InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Using vectors, find the area of the triangle with vertices `A(1,1,2), B(2,3,5)a n d C(1,5,5)` |
|
Answer» The vertices of triangle ABC are given as A (1,1,2) , B (2,3,5) and C (1,5,5). The adjacent sides `vec(AB) and vec(BC) of triangleABC` are given as `vec(AB)=(2-1)hati+(3-1)hatj+(5-2)hatk=hati+2hatj + 3hatk` `vec(BC)=(1-2)hati+(5+3)hatj+(5-5)hatk=-hati+2hatj` `Area of triangleABC=1/2|vec(AB)xxvec(BC)|` `vec(AB)xxvec(BC)=|{:(hati,hatj,hatk),(1,2,3),(-1,2,0):}|=hati(-6)-hatj(3)+hatk(2+2)=-6hati-3hatj+4hatk` `|vec(AB)xxvec(BC)|=sqrt((-6)^(2)+(-3)^(2)+4^(2))=sqrt(36+9+16)=sqrt61` Hence , the area of `triangle is sqrt61/2` square units. |
|
| 52. |
If `veca` and `vecb` are vectors in space given by `veca=(hati-23hatj)/(sqrt(5))` `vecb=(2hati+hatj+3hatk)/(sqrt(14))` then the value of `(2veca+vecb).[(vecaxxvecb)xx(veca-2vecb)]`, is |
|
Answer» Correct Answer - 5 `E= (2veca + vecb).[|veca|^(2) vecb-(veca.vecb)veca-2(veca.vecb)vecb +2|vecb|^(2)veca]` `veca.vecb= (2-2)/sqrt70=0` `|veca|=1` `|b|=1` `E= (2veca+vecb).[ 2|vecb|^(2)veca + |veca|^(2)vecb]` `4|veca|^(2)|vecb|^(2)+|veca|^(2)(veca.vecb)` `+2|vecb|^(2)(vecb.veca)+|veca|^(2)|vecb|^(2)` `5|veca|^(2)|vecb|=5` |
|
| 53. |
The volume of the tetrahedronwhose vertices are the points with position vectors `hati-5hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+lamdahatk` and `7hati-4hatj+7hatk ` is 11 cubic units then the value of `lamda` is (A) 7 (B) 1 (C) -7 (D) -1 |
|
Answer» Correct Answer - 7 Let the vertices be, A ,B , C , D and O be the origin. `vecOA=hati -6hatj+10hatk,vecOB=hati-3hatj +7hatk`, `vecOC= -5hati-hatj+lambdahatk,vecOD=7hati -4hatj+7hatk` `vecAB=vecOB-vecOA= -2hati+3hatj-3hatk` `vecAC=vecOC-vecOA= -4hati + 5hatj + (lambda-10)hatk` `vecAC=vecOC -vecOA=4hati+5hatj+(lamda-10)hatk` `vecAD=vecOD-vecOA = 6hati +2hatj-3hatk` volume of tetrahedron `1/6[vecAB vecAC vecAD]=1/6|{:(-2,3,-3),(4,5,lamda-10),(6,2,-3):}|` `1/6 {-2(-15-2lambda+20)-3(-12-6lambda+60)-3(8-30)}` `1/6 {4lambda- 10 -144 + 18 lambda+66}` `= 1/6 (22lambda - 88) =11` `or 2lambda -8 =6` `or 2lambda -8 =6` `or lambda=7` |
|
| 54. |
`A , B , Ca n dD`are any four points in thespace, then prove that `| vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4`(area of ` A B C`.) |
|
Answer» Let P.V of A,B, C d and D be `veca, vecb,vecc and vec0` , respectively. Then `vec(AB)xxvec(CD)=(vecb-veca)xx(-vecc), vec(BC)xxvec(AD)=(vecc-vecb)xx(-veca)` `vec(CA)xxvec(BD)=(veca-vecc)xx(-vecb)` `vec(AB)xxvec(CD)+vec(BC)xxvec(AD)+vec(CA)xxvec(BD)` `veccxxvecb+vecaxxvecc+vecaxxvecc+vecbxxveca-vecaxxvecb+veccxxvecb` `2(veccxxvecb+ vecbxxvecbxxveca+vecaxxvecc)` `2(veccxx(vecb-veca)-vecaxx(vecb-veca))` `= 1(vec(AC)xxvec(AB))` `|vec(AB)xxvec(CD)+vec(BC)xxvec(AD)+vec(CA)xxvec(BD)|=4|1/2(vec(AC)xxvec(AB))|=4triangleABC` |
|
| 55. |
If the scalar projection of vector `xhati-hatj+hatk1` on vector `2hati-hatj+5hatk is 1/sqrt30`. The find the value of x. |
|
Answer» Projection of `xhati-hatj+hatk "on" 2hati-hatj+5hatk= ((xhati-hatj+hatk).(2hati-hatj+5hatk))/(sqrt(4+1+25))` `(2x+1+5)/(sqrt10)` But, given `(2x+6)/(sqrt30)=1/sqrt30 Rightarrow 2x+6=1 or x=(-5)/2` |
|
| 56. |
find the projection of the vector `hati+3hatj=7hatk` on the vector `7hati-hatj+8 hatk` |
|
Answer» Let `veca=hati+3hatj+7hatj+7hatkand vecb=7hatj-hatj+8hatk` Now, projection of vector `veca on vecb` is given by `1/(|vecb|)(veca.vecb)=1/(sqrt(7^(2)+(-1)^(2)+8^(2))){(7)+3(-1)+7(8)}` `(7-3=56)/(sqrt(49+1+64))=60/(sqrt114)` |
|
| 57. |
If `theta` is the angle between the unit vectors `veca and vecb`, then prove that i. `cos((theta)/2)=1/2|veca+vecb|`` ii. sin (theta/2)=1/2|veca-vecb|` |
|
Answer» i. `(veca+vecb).(veca+vecb)= |veca|^(2)+|vecb|^(2)+2veca.vecb` `=1 +1+2(1)(1) cos theta` `cos(theta/2)=1/2|veca+vecb|` ii. `(veca-vecb).(veca-vecb)=|veca|^(2)=|vecb|^(2)-2veca.vecb` `= 1+1-2(1)(1)cos theta` `=2-2costheta` `or sin"theta/2=1/2|veca+vecb|` |
|
| 58. |
If three unit vectors `veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0`. Then find the angle between `veca and vecb`. |
|
Answer» `veca+vecb=-vecc` `|veca+vecb|^(2)+2veca.vecb=1` ` veca.vecb=-1/2` `|veca||vecb|cos theta =-1/2` or `cos theta = 1/2` `theta= (2pi)/3` |
|
| 59. |
Let `veca` and `vecb` be two non-collinear unit vectors. If `vecu=veca-(veca.vecb)vecb` and `vec=vecaxxvecb`, then `|vecv|` isA. `|vecu|`B. `|vecu|+ |vecu.vecb|`C. `|vecu| + |vecu .veca|`D. none of these |
|
Answer» Correct Answer - b,d `vecu = vecas - ( veca . Vecb) vecb` ` vecb xx (veca xx vecb)` ` Rightarrow |vecu| = |vecb xx (veca xx vecb)|` ` |vecb| |veca xx vecb| sin 90 ^(@)` ` |vecb||veca xx vecb|` ` |vecv|` Also ` vecu . Vecb = vecb.vecb xx (veca xx vecb)` ` [vecb vecb veca xx vecb]` =0 ` Rightarrow |vecv| = |vecu| + |vecu. vecb|` |
|
| 60. |
Vectors perpendicular to`hati-hatj-hatk` and in the plane of `hati+hatj+hatk and -hati+hatj+hatk` are (A) `hati+hatk` (B) `2hati+hatj+hatk` (C) `3hati+2hatj+hatk` (D) `-4hati-2hatj-2hatk`A. `hati + hatk`B. `2hati + hatj + hatk`C. `3hati+ 2 hatj + hatk`D. `-4 hati - 2hatj - 2hatk` |
|
Answer» Correct Answer - b,d Let `alpha =hati - hatj -hatk , vecbeta = hati + hatj +hatk` ` and vecgmma = -hati +hatj +hatk` Let requried vector, `veca=xhati + yhatj +zhatj` then `vecalpha, vecbeta, vecgamma` are coplanar, i.e. `|{:(x,y,z),(1,1,1),(-1,1,1):}|=0or y=z` Also `veca and vecalpha` are perpendicular, ` Rightarrow x-y -z =0` `Rightarrow x = zy` |
|
| 61. |
If `veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca= `A. `2 (veca xx vecb)`B. ` 6( vecb xx vecc)`C. `3 ( vecc xx veca)`D. `vec0` |
|
Answer» Correct Answer - c,d we know that `veca + vecb + vecc = vec0` then `veca xx vecb =vecb xx vecc = vecc xx veca` Given `veca + 2vecb + 3 vecc = vec0` `2 veca xx vecb = 6 vecb xx vecc = 3 vecc xx veca` Hence `veca xx vecb + vecb xx vecc + vecc xx veca ` ` 2 (veca xx vecb) or 6 (vecb xx vecc) or 3 (vecc xx veca)` |
|
| 62. |
`veca ,vecb and vecc` are unimdular and coplanar. A unit vector `vecd` is perpendicualt to them , `(veca xx vecb) xx (vecc xx vecd) = 1/6 hati - 1/3 hatj + 1/3 hatk` , and the angle between `veca and vecb is 30^(@)` then `vecc` isA. `(hati-2 hatj + 2 hatk)//3`B. `(-hati +2hatj - 2 hatk)//3`C. `(-hati +2hatj - hatk)//3`D. `(-2hati -2hatj + hatk)//3` |
|
Answer» Correct Answer - a,b Given `1/6hati -1/3 hatj + 1/3hatk = (veca xx vecb) xx (veccxxvecd)` `[ veca vecb vecd]vecc - [veca vecb vecc] vecd` `[veca vecb vecd]vecc` `[ veca, vecb and vecc` are coplanar] `[veca vecb vecd] = (veca xx vecb).vecd` ` |veca xx vecb| |vecd| cos theta` `(therefore vecd bot veca,vecd,bot vecb, therefore vecd||vecaxxvecb)` `ab sin 30^(@) .1. (+-1) ( theta = 0 or pi) ` `1.1. 1/2 .1(+-1)= +- 1/2` form (i) m we have `vecc= +- (1/3 hati -2/3hatj +2/3hatk) =+- (hati -2hatj + 2hatk)/3` |
|
| 63. |
The volume of heparallelepiped whose sides are given by ` vec O A=2i-2, j , vec O B=i+j-ka n d vec O C=3i-k`is`4//13`b. `4`c. `2//7`d. `2`A. `4//13`B. 4C. `2//7`D. 2 |
|
Answer» Correct Answer - d Volume of parallelepiped = `[veca vecb vecc]` `|{:(2,-2,0),(1,1,-1),(3,0,-1):}|=2(-1)+_2(-1+3)=2` |
|
| 64. |
If `vecA=(1,1,1) and vecC=(0,1,-1)` are given vectors then find a vector `vecB` satisfying equations `vecAxxvecB=vecC and vecA.vecB=3` |
|
Answer» Correct Answer - `5/3hati+2/3hatj + 2/3 hatk` Given `vecA = hati + hatj - hatk and vecC = hatj -hatk` Let `vecB =x hati + yhatj +zhatk` Given that `vecAxxvecB=vecC Rightarrow |{:(hati,hatj,hatk),(1,1,1),(x,y,z):}|=hatj=hatk` `or (z-y)i +(x-z)hatj +(y-x)hatk=hatj-hatk` z-y=0 , x-z=1 and y-x =-1 Also , `vecA. vecB=3` `Rightarrow x+y +z=3` Using (i) and(ii) , we get `y=2//3,xx=5//3,z=2//3` `vecB = 5/3 hati + 2/3hatj + 2/3 hatk` |
|
| 65. |
Let `veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd` is a unit vector such that `veca.hatd=0=[vecb, vecc, vecd]` then hatd` equals (A) `+-(hati+hatj-2hatk)/sqrt(6)` (B) `+-(hati+hatj-hatk)/sqrt(3)` (C) `+-(hati+hatj+hatk)/sqrt(3)` (D) `+-hatk`A. `+- (hati + hatj - 2hatk)/sqrt6`B. `+- (hati + hatj - hatk)/sqrt3`C. `+- (hati + hatj + hatk)/sqrt3`D. `+- hatk` |
|
Answer» Correct Answer - a Let ` vecd= xhati + yhatj + zhatk` where `x^(2) + y^(2) +z^(2)=1` ( `vced ` being a unit vector) `veca .vced=0` ` Rightarrow x-y =0 or x=y` `[vecb vecc vecd]=0` `Rightarrow |{:(0,1,-1),(-1,0,1),(x,y,z):}|=0` or x+y +z=0 or 2x + z=0 or z= -2x From (i), (ii), and (iii) we have `x^(2) +x^(2)+4x^(2)=1` `x = +- 1/sqrt6` `vecd=+-(1/sqrt6hati1/sqrt6hatj-2/sqrt6hatk)` `= +- ((hati+hatj -2hatk)/sqrt6)` |
|
| 66. |
If `veca, vecb and vecc` are three non-coplanar vectors, then find the value of `(veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))` |
|
Answer» Since ` (veca vecb vecc] ne 0`, we have `(veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))=([veca vecb vecc])/([vecb vecc veca])+([vecbveccveca])/([vecc veca vecb])+([vecc vecb veca])/([veca vecb vecc])` `= ([vecavecb vecc])/([veca vecbvecc])+([vecavecbvecc])/([vecavecbvecc])-([vecavecbvecc])/([veca vecb vecc])` = 1+ 1 -1=1 |
|
| 67. |
For non zero vectors `veca,vecb, vecc` `|(vecaxxvecb).vec|=|veca||vecb||vecc|` holds iffA. `veca.vecb=0 , vecb .vecc=0`B. `vecb.vecc = 0, vecc, veca =0`C. `vecc.veca =0, veca,vecb =0`D. `veca.vecb= vecb.vecc= vecc.veca =0` |
|
Answer» Correct Answer - d `|(veca xx vecb).vecc|=|veca||vecb||vecc|` `or||veca||vecb|sin theta cos alpha|=|veca||vecb||vecc|` ` or |sinstheta||cos alpha|=1` `Rightarrow theta=pi//2 and alpha=0` ` Rightarrow veca bot vecband vecc||hatn` or perpendicular to both `veca and vecb` `Rightarrow veca.vecb=vecb.vecc=vecc.veca=0` |
|
| 68. |
Let `veca=xhati+12hatj-hatk,=2hati+2xhatj+hatkand vecc=hati+hatk`. If the ordered set `[vecb vecc veca]` is left handed, then find the value of x. |
|
Answer» for a left-handed system . `[vecbveccveca]lt0` `|{:(2,2x,1),(1,0,1),(x,12,-1):}|lt0` `or 2(0-12)-2x(-1-x)+1(12)lt0` ` or x^(2)+x-6lt0` `x in (-3,2)` |
|
| 69. |
If `veca, vecb and vecc`1 are three non-coplanar vectors, then `(veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)]` equals |
|
Answer» Correct Answer - d `(veca+ vecb+vecc).[(veca+vecb)xx(veca+vecc)]` `= (veca+vecb+vecc).[veca xx veca +vecaxx vecc+vecb xx veca +vecbxxvecc]` `= (veca +vecb +vecc).[veca xx vecc +vecb xx veca+vecb xxvecc]` `[veca vecb vecc] -[veca vecb vecc]-[veca vecb vecc]` `-[veca vecb vecc]` |
|
| 70. |
The scalar `vecA.(vecB+vecC)xx(vecA+vecB+vecC)` equals (A) 0 (B) `[vecA vecB vecC]+[vecB vecC vecA]` (C) `[vecA vecB vecC]` (D) none of these |
|
Answer» Correct Answer - a `vecA.(vecB + vecC) xx (vecA + vecB +vecC)` ` vecA . ([vecB xx vecA +vecB xx vecB + vecC + vecC xx vecA + vecC xx vecB +vecC xx vecC]` `= vecA.vecBxxvecA + vecA.vecBxxvecC+vecA.vecCxx vecA + vecA+ vecC xx vecB " " ( "using" veca xx veca =0)` `0+[vecA vecB vecC]+0+ [vecA vecC vecB]` `[vecA vecB vecC]-[vecA vecB vecC]` =0 |
|
| 71. |
In a `/_ABC `points D,E,F are taken on the sides BC,CA and AB respectively such that `(BD)/(DC)=(CE)/(EA)=(AF)/(FB)=n` prove that `/_DEF= (n^2-n+1)/((n+1)^2)` /_ABC` |
|
Answer» Take A as the origin and last the postion vectors of point B and C be `vecb and vecc`, Respectively. Therefore, the position vectors, of D, E and F are, respectively, `(nvecc+vecb)/(n+1),vecc/(n+1)and (n vecb)/(n +1)`. Therefore, `vec(ED)=vec(AD)-vec(AE)=((n-1)vecc+vecb)/(n+1)and vec(EF)=(nvecb-vecc)/(n+1)` vector area of `DeltaABC=1/2(vecbxxvecc)` vector area of `DeltaDEF=1/2(vec(EF)xxvec(ED))` `1/(2(n+1)^(2))[(nvecb-vecc)xx{(n-1)vecc+vecb}]` `= 1/(2(n+1)^(2))[(n^(2)-n)vecbxxvecc+vecbxxvecc]` `1/(2(n+1)^(2))[(n^(2)-n+1)(vecbxxvecc)]=(n^(2)-n+1)/((n+1)^(2))Delta_(ABC)` |
|
| 72. |
for any three vectors, `veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc`. |
|
Answer» Clearly, vectors `veca - vecb, vecb-vecc, vecc-veca` are coplanar, `Rightarrow [ veca -vecb vecb- vecc vecc-veca] =0` Therefore, the given statement is false. |
|
| 73. |
If `vecb` is not perpendicular to `vecc` . Then find the vector `vecr` satisfying the equation `vecr xx vecb = veca xx vecb and vecr. vecc=0` |
|
Answer» Given `vecrxxvecb=vecaxxvecbRightarrow (vecr-veca)xxvecb=0` Hence, (`vecr - veca) and vecb` are parallel. `Rightarrow vecr-veca=tvecb` `vecr.vecc=0` Therefore, taking dot product of (i) by `vecc`, we get `vecr.vecc -veca.vecc=t(vecb .vecc)` `or 0-veca.vecc=r(vecb.vecc)ort=-((veca.vecc)/(vecb.vecc))` from (i) and (ii) solution of `vecr" is " vecr =veca-((veca.vecc)/(vecb.vecc))vecb` |
|
| 74. |
If `veca and vecb` are two given vectors and k is any scalar,then find the vector `vecr` satisfying `vecr xx veca +k vecr=vecb`. |
|
Answer» `vecrxxveca+kvecr=vecb` `or (vecrxxveca)xxveca+kvecrxxveca= vecbxxveca` `or (vecr. veca)veca-(veca.veca)vecr+k(vecb-kvecr)=vecbxxveca` `or (vecr. veca)veca+kvecb-vecbxxveca=(|veca|^(2)+k^(2))vecr` `or vecr((vecr.veca)veca+kvecb-vecbxxveca)/(|veca|^(2)+k^(2))` Also, in Eq, (i) taking dot product with `veca`., we have `(vecrxxveca).veca+kvecr.veca=vecb.veca` `or vecr. veca=(vecb.veca)/k` `Rightarrow vecr=1/(k^(2)+|veca|^(2))[((veca.vecb)veca)/k+kvecb+(vecaxxvecb)]` |
|
| 75. |
If `veca, vecb and vecc` are unit vectors satisfying `|veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc|` is |
|
Answer» Correct Answer - 3 As `|veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)` `=3(|veca|^(2)+|vecb|^(2)+|vecc|^(2))-|veca+vecb+vecc|^(2)` `Rightarrow 3xx 3-|veca+vecb+vecc|=9` `or |veca +vecb+vecc|=0` `veca +vecb +vecc=0` `or vecb +vecc=-veca` `Rightarrow |2veca+5(vecb +vecc)|=|-3veca|=3|veca|=3` |
|
| 76. |
`hatu and hat v` are two non-collinear unit vectors such that `|(hatu+hatv)/2+hatuxxvecv|=1`. Prove that `|hatuxxhatv|=|(hatu-hatv)/2|` |
|
Answer» Given that `|(hatu+hatv)/2+hatuxxhatv|=1` ` |(hatu+hatv)/2+hatuxxhatv|^(2)=1` `(2+2costheta)/4+sin^(2)theta=1` `cos^(2)(theta /2)=cos^(2)theta` `theta=npi+-theta/2,n inZ` `(2pi)/3` `|hatuxxhatv|=sin((2pi)/3)=sin (pi/3)=|(hatu-hatv)/2|` |
|
| 77. |
If `vecx.veca=0vecx.vecb=0 and vecx.vecc=0` for some non zero vector `vecx` then show that `[veca vecb vecc]=0` |
|
Answer» Correct Answer - 1 ` vecX. vecA = 0 Rightarrow " either " vecA = 0 or vecX bot vecA` ` vecX.vecC =0 Rightarrow " either" vecC=0 vecX bot vecC` In any of the three cases, `vecA, vecB, vecC =0 Rightarrow [vecA vecB vecC] =0` Otherwise if `vecX bot vecA, vecX bot vecB and vecX bot vecC` , then `vecA, vecB and vecC` are coplanar. then ` [ vecA vecB vecC] =0` Therefore, the statement is true. |
|
| 78. |
`[vecaxx vecb " " vecc xx vecd " " vecexx vecf]` is equal toA. `[veca vecb vecd] [vecc vece vecf]-[veca vecb vecc] [vecd vece vecf]`B. `[veca vecb vece ] [vecf vecc vecd] - [veca vecb vecf] [vece vecc vecd] `C. `[vecc vecd veca] [vecb vece vecf] - [veca vecd vecb] [vecavece vecf]`D. `[veca vecc vece] [vecb vecd vecf]` |
|
Answer» Correct Answer - a,b,c Let `vecA=vecaxxvecb, vecB=veccxxvecd and vecC=vecexxvecf` we know that `vecA.(vecB xx vecC)=vecB. (vecCxx vecA) = vecC.(vecAxx vec B) ` `(vecaxx vecb).[(veccxxvecd) xx (vecexxvecf)]` `(vecaxxvecb) .[{(veccxx vecd).vecf} vece. {(vecc xx vecd) vece} vecf}` `[vecc vecd vecf] [vecavecb vece] - [vecc vecd vece] [veca vecb vecf]` similarly, other parts can be obtained . |
|
| 79. |
If `vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1,` then find `vecr` in terms of `veca and vecb`. |
|
Answer» Writing `vecr` as a linear combination of `veca , vecb and veca xx vecb` . We have `vecr=xveca+yvecb+z(vecaxxvecb)` for scalars x,y and z `0=vecr.veca=x|veca|^(2)+yveca.vecb " " ("taking dot product with "veca)1` `1- vecr.vecb=xveca.vecb+y|vecb|^(2)" " ("taking dot product with"vecb)` Solving , we get y `(|veca|^(2))/(|veca|^(2)|vecb|^(2)-(veca.vecb)^(2))=|veca|^(2)` `and x=(veca.vecb)/((veca.vecb)^(2)-|veca|^(2)|vecb|^(2))=veca.vecb` Also `1=[vecr vecavecb]=z|vecaxxvecb|^(2) " " ("taking dot product with "vecaxxvecb)` `z=1/(|vecaxxvecb|^(2))` `vecr=((veca.vecb)veca-|veca|^(2)vecb)+(vecaxxvecb)/(|vecaxxvecb|^(2))` `=vecaxx(vecaxxvecb)+(vecaxxvecb)/(|vecaxxvecb|^(2))` |
|
| 80. |
Let `veca` and `vecb` be unit vectors such that `|veca+vecb|=sqrt(3)`, then the value of `(2veca+5vecb)`. `(3veca+vecb+vecaxxvecb)=` |
|
Answer» `(2veca+5vecb).(3veca+vecb+vecaxxvecb)=6veca.veca+17veca.vecb+5vecb.vecb=11+17veca.vecb` `(veca.(vecaxxvecb)=vecb.(vecaxxvecb)=0,as veca and vecb` are perpendicular to `veca xx vecb`) `|veca+vecb|=sqrt3` `|veca+vecb|^(2)=3` `|veca|^(2)+|vecb|^(2)+2veca.vecb=3` `veca.vecb=1/2` `Rightarrow (2veca+5vecb).(3veca+vecb+veca xx vecb)11+17/2=39/2` |
|
| 81. |
`veca , vecb and vecc` are three non-coplanar vectors and `vecr`. Is any arbitrary vector. Prove that `[vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr`. |
|
Answer» `Let" " vecr=x_(1)veca+x_(2)vecb+x_(3)veccRightarrow vecr.(vecbxxvecc)=x_(1)veca.(vecbxxvecc)or x_(1)=([vecr vecb vecc])/([veca vecb vecc])`. `Also, " " vecr.(veccxxveca)=x_(2)vecb.(veccxxveca)orx_(2)=([vecrveccveca])/([vecavecbvecc])` `and vecr.(vecaxxvecb)=x_(3)vecc. (vecaxxvecb)or x_(3)=([vecr vecavecb])/([veca vecbvecc])` `Rightarrow vecr=([vecrvecb vecc])/([vecavecbvecc])veca+([vecrveccveca])/([vecavecbvecc])vecb+([vecrvecavecb])/([vecavecb vecc])vecc` `or [vecbveccvecr]veca+[veccvecavecr]vecb+[vecavecbvecr]vecr=[vecavecbvecc]vecr` |
|
| 82. |
if vector `vecx` satisfying `vecx xx veca+ (vecx.vecb)vecc =vecd` is given by `vecx = lambda veca + veca xx (vecaxx(vecdxxvecc))/((veca.vecc)|veca|^(2))` |
|
Answer» `vecx xxveca=(vecx.vecb)vecc=vecd` |
|
| 83. |
If `[ veca vecbvecc]=2` , then find the value of `[(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]` |
|
Answer» `[(veca+2vecb-vecc)(veca-vecb)(veca-vecb-vecc)]` `=|{:(1,2,-1),(1,-1,0),(1,-1,-1):}|[veca vecbvecc]` `= 2[veca vecb vecc] = 6` |
|
| 84. |
If `veca,vecb and vecc` are three mutually perpendicular unit vectors and `vecd` is a unit vector which makes equal angal with `veca,vecb and vecc`, then find the value of `|veca+vecb+vecc+vecd|^(2)`. |
|
Answer» `|veca+vecb+vecc+vecd|^(2)=sum|veca|^(2)+2sumveca.vecb=4+2vecd.(veca+vecb+vecc) " " (veca,vecb,vecc "are mutually perpendicular")` `Let vecd=lambdaveca+muvecb+v vecc. Then vecd.veca=vecd.vecb=vecd.vecc=costheta`Therefore, `lambda=mu=v=costheta` ` lambda^(2)+mu^(2)+v^(2)=1Rightarrow3cos^(2)theta=1costheta=1/sqrt3` `|veca+vecb+vecc+vecd|^(2)=4+-(2.3)/sqrt3=4+-2sqrt3` |
|
| 85. |
if `veca,vecb and vecc` are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and` veca+ vecb=vecc`. |
|
Answer» since `veca,vecb and vecc` are mutually perpendicular , `veca.vecb=vecb.vecc=vecc.veca=0` Angle between `veca and veca+vecb+vecc` is `cos theta=(veca.(veca+vecb+vecc))/(|veca||veca+vecb=vecc|)` `now |veca|=|vecb|=|vecc|=a` `|veca+vecb=vecc|^(2)= |veca|^(2)|vecb|^(2)+|vecc|^(2)+2veca.vecb+2vecb.vecc+vecc.veca` `=a^(2)=a^(2)+a^(2)+0+0+0` `3a^(2)` `|veca+vecb+vecc|=sqrt3a` Putting this value in (i) , we get `theta = cos^(-1) 1/sqrt3` |
|
| 86. |
Let `veca,vecb and vecc` be three vectors such that `vecane0, |veca|=|vecc|=1,|vecb|=4and |vecbxxvecc|=sqrt15`. If `vecb-2vecc=lambdaveca` then find the value of `lambda` . |
|
Answer» Let the angle between `vecb and vecc be alpha`. Then `|vecbxxvecc|=sqrt15` `|vecb||vecc| sinalpha=sqrt15` `sin alpha=sqrt15/4` ` cos alpha = 1/4` `Rightarrowvecb-2vecc=lambdaveca` `or|vecb-2vecc|^(2)=lambda^(2)|veca|^(2)` `|vecb|^(2)+4||vecc|^(2)-4.vecb.vecc=lambda^(2)|veca|^(2)` `or 16+ 4 -4 xx 4xx 1 xx 1/4=lambda^(2)` `or lambda^(2)=16 or lambda = +-4` |
|
| 87. |
Let `vecA , vecB and vecC` be vectors of legth , 3,4and 5 respectively. Let `vecA` be perpendicular to `vecB + vecC, vecB " to " vecC + vecA and vecC " to" vecA + vecB` then the length of vector `vecA + vecB+ vecC` is __________. |
|
Answer» Correct Answer - `5sqrt2` Given that `|vecA|=3, |vecB|=4, |vecC|=5` `vecAbot (vecB + vecC) Rightarrow vecA. (vecB +vecC) =0` `Rightarrow vecA.vecB + vecA.vecC=0` ` vecB bot (vecC +vecA)RightarrowvecB.(vecC+vecA_=0` `Rightarrow vecB.vecC+vecB.vecA=0` `vecCbot (vecA+vecB) RightarrowvecC. (vecA+vecB)=0` ` Rightarrow vecC.vecA+vecC.vecdB=0` Adding (i), (ii) and (iii) we get `2(vecA.vecBr+vecB.vecC+vecC.vecA)=0` Now , `|vecA + vecB + vecC|^(2)` `(vecA + vecB+vecC).(vecA + vecB+vecC)` `|vecA|^(2)+|vecB|^(2)+|vecC|^(2)` `+2(vecA.vecB + vecB.vecC+vecC.vecA)` 9+16+25+0 = 50 `|vecA + vecB +vecC|= 5sqrt2` |
|
| 88. |
Let `veca,vecb and vecc`are vectors such that `|veca|=3,|vecb|=4and |vecc|=5, and (veca+vecb)` is perpendicular to `vecc,(vecb+vecc)` is perpendiculatr to `veca` and `(vecc+veca)` is perpendicular to `vecb`. Then find the value of `|veca+vecb+vecc|`. |
|
Answer» Given , `(veca+vecb)=0Rightarrowveca.vecc+vecb.vecc=0` `(vecb+vecc).veca=0Rightarrowveca.vecb+vecc.veca=0` `(vecc+veca).vecb=0Rightarrowvecb.vecc+veca.vecb=0` `2(veca.vecb+vecb.vecc+vecc.veca)=0``Now, |veca+vecb+vecc|^(2)+|vecb|^(2)+|vecc|^(2)+2(veca.vecb+vecb.vecc+vecc.veca)=50` `|veca+vecb+vecc|=5sqrt2` |
|
| 89. |
Let `veca = 2i + j -2k, and b = i+ j ` if c is a vector such that `veca .vecc = |vecc|, |vecc -veca| = 2sqrt2` and the angle between `veca xx vecb and vecc` `is` `30^(@)` , then `|(veca xx vecb)xx vecc|` is equal toA. `2//3`B. `3//2`C. 2D. 3 |
|
Answer» Correct Answer - b `|(veca xxvecb)xxvecc|=|vecaxxvecb||vecc|sin30^(@)` `=1/2 (vecp +vecq+vecr)a^(2)` `or vecx=1/2 (vecp +vecq +vecr)` we have `veca = 2hati+hatj -2hatk and vecb = hati+hatj` `Rightarrow vecaxx vecb = 2hati -2hatj+hatk` `or |veca xx vecb|=sqrt9=3` Also given `|vecc-veca|^(2)=8` `or |vecc|^(2)=|veca|^(2)-2veca.vecc=8` Given `|aveca|=3 and veca. vecc =|vecc|` , using these we get `|vecc|^(2) -2|vecc|+1=0` `or (|vecc|-1)^(2)=0` `or |vecc|=1` Substituting values of `|veca xx vecb|and |vecc|` in (i), we get `|(veca xx vecb)xxvecc|=1/2xx 3xx 1= 3/2` |
|
| 90. |
Let `veca = 2i + j+k, vecb = i+ 2j -k and a` unit vector `vecc` be coplanar. If `vecc` is pependicular to `veca`. Then `vecc` isA. `1/sqrt2(-j+k)`B. `1/sqrt3(i-j-k)`C. `1/sqrt5(i-2j)`D. `1/sqrt3(i-j-k)` |
|
Answer» Correct Answer - a As `vecc` is coplanar with `veca and vecb` we take `vecc = alpha veca + betavecb` where `alpha and beta` are scalars. As `vecc` is perpendicular to `veca` , using (i), we get `0 = alphaveca.veca alpha +betavecb.veca` `or 0 =alpha (6) +beta(2+2-1) =3 (2alpha+beta) ` `or beta = -2alpha` Thus `vecc=alpha(veca -2vecb)=alpha(-3j+3k)=3alpha(-j+k)` `or |vecc|^(2)=18alpha^(2)` `or 1=18alpha^(2)` `or alpha= +- 1/(3sqrt2)` `vecc =+- 1/sqrt2 (-j+k)` |
|
| 91. |
Let `vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk` and `vec(gamma)=chati+ahatj+bhatk` be three coplnar vectors with `a!=b`, and `vecv=hati+hatj+hatk`. Then `vecv` is perpendicular toA. `vecalpha`B. `vecbeta`C. `vecgamma`D. none of these |
|
Answer» Correct Answer - a,b,c It is given that `vecalpha, vecb and vecgamma` are coplanar vectors, therefore ` [vecalpha vecbeta vecgamma] =0` `Rightarrow |{:(a,b,c),(b,c,a),(c,a,b):}|=0` ` or 3abc -a^(3) -b^(3) -c^(3) =0` ` or a^(3) +b^(3) +c^(3) -3abc =0` ` or (a + b +C0 (a^(2) +b^(2) + c^(2) -ab -bc-ca)=0` or a+b+c =0 ` [ a^(2) +b^(2) +c^(2)-ab -bc-ca ne 0)` ` Rightarrow vecv. vecalpha = vecv. vecbeta = vecv. vecgamma = 0` Hence, `vecv` is perpendicular to `vecalpha ,vecbeta and vecgamma` |
|
| 92. |
Let `vecV=2hati+hatj-hatk` and `vecW=hati+3hatk`. It `vecU` is a unit vector, then the maximum value of the scalar triple product `[(vecU, vecV, vecW)]` isA. `-1`B. `sqrt10 + sqrt6`C. `sqrt59`D. `sqrt60` |
|
Answer» Correct Answer - c Given that `vecV = 2hati +hatj -hatk and vecW =hati + 3hatk and vecU` is a unit vector ` |vecU|=1` Now `|vecU vecV vecW] = vecU.(vecV xx vecW)` `= vecU . (2hati +hatj -hatk) xx ( hati + 3hatk)` `vecU . (3hati -7hatj - hatk)` ` sqrt(3^(2)+7^(2)+ 1^(2)) cos theta` Which is maximum when `cos theta =1` therefore, maximum value of [`vecU vecV vecW] - sqrt59` |
|