 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. | Find the equations to the altitudes of the triangle whose angularpoints are `A(2,-2),B(1,1)a n dC(-1,0)dot` | 
| Answer» `m=(y_2-y_1)/(x_2-x_1)` `y-y_1=m(x-x_!)` `m_(BC)=(0-1)/(-1-1)=1/2` `m_(AD)=-2` Equation of AD`y-(-2)=(-2)(x-2)` `y+2=-2x+4` `y+2x=2` `A(2,-2),C(-1,0)` `m_(AC)=(0-(-2))/(-1-2)=-2/3` `m_(BE)=3/2` Equation of BE`y-1=3/2(x-1)` `(y-1)2=3x-3` `2y-2-3x+3=0` `2y-3x+1=0` `A(2,-2),B(1,1)` `m_(AB)=(1-(-2))/(1-2)=-3` `C(-1,0)` `y-0=1/3(x-(-1))` `m_(CF)=1/3` `3y=x+1` `x-3y+1=0`. | |
| 2. | Find the value of `m`for which the lines `m x+(2m+3)y+m+6=0a n dm x+(2m+1)x+(m-6)y+9=0`intersect at a; point on `y-a xi sdot` | 
| Answer» `(0,(-m+6)/(2m+3))` `(2m+3)y=-(m+6)` `y=(-m+6)/(2m+3)` `(m-6)y=-9` `y=(-9)/(m-6)` Point`(0,(-9)/(m-6))` `(m+6)/(2m+3)=9/(m-6)` `m^2-36=18m+27` `m^2-18m-63=0` `m^2-21m+3m-63=0` `m(m-21)+3(m-21)=0` `(m+3)(m-21)=0` `m=21,-3`. | |
| 3. | A line forms a triangle of area `54sqrt(3)s q u a r e`units with the coordinate axes. Find the equation of the line if theperpendicular drawn from the origin to the line makes an angle of `60^0`with the X-axis. | 
| Answer» Equation of AB `y=mx+c` Equation of OD `y-0=tan60(x-0)` `u=sqrt3x` `(m_(AB))sqrt3=-1` `m_(AB)=-1/sqrt3` Equation of line `y=-1/sqrt3x+c` `1/2*(sqrt3C)*C=54sqrt3` `C^2/2=54` `C^2=108` `C=sqrt108` `y=mx+c` `y=(-1/sqrt3)x+sqrt108`. | |
| 4. | Show that the line `x-y-6=0,4x-3y-20=0a d n6x+5y+8=0`are concurrent. Also, find their common point of intersection. | 
| Answer» `x-y-6=0` `x=y+6-(1)` `4x-3y-20=0` from equation 1 `4(y+6)-3y-20=0` `y+4=0` `y=-4` putting this value in equation 1 `x=-4+6` `x=2` `=6(2)+5(-4)+8` `=12-20+8=0` Common point of intersection=[2,-4]. | |
| 5. | Find the equation of the internal bisector of angle `B A C`of the triangle `A B C`whose vertices `A ,B ,C`are`(5,2),(2,3)a n d(6,5)`respectively. | 
| Answer» `(x_1,y_1),(x_2,y_2)` `y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)` Equation of AC `y-2=(5-2)/(6-5)(x-5)` `y-2=3(x-5)` `y-2=3x-15` `3x-y-13=0` Equation of AB `y-2=(3-2)/(2-5)(x-5)` `y-2=-1/3(x-5)` `x+3y-11=0` `|(a_1x+b_1y+c_1)/sqrt(a_1^2+b_1^2)|=pm|(a_2x+b_2y+c_2)/sqrt(a_2^2+b_2^2)|` `3x-y-13=0` `x+3y-11=0` `(3x-y-13)/sqrt(9+1)=pmm(x+3y-11)/sqrt(1+9` `3x-y-13=x+3y-11` `2x-4y-2=0` `3x-y-13=-x-3y+7` `4x+2y-24=0` `m=(-4)/2=-2` `AB=x+3y-11=0` `tantheta=|(m_1-m_2)/(1+m_1m_2)|=|((-1/3)-(-2))/(1+(-1/3)(-2))|` `tantheta=((-1/3)+2)/(1+(2/3))` `=(5/3)/(5/3)=1` `tantheta=45^@`. | |
| 6. | The equation of the base of an equilateral triangle is `x+y=2`and its vertex is `(2,-1)dot`Find the length and equations of its sides. | 
| Answer» `tantheta=|(m_1-m_2)/(1+m_1m_2)|` `theta=60,m_1=-1,m_2=?` `tan60=|(-1-m_2)/(1-m_2)|` `sqrt3=pm(-1-m_2)/(1-m_1)` `sqrt3-sqrt3m_2=-1-m_2` `m_2(1-sqrt3)=-1-sqrt3` `m_2=(-1-sqrt3)/(1-sqrt3)` `sqrt3-sqrt3m_2=1+m_2` `m_2(1+sqrt3)=sqrt3-1` `m_2=(sqrt3-1)/(1+sqrt3)` `y-y_1=m(x-x_1)` `y+1=(-1-sqrt3)/(1-sqrt3)(n-2)` `y+1=(sqrt3+1)/(sqrt3-1)(n-2)` `y+1=(sqrt3-1)/(sqrt3+1)(n-2)`. | |
| 7. | Find the equation of a straight line which makes an angle of `tan^(-1)sqrt(2)`with the x-axisand cuts off an intercept of `=3/(sqrt(2))`with the y-axis | 
| Answer» Equation of a straight line can be given as, `y = mx+c` Here, `y-` intercept `(c)= 3/sqrt2` `theta = tan^-1(sqrt2)` `=>tantheta = sqrt2` `:. m = tan theta = sqrt2` `:.` Equation of the line, `y = sqrt2x+3/sqrt2` `=>2x - sqrt2y +3 =0.` | |
| 8. | Find the coordinates of the foot of the perpendicular drawn from thepoint `(1,-2)`on the line `y=2x+1.` | 
| Answer» Here, slope of line, `y = 2x+1` is `2`. `:.` Slope of lineperpendicular to this line `= -1/2` Let foot of the perpendicular is `(x_1,y_1)`. Then, `y_1 = 2x_1+1.` So, from the point, `(1,-2)`, `(2x_1+1+2)/(x_1-1) = -1/2` `=>(2x_1+3)/(x_1-1) = -1/2` `=>4x_1+6 = 1-x_1` `=>x_1 = -1` `:. y_1 = 2(-1)+1 = -1` So, foot of the perpenicular will be `(-1-1).` | |
| 9. | Find the equation of the straight line which cuts off intercept onX-axis which is twice that on Y-axis and is at a unit distance from theorigin. | 
| Answer» Eqaution of a straight line can be given as, `x/a+y/b = 1` It is given that, `a = 2b` `:. x/(2b) +y/b = 1` Also, it is given that distance of this line from the origin is unit that is `1`. `:. |sqrt(1/b^2+1/(4b^2))| = 1` `=>1/b^2+1/(4b^2) = 1^2` `=>5 = 4b^2` `=>b = +-sqrt5/2` Putting value of `b` in equation of the line, `x/sqrt5+(2y)/sqrt5 = 1 and -x/sqrt5-(2y)/sqrt5 = 1` are the required equations. | |
| 10. | Find the coordinates of the incentre and centroid of the triangle whosesides have the equations `3x-4y=0,12 y+5x=0 and y-15=0.` | 
| Answer» 3x=4y 3x=4*15 x=20 x=-36 A(0,0),B(20,15).C(-36,15) Centroid`=((0+20+(-36))/3,(0+15+15)/3)` `=(-16/3,10)` `a=sqrt((20+36)^2+0^2)=sqrt((56)^2)=56` `b=sqrt(36^2+15^2)=39` `c=sqrt(20^2+15^2)=25` | |
| 11. | A straight line cuts intercepts from the axes of coordinates the sum of whosereciprocals is a constant. Show that it always passes though as fixed point. | 
| Answer» `x/a+y/b=1` `1/a+1/b=alpha` `1/a=alpha-1/b` `(alpha-1/b)x+y/b=1` `1/b(y-alpha)+(alphax-1)=0` `alpha^2-1=0` `L_1=y=lambda=0` `y=1/lambda(11/alpha,1/alpha)`. | |