InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 301. |
The principal solution `tanx=sqrt(3)` isA. `(pi)/(3)`B. `(2pi)/(3)`C. `(-pi)/(3)`D. `(-4pi)/(3)` |
| Answer» Correct Answer - A | |
| 302. |
The principal solution `cosx=(1)/(2)` isA. `(2pi)/(3)`B. `-(2pi)/(3)`C. `(pi)/(3)`D. `(7pi)/(4)` |
| Answer» Correct Answer - C | |
| 303. |
The principal solution `tanx=1` isA. `(7pi)/(4)`B. `(3pi)/(4)`C. `(-5pi)/(4)`D. `(5pi)/(4)` |
| Answer» Correct Answer - D | |
| 304. |
The principal solution `tanx=-1` isA. `npi+(3pi)/(4), ninZ`B. `npi-(3pi)/(4), ninZ`C. `npi+(pi)/(4), ninZ`D. `npi-(pi)/(4), ninZ` |
| Answer» Correct Answer - A | |
| 305. |
The principal solution `tanx=-1` isA. `-(3pi)/(4)`B. `(5pi)/(4)`C. `(pi)/(4)`D. `(7pi)/(4)` |
| Answer» Correct Answer - D | |
| 306. |
The principal solution `tanx=-1` isA. `(5pi)/(4)`B. `(pi)/(4)`C. `(3pi)/(4)`D. `-(3pi)/(4)` |
| Answer» Correct Answer - C | |
| 307. |
The principal solution `tanx=1` isA. `(3pi)/(4)`B. `(pi)/(4)`C. `(7pi)/(4)`D. `(-pi)/(4)` |
| Answer» Correct Answer - B | |
| 308. |
The principal solution `tanx=(1)/(sqrt(3))` isA. `(7pi)/(6)`B. `(5pi)/(6)`C. `(11pi)/(6)`D. `(pi)/(6)` |
| Answer» Correct Answer - A | |
| 309. |
The principal solution `tanx=(1)/(sqrt(3))` isA. `(5pi)/(6)`B. `(11pi)/(6)`C. `(-pi)/(6)`D. `(pi)/(6)` |
| Answer» Correct Answer - D | |
| 310. |
निम्नलिखित के मान ज्ञात कीजिए : `cos^(-1)(cos""(3pi)/(6))`A. `(-pi)/(6)`B. `(11pi)/(6)`C. `(pi)/(6)`D. `(13pi)/(6)` |
| Answer» Correct Answer - C | |
| 311. |
निम्नलिखित के मान ज्ञात कीजिए : `tan^(-1)(tan""(3pi)/(6))`A. `(7pi)/(6)`B. `(pi)/(6)`C. `(-pi)/(6)`D. `(-5pi)/(6)` |
| Answer» Correct Answer - B | |
| 312. |
`cos^(-1)(cos""(7pi)/(6))` का मान बराबर हैA. `(7pi)/(6)`B. `(5pi)/(6)`C. `(pi)/(6)`D. `(11pi)/(6)` |
| Answer» Correct Answer - B | |
| 313. |
The principal solution `cosx=-(1)/(sqrt(2))` isA. `(pi)/(4)`B. `(7pi)/(6)`C. `(5pi)/(4)`D. `-(pi)/(4)` |
| Answer» Correct Answer - C | |
| 314. |
The principal solution `cosx=-(1)/(2)` isA. `(2pi)/(3)`B. `(pi)/(3)`C. `(5pi)/(4)`D. `-(pi)/(3)` |
| Answer» Correct Answer - A | |
| 315. |
The principal solution `cosx=-(1)/(2)` isA. `(5pi)/(4)`B. `(pi)/(3)`C. `(4pi)/(3)`D. `-(pi)/(3)` |
| Answer» Correct Answer - C | |
| 316. |
The principal solution `cosx=(1)/(sqrt(2))` isA. `(3pi)/(4)`B. `-(3pi)/(4)`C. `(5pi)/(4)`D. `(7pi)/(4)` |
| Answer» Correct Answer - D | |
| 317. |
The principal solution of `cos^(-1)(cos((9pi)/4))` isA. `(7pi)/(4)`B. `(-pi)/(4)`C. `(9pi)/(4)`D. `(pi)/(4)` |
| Answer» Correct Answer - D | |
| 318. |
The number of principal solution of `tan2theta=1` isA. oneB. twoC. threeD. four |
| Answer» Correct Answer - D | |
| 319. |
The principal solution `cosx=-(1)/(sqrt(2))` isA. `(pi)/(4)`B. `(3pi)/(4)`C. `(7pi)/(4)`D. `-(pi)/(4)` |
| Answer» Correct Answer - B | |
| 320. |
The principal solution `cosx=(1)/(2)` isA. `(7pi)/(3)`B. `-(2pi)/(3)`C. `(2pi)/(3)`D. `(5pi)/(3)` |
| Answer» Correct Answer - D | |
| 321. |
The principal solution `cosx=(1)/(sqrt(2))` isA. `(pi)/(4)`B. `(3pi)/(4)`C. `(5pi)/(4)`D. `-(3pi)/(4)` |
| Answer» Correct Answer - A | |
| 322. |
The principal value of `sin^(-1)(1/2)` isA. `(pi)/(6)`B. `(-pi)/(6)`C. `(pi)/(3)`D. `(2pi)/(3)` |
| Answer» Correct Answer - A | |
| 323. |
The principal solution `cosx=(-sqrt(3))/(2)` isA. `(5pi)/(6)`B. `(pi)/(6)`C. `(pi)/(3)`D. `(-pi)/(6)` |
| Answer» Correct Answer - A | |
| 324. |
The principal solution `cosx=(sqrt(3))/(2)` isA. `(7pi)/(6)`B. `-(5pi)/(6)`C. `(5pi)/(6)`D. `(11pi)/(6)` |
| Answer» Correct Answer - D | |
| 325. |
The principal solution `cosx=(-sqrt(3))/(2)` isA. `(pi)/(6)`B. `(7pi)/(6)`C. `(-pi)/(6)`D. `(pi)/(3)` |
| Answer» Correct Answer - B | |
| 326. |
Find the principal solution of the equation `tanx=-1/(sqrt(3))`. |
|
Answer» `0 <= x <= 2 pi` `tan x = - tan(pi/6)` `= tan(pi - pi/6)` `= tan((5pi)/6)` also, `tan x = tan(pi + (5pi)/6)` `tan x = tan((11 pi)/6)` answer |
|
| 327. |
Find the principal value of `sin^(-1)``(1/(sqrt(2)))`A. `(-pi)/(4)`B. `(3pi)/(4)`C. `(pi)/(4)`D. `(-5pi)/(4)` |
| Answer» Correct Answer - C | |
| 328. |
The principal solution of `sinx=(-1)/(sqrt(2))` isA. `(pi)/(4)`B. `(3pi)/(4)`C. `-(7pi)/(4)`D. `(7pi)/(4)` |
| Answer» Correct Answer - D | |
| 329. |
The principal solution of `sinx=(-1)/(2)` isA. `(7pi)/(6)`B. `-(7pi)/(6)`C. `(pi)/(6)`D. `(5pi)/(6)` |
| Answer» Correct Answer - A | |
| 330. |
The principal solution `cosx=(-sqrt(3))/(2)` isA. `(5pi)/(6)`B. `(pi)/(6)`C. `(7pi)/(6)`D. `-(5pi)/(6)` |
| Answer» Correct Answer - B | |
| 331. |
The principal solution of `sinx=(-1)/(2)` isA. `(pi)/(6)`B. `(-pi)/(6)`C. `(5pi)/(6)`D. `(7pi)/(6)` |
| Answer» Correct Answer - B | |
| 332. |
The principal solution of `sinx=-(sqrt(3))/(2)` isA. `(pi)/(3)`B. `(4pi)/(3)`C. `(2pi)/(3)`D. `-(4pi)/(3)` |
| Answer» Correct Answer - B | |
| 333. |
The principal solution of `sinx=-(sqrt(3))/(2)` isA. `(4pi)/(3)`B. `(-pi)/(3)`C. `(pi)/(3)`D. `(-2pi)/(3)` |
| Answer» Correct Answer - B | |
| 334. |
The principal solution of `sinx=-(sqrt(3))/(2)` isA. `(pi)/(3)`B. `(-5pi)/(3)`C. `(5pi)/(3)`D. `(2pi)/(3)` |
| Answer» Correct Answer - C | |
| 335. |
The principal solution of `sinx=(-1)/(sqrt(2))` isA. `(11pi)/(6)`B. `-(11pi)/(6)`C. `(pi)/(6)`D. `(5pi)/(6)` |
| Answer» Correct Answer - B | |
| 336. |
The principal solution of `sinx=(-1)/(sqrt(2))` isA. `(pi)/(4)`B. `(3pi)/(4)`C. `(5pi)/(4)`D. `(-5pi)/(4)` |
| Answer» Correct Answer - D | |
| 337. |
Find the principal solution of the equation `sinx=(sqrt(3))/2`. |
|
Answer» `0<= x <= 2 pi` as we know that, `sqrt3/2 = sin (pi/3)` sin x = sin (pi/3) so, `x=pi/3 ` principal solution also, `pi-x = pi/3 ` `x= pi- pi/3 = (2pi)/3` principal solution |
|
| 338. |
Prove that `3sin``pi/6``sec``pi/3``-4sin``(5pi)/6``cot``pi/4``=1` |
|
Answer» `L.H.S = 3sin(pi/6)sec(pi/3)-4sin(5pi/6)cot(pi/4)` `=3(1/2)(2)-4sin(pi-(pi/6))(1)` As we know, `sin(pi -x) = sinx` Our equation becomes, `=3(1/2)(2)-4sin(pi/6)(1)` `=3-4(1/2) = 1 = R.H.S.` |
|
| 339. |
Prove that `(sin(x+y))/(sin(x-y))=(tanx+tany)/(tanx-tany)` |
|
Answer» `L.H.S. = (sin(x+y))/(sin(x-y))` `=(sinxcosy+sinycosx)/(sinxcosy-cosxsiny)` Dividing numerator and denominator by `cosxcosy` `=((sinx/cosx)+(siny/cosy))/((sinx/cosx)-(siny/cosy))` `=(tanx+tany)/(tanx-tany)=R.H.S` |
|
| 340. |
Show that `tan 3x tan 2x tan x = tan 3x - tan 2x - tan x`. |
|
Answer» `3x = 2x + x` `tan 3x = tan(2x+x)` `tan 3x = (tan 2x + tan x)/(1- tan2x*tanx)` `tan3x (1- tan2x*tanx) = tan2x + tanx)` `tan3x - tan3x*tan2x*tanx = tan2x + tanx` `tan3x - tan2x - tanx = tan3x tan2x tanx` hence proved |
|
| 341. |
Prove that `(cos7x+cos5x)/(sin7x-sin5x)=cotx`. |
|
Answer» Here, we will use the following formulas: `sin A - sin B = 2sin((A-B)/2)cos((A+B)/2)` `cos A + cos B = 2cos((A-B)/2)cos((A+B)/2)` `L.H.S. = (cos7x+cos5x)/(sin7x-sin5x)` `=(2cos((7x+5x)/2)cos((7x-5x)/2))/(2cos((7x+5x)/2)sin((7x-5x)/2))` `=cos(x)/sin(x)=cotx=R.H.S.` |
|
| 342. |
Given x`gt` 0, then value of `f(x)=-3cossqrt(3+x+x^(2))` lie in the interval ….. . |
|
Answer» Given function `f(x)=-3cossqrt(3+x+x^(2))` We know that, `" "-1lecosxle1` `rArr" "-3le3cosxle3` `rArr" "3ge-3cosxge-3` `rArr" "-3le-3cosxle3` So, the value of `f(x)` lies in [-3, 3]. |
|
| 343. |
The value of `3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)xcos^(6)x)` is |
|
Answer» Given expression, `3(sinx-cos)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)` `" "=3[sin^(2)x+cos^(2)x-2sinxcosx]^(2)+6[sin^(2)x+cos^(2)x+2*sinx*cosx]+4[(sin^(2)x)^(3)+(cos^(2)x)^(3)]` `" "=3(1-sin2x)^(2)+6(1+sin2x)+4[(sin^(2)+cos^(2)x)(sin^(4)x-sinxcos^(2)x+cos^(4)x)` `" "=3(1-sin^(2)23x-2sin2x)+6+6sin2x+4[(sin^(2)x+cos^(2)x)^(2)3sincos^(2)x]` `" "=3+3sin^(2)2x-6sin2x+6+6sin2x` `" "=4-3sin^(2)2x=13` |
|
| 344. |
Which of the following is correct?A. `sin1^@gt sin1`B. `sin1^@ltsin1`C. `sin1^@=sin1`D. `sin1^@=pi/180sin1` |
|
Answer» Correct Answer - B Since f(x) =sin x is an invreasing function for `0 ltx ltpi//2` and 1 rad is approximately `57^@` , we have `1^@lt1^RrArr sin1^@,sin1` |
|
| 345. |
Evaluate `cosacos2acos3a cos 999 a ,`where `a=(2pi)/(1999)dot` |
|
Answer» Let `P = cosacos2acos3a...cos999a` Let `Q = sinasin2asin3a...sin999a` Then, `2^999PQ = (2sinacosa)(2sin2acos2a)...(2sin999acos999a)` `= sin2asin4a...sin1996asin1998a` `=(sin2asin4a...sin998a)((-sin(2pi-1000a))(-sin(2pi-1002a))...(-sin(2pi-1998a)))`...[As `-sin(2pi-theta) = sintheta`] `=(sin2asin4a...sin998a)((-sin(2pi-1000((2pi)/1999)))(-sin(2pi-1002((2pi)/1999))))...(-sin(2pi-1998((2pi)/1999)))))`...[As `a = (2pi)/1999`] `=(sin2asin4a...sin998a)((-sin((2pi)/1999(999)))(-sin((2pi)/1999(997)))...(-sin((2pi)/1999)))` `=(sin2asin4a...sin998a)(sin999asin997a...sin3asina)` `=>2^999PQ = sinasin2asin3a...sin999a` `=>2^999PQ = = Q` `=>P = 1/(2^(999))` `:. cosacos2acos3a...cos999a = 1/(2^(999))` |
|
| 346. |
Show that: `cotx-cot2x=2` |
|
Answer» `L.H.S. = cotx - cot2x = cosx/sinx -(cos2x)/(sin2x)` `=(cosxsin2x - cos2xsinx)/(sinxsin2x)` `=(sin(2x-x))/(sinxsin2x) = sinx/(sinxsin2x)` When, `x = 15^@` `1/(sin2x) = 1/(sin30^@) = 2 = R.H.S.` So, given equation is true for `x = 15^@` |
|
| 347. |
`nCr + 2. nC(r-1) + nC(r-2) = (n+2)Cr (2 |
|
Answer» Here, we will use the property of binomial coefficients, `n_(C_r) + n_(C_(r-1)) = (n+1)_(C_r)` `L.H.S. = n_(C_r)+2*n_(C_(r-1))+n_(C_(r-2))` `= n_(C_r)+n_(C_(r-1))+n_(C_(r-1))+n_(C_(r-2))` Using the above property, `=(n+1)_(C_r)+(n+1)_(C_(r-1))` Again using the above property, `=(n+2)_(C_r) = R.H.S.` |
|
| 348. |
The general solution of equation `sin^(50)x-cos^(50)x=1` |
|
Answer» `0 <= sin^50 x <= 1; 0 <= a <= 1` `0 <= cos^50 x <=1 ; 0 <= b <= 1` `a-b =1` `a=1` `sin^50 x = 1` `sin x = +- 1` `x= n pi +- pi /2` C option is correct answer |
|
| 349. |
The value of the expression`cos^3theta+cos^3(120+theta)+cos^3(240+theta)` is; |
|
Answer» `cos 3 theta = 4 cos theta - 3 cos theta` `cos^3 theta = ( cos 3 theta + 3 cos theta)/4` `(cos(3 theta) + 3 cos theta + cos ( 360 + 3 theta) + 3 cos( theta + 120) + cos(120+ 3 theta) + 3cos( theta + 240))/4` `= (cos 3 theta + 3 cos theta + cos 3 theta + 3 cos ( theta+ 120) + cos 30 + 3cos( theta-120))/4` `= (3 cos 3 theta + 3 cos theta + 3 xx 2 cos theta cos 120)/4` `= ( 3 cos 3 theta + 3 cos theta + 6 xx (-1/2) cos theta)/4` `= 3/4 cos 3 theta` option C is correct Answer |
|
| 350. |
If `max{5sin theta+3sin(theta-alpha)}=7` then the set of possible vaues of `alpha` is `theta in R` |
|
Answer» `5 sin theta + 3 sin( theta - alpha)` `= ( 5 + 3 cos alpha) sin theta - 3sin alpha cos theta` `= {(5 + 3cos alpha)^2 + 9 sin^2 alpha}` `= sqrt((5+ 3 cos alpha)^2 + 9 sin^2 alpha) sin(theta - phi) ` `max{5sin theta + 3 cos(theta- alpha)} ` `= sqrt((5+3cos alpha)^2 + 9sin^2alpha)` =`7` `25 + 30 cos alp-ha + 9 = 49` `30 cos alpha = 15` `cos alpha = 1/2` `alpha = 2n pi + - pi/3` option A is correct answer |
|