a^2-b^2` `=4a^2-4/3a^2` `d=2sqrt(2/3)a` `(d^2S)/(db^2)=-4b-2b` `=-6b<0` this will be maximum. | |
| 6. | A particle is moving in a straight line such that its distance `s`at any time `t`is given by `s=(t^4)/4-2t^3+4t^2-7.`Find when its velocity is maximum and acceleration minimum. | 
| Answer» `S=t^4/4-2t^3+4t^2-7` `V=(dS)/(dt)=t^3-6t^2+8t` `a=(dV)/(dt)=(d^2S)/(dt^2)=3t^2-12t+8=0` `t=(12pmsqrt(144-96))/6` `t=2pm2/sqrt3` `(d^2V)/(dt^2)=6t-12` `t=2+2/sqrt3` `(d^2V)/(dt^2)=6(2+2/sqrt3)-12` @` t=2-2/sqrt3`, V is minimum `(da)/(dt)=6t-12=0` `(d^2a)/(dt^2)=6>0` @`t=2` this willbe minimum. | |
| 7. | Determine the points on the curve `x^2=4y`which are nearest to the point (0,5). | 
| Answer» `d=sqrt((x_1-o)^2+(y_1-5)^2)` `d=sqrt(4y_1+(y_1-5)^2` `d/(dy_1)=1/(2sqrt(4y_1+(y_1-5)^2))*(4+2(y_1-5))=0` `4+(2(y_1-5)=0` `y_1=3` `x_1^2=4y_1` `x_1=pm2sqrt3` Points=`(2sqrt3,3),(-2sqrt3,3).` | |
| 8. | A rectangle is inscribed in a semi-circle of radius `r`with one of its sides on diameter of semi-circle. Find the dimensionsof the rectangle so that its area is maximum. Find also the area. | 
| Answer» `b=sqrt(r^2-(a/2)^2` `b=sqrt(4r^2-a^2)/2` Area of A=`a*b=a*(sqrt(4r^2-a^2)/2)` diff with respect to a `(dA)/(da)=sqrt(4r^2-a^2)/2` `=a/2*1/2*1/sqrt(4r^2-a^2)*-2a` `(dA)/(da)=sqrt(4r^2-a^2)/2-a^2/(2sqrt(4r^2-a^2))=0` `(4r^2-a^2-a^2)/(2sqrt(4r^2-a^2))=0` `4r^2=2a^2` `a=pmsqrt2r` `b=sqrt(4r^2-a^2)/2=sqrt2r/2=4/sqrt2` Area=`r^2.` | |