Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

If `x`is so small that `x^3`and higher powers of `x`may be neglectd, then `((1+x)^(3//2)-(1+1/2x)^3)/((1-x)^(1//2))`may be approximated as`3x+3/8x^2`b. `1-3/8x^2`c. `x/2-3/xx^2`d. `-3/8x^2`A. `3x+3/(x^(2))`B. `1-3/8 x^(2)`C. `x/2-3/x x^(2)`D. `-3/8 x^(2)`

Answer» Correct Answer - D
`((1-x)^(3//2)(1+(1)/(2)x)^(3))/((1-x)^(1//2))=((1+3/2x+3/8x^(2))-(1+3/2x+3(x^(2))/(4)))/((1-x)^(1//2))`
`= (-3)/(8)x^(2)(1-x)^(-1//2)`
`= - 3/8 x^(2)(1+x/2) = - 3/8 x^(2)`
52.

If `x`is positive, the first negative term in the expansion of `(1+x)^(27//5)i s(|x|

Answer» Correct Answer - B
`T_(r+1)` in `(1+x)^(n)` is
`(n(n-1)(n-2)"……"(n-r+1))/(r!) x^(r)`
For first negative term,
`n -r + 1 lt 0`
or `27/5 - r +1 lt 0` or `r gt 32/5`
Thus, first negative term occurs when `r = 7`,
53.

Find the value of `(sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j))`.

Answer» Here sum does nto change if we replace `i` by `n-1` and j by `n-j`.
By doing so, in fact we are writing the series in the reverse order.
Therefore, `S = underset(0leiltjlen)(sumsum)(i+j)(.^(n)C_(i)+.^(n)C_(j))" "(1)`
`=underset(0leiltjlen)(sumsum)(n-i+n-j)(.^(n)C_(n-i)+.^(n)C_(n-j))`
`=underset(0leiltjlen)(sumsum)(2n(-i+j))(.^(n)C_(i) + .^(n)C_(j))" "(2)`
Adding (1) and (2), we have
`2S = 2n underset(0leiltjlen)(sumsum)(.^(n)C_(i) +.^(n)C_(j))`
or `S = n xx n2^(n) = n^(2)2^(n)`
54.

Find the sum `(sumsum)_(0leiltjlen) jxx""^(n)C_(i)`.

Answer» `underset(0leiltjlen)(sumsum)j..^(n)C_(i)`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)[(r+1)+(r+2)+"...."+(n)]`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)[(r+1)+(r+2)+"...."(r+(n-r))]`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)(n-r)/(2)(r+1+n)`
`= 1/2 underset(r=0)overset(n)sum.^(n)C_(r) (n(n+1)-r-r^(2))`
` = 1/2 [n(n+1)underset(r=0)overset(n)sum.^(n)C_(r)-underset(r=0)overset(n)sumr^(n)C_(r)-underset(r=0)overset(n)sumr^(2)..^(n)C_(r)]`
`=1/2[n(n+1).2^(n)-n underset(r=0)overset(n)sum.^(n-1)C_(r-1)-n underset(r=0)overset(n)sumr..^(n-1)C_(r-1)]`
`=1/2[n(n+1).2^(n)-n.2^(n-1)-n underset(r=0)overset(n)sum((n-1)..^(n-2)C_(r-2)+.^(n+1)C_(r-1))]`
`= 1/2[n(2n+1).2^(n-1)-n(n-1).2^(n-2)-n.2^(n-1)]`
`= n(3n+1).2^(n-3)`
55.

Find the sum `(sumsum)_(0leiltjlen) ""^(n)C_(i)`.

Answer» `underset(0leiltjlen)(sumsum).^(n)C_(i) = ((underset(i=0)overset(n)sumunderset(j=0)overset(n)sum.^(n)C_(i))-underset(i=0)overset(n)sum.^(n)C_(i))/(2)`
`= ((underset(i=0)overset(n)sum(n+1)^(n)C_(i))-underset(i=0)overset(n)sum.^(n)C_(i))/(2)`
` = ((n+1)2^(n)-2^(n))/(2)`
`= n xx 2^(n-1)`
56.

If `(1+x-2x^2)^(20)=a_0a_1x=a_2x^2+a_3x^3++a_(40)x^(40),`then find the value of `a_1+a_3+a_5++a_(39)dot`

Answer» `(1+x-2x^(2))^(20) = a_(0) + a_(1)x+a_(2)x^(2) + "….." +a_(40)x^(40)`
Putting `x = 1`, we get
`a_(0) + a_(1) + a_(2) + a_(3) +"……."+a_(40) = 0" "(1)`
Putting, `x = - 1`, we get
`a_(0) - a_(1) + a_(2) - a_(3) + "……" - a_(39) + a_(40) = 2^(20) " "(2)`
Substracting (2) from (1), we get
`2[a_(1)+a_(3)+"......"+a_(39)]=-2^(20)`
or `a_(1)+a_(3)+"....."+a_(39)=-2^(19)`
57.

If the sum of the coefficient in the expansion of `(alpha^2x^2-2alphax+1)^(51)`vanishes, then find the value of`alpha`

Answer» We have `(alpha^(2)x^(2)-3alphax+2)^(51)`.
`:.` Sum of coefficients `= (alpha^(2)-3alpha+2)^(51)`
Since sum of coefficient is zero,
`alpha^(2) - 3alpha + 2 =0`
`rArr (alpha+2)(alpha-1)=0`
`rArr alpha = 1,2`
58.

Prove that `.^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2+1/3) .^(n)C_(3) + "…" + (-1)^(n-1) (1+1/2+1/3 + "…." + 1/n) .^(n)C_(n) = 1/n`

Answer» Let `S = .^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2 + 1/3) .^(n)C_(3) + "….."`
`+(-1)^(n-1)(1+1/2+1/3+"…."+1/n) .^(n)C_(n)`.
rth term of the series is
`T(r ) = (-1)^(r-1) . C_(r ) (1+1/2+1/3+"……"+1/r)`, where `C_(r) = .^(n)C_(r)`
Let us consider a series whose general term is
`T_(1)(r ) = (-1)^(r-1). C_(r)(1+x+x^(2)+"...."+x^(r-1))`
`= (-1)^(r-1). C_(r) ((1-x^(r))/(1-x))`
` = ((-1)^(r-1)C_(r))/(1-x) + ((-1)^(r)x^(r)C_(r))/(1-x)`
`rArr underset(r=1)overset(n)sum T_(1)(r ) = (1)/((x-1)) underset(r=1)overset(n)sum (-1)^(r) C_(r ) + (1)/((1+x))underset(r=1)overset(n)sum(-1)^(r). C_(r).x^(r )`
`rArr underset(r=1)overset(n)sumT_(1)(r ) = (1)/((x-1)) (0-x) + (1)/((1-x)) ((1-x)^(n) - 1) = (1-x)^(n-1)`
`= L` (say)
Clearly `S = underset(0 )overset(1)intLdx = underset(0)overset(1)int(1-x)^(n-1) dx = 1/n`
59.

Prove that ` sum_(n)^(r=0) ""^(n)C_(r)*3^(r)=4^(n).`

Answer» LHS=`.^(n)C_(0) xx 3^(0) + .^(n)C_(1) xx 3 + .^(n)C_(2) xx 3^(2)+...+^(n)C_(n)3^(n)`
`=(1+3)^(n)=4^(n)= RHS " "` [by binomial expansion].
60.

Show that `(sqrt(2)+1)^6+(sqrt(2)-1)^6=198`A. 184B. 192C. 198D. 202

Answer» Correct Answer - C
N/a
61.

Using binomial theorem, evaluate each of the following: (i)`(104)^(4)` (ii) `(98)^(4)` (iii)`(1.2)^(4)`

Answer» Correct Answer - (i) 104060401 (ii)92236816 (iii) 2.0736
(i) `(104)^(4)=(100+1)^(4)`
`=.^(4)C_(0)(100)^(4)+.^(4)C_(1)(100)^(3) xx1+.^(4)C_(2)(100)^(2) xx1^(2)xx+.^(4)C_(3)(100) xx1^(3) +.^(4)C_(4) xx1^(4) `)
`= 100000000 + 4000000 + 60000 + 400 +1=104060401`
62.

Prove that `(2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2))`.

Answer» ` ( a + b ) ^ ( 4 ) + ( a - b ) ^ ( 4) = [.^ ( 4 ) C_(0) a^ ( 4 ) + .^ ( 4) C_(1) a^(3)b +.^(4)C_(2)a^(2)b ^ ( 2) + .^(4) C_(3)ab^(3) + .^(4)C_(4)b^(4)]`
`+ [.^(4)C_(0) a^(4) + .^ (4)C_(1) a^(3) b + .^(4) C_(2)a^(2)b^(2) - .^(4)C_(3)ab^(3) + .^(4) C _(4)b^(4)]`
`=2[.^(4) C _ (0) a^(4) + .^(4) C _(2) a^(2) b^(2) + .^(4) C _(4) b^(4) ]= 2 [a^(4) + 6a^(2) b^(2) + b^(4)].`
Putting `a=2 and b= sqrt(x),` we get
`(2+ sqrt(x) )^(4) + ( 2 - sqrt(x))^(4) = 2[2^(4) + 6 xx 2 ^(2) xx ( sqrt(x))^(2) + ( sqrt(x))^(4) ] = 2 ( 16+ 24x + x^(2)).`
63.

The number of terms in the expansion of `(x^2+1+1/x^2)^n, n in N` , is:A. number of terms is `2n+1`B. constant term is `2^(n-1)`C. coefficient of `x^(2n-2)` is nD. coefficient of `x^(2)` in n

Answer» Correct Answer - A::C
`(x^(2) + 1 + 1/(x^(2)))`
`= .^(n)C_(0)+.^(n)C_(1)(x^(2) + 1/(x^(2)))+.^(n)C_(2)(x^(2) + 1/(x^(2)))^(2)+"......"+.^(n)C_(n)(x^(2)+1/(x^(2)))^(n)`
This contains term having `x^(0), x^(2), x^(4), "…….."x^(2n), x^(-2n), x^(-4),"….",x^(-2n)`
coefficient of constant term `= .^(n)C_(0) + (.^(n)C_(2))(2) + (.^(n)C_(4)) (.^(4)C_(2)) + (.^(n)C_(6)) (.^(6)C_(3)) + "......" ne 2^(n-1)`. Coefficient of `x^(2n-2)` is `.^(n)C_(n-1) = n`
coefficient of `x^(2)` is `.^(n)C_(1) + (.^(n)C_(3))(.^(3)C_(1)) + (.^(n)C_(5))(.^(5)C_(2)) + "....." gt n`
64.

The value of `.^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m)` is equal toA. `.^(m+n)C_(n) - 1`B. `.^(m+n)C_(n-1)`C. `.^(m)C_(1) + .^(m+1)C_(2) + .^(m+2)C_(3) + "…." + .^(m+n-1)C_(n)`D. `.^(m+n)C_(m) - 1`

Answer» Correct Answer - A::C::D
`.^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"……"+.^(n+m-1)C_(m)`
`= .^(n)C_(n-1)+.^(n+1)C_(n-1)+.^(n+2)C_(n-1)+"……"+.^(n+m-1)C_(n-1)`
`=` Coefficient of `x^(n-1)` in `(1+x)^(n) [((1+x)^(m) -1)/((1+x) - 1)]`
= Coefficient of `x^(n-1)` in `((1+x)^(m+n) -(1+x)^(n))/(x)`
`=` Coefficient of `x^(n)` in `[(1+x)^(m+n) - (1+x)^(n)]`
`= .^(m+n)C_(n) - 1`
Similarly, we can prove
`.^(m)C_(1)+.^(m+1)C_(2)+.^(m+2)C_(3)+"...."+.^(m+n-1)C_(n)=.^(m+n)C_(m)-1`
65.

Prove that `sum_(r = 0)^(k) (-3)^(r -1) ""^(3n)C_(2 r - 1) = 0`, where `k = (3n)/2` and n is an even positive integer.

Answer» Since, n is an even positive integer, we can wirte
`n =2, , m = 1,2,3….`
Also , ` k = ( 3n)/2 = ( 3(2m))/2 = 3m` therefore `S = overset(3m)underset(r=1)sum(-3)^(r-1).^(6m)C_(2r-1)`
i.e ` S = (-3)^(0).^(6m)C_(3) +... (-3)^(3m-1) . ^(6m)C_(3m-1)`
From the binomial expanision , we write
`(1+x)^(6m)=^(6m)C_(0)+(-3)^(6m)C_(3)+......+(-3)^(3m-1). ^(6m)C_(3m-1)`
` (1-x)^(6m) = ^(6m)C_(0) + ^(6m)C_(1)(-x)+^(6m)C_(2) (-x)^(2)+....+^(6m)C_(6m-1) (-x)^(6m-1)+ ^(6m)C_(6m) (-x)^(6m)`
on subtracting Eq. (iii) from Eq. (ii) , we get
` (1+x)^(6m) - (1-x)^(6m)=2[.^(6m)C_(1)x+ ^(6m)C_(3)x^(3) + ^(6m)C_(5)x^(5x) +...+^(6m) C_(6m-1)x^(6m-1) ]`
` Rightarrow ((1+x)^(6m)-(1-x)^(6m))/(2x)=^(6m)C_(1)+^(6m)C_(3)x^(2)+ ^(6m)C_(5)x^(4) +.....+ ^(6m)C_(6m-1)x^(6m-2)`
Let ` x^(2)=y`
` Rightarrow ((1+sqrty)^(6m)-(1-sqrty)^(6m))/(2sqrty)= ^(6m)C_(1)+^(6m)C_(3)y`
` + ^(6m)C_(5)y^(2)+...+^(6m)C_(6m-1)y^(3m-1)`
For the required sum we have to put y=-3 in RHS.
`S=((1+sqrt3)^(6m)-(1-sqrt(-3))^(6m))/(2sqrt(-3))`
` = ((1+isqrt3)^(6m)-(1-sqrt3)^(6m))/(2isqrt3)`
Let `z= 1 sqrt3= r(cos theta + i sin theta)`
` Rightarrow r= |z|= sqrt(1 +3) =2`
`and theta = pi //3`
Now,` z^(6m)(cos 6m theta) + i sin 6m theta)`
and `(overline(z))^(6m) = r^(6m) (cos 6m theta - i sin 6m theta)`
` Rightarrow z^(6m)- overline(z)^(6m) = r^(6m) (2 isin 6m theta)`
Frow .Eq. (i) ,
` S = (z^(6m)-overlinez^(6m))/(2isqrt3)= (r^(6m)(2isin6m theta))/(2isqrt3)`
`= (2^(6m)sin 6m theta)/(sqrt3)`
`0 "as" m inz, and theta= pi//3`
66.

If `sum_(r=0)^(n) (n)/(""^(n)C_(0))= sum__(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r))`, thenA. `n = 1`B. `n = 2`C. `n = 3`D. none of these

Answer» Correct Answer - A::C
`underset(r=0)overset(n)sum(r)/(.^(n)C_(r)) = underset(r=0)overset(n)sum(n-r)/(.^(n)C_(n-r))= n/2underset(r=0)overset(n)sum(1)/(.^(n)C_(r))`
`:. n/2 = (n^(2)-3n+3)/(2)`
or `n = 1,3`
67.

Prove that `sum_(r=1)^(k) (-3)^(r-1) ""^(3n)C_(2r-1) = 0` , where `k = 3n//2` and n is an even integer.

Answer» `S = underset(r=t)overset(k)sum (-3)^(r-1) .^(3n)C_(2r-1), k = (3n)/(2)` and n is even
Let `k = (3(2m))/(2) = 3m`
Then, `S = underset(r=1)overset(3m)sum(-3)^(r-1) xx .^(6m)C_(2r-1)`
`= .^(6m)C_(1)-3.^(6m)C_(3)+3^(2).^(6m)C_(5)-"……"(-3)^(3m-1).^(6m)C_(6m-1)`
`= 1/(sqrt(3))[sqrt(3).^(6m)C_(1)-(sqrt(3))^(3).^(6m)C_(3) + (sqrt(3))^(5).^(6m)C_(5)-"......"`
` + (-1)^(3m-1)(sqrt(3))^(6m-1).^(6m)C_(6m-1)]`
There is an alternate sign series with odd binomial coefficients.
Hence, we should replace x by `sqrt(3)i` in `(1+x)^(6m)`. Therefore,
`(1+sqrt(3)i)^(6m) = .^(6m)C_(0)+.^(6m)C_(1)(sqrt(3)i)+.^(6m)C_(2)(sqrt(3)i)^(2)+.^(6m)C_(3)(sqrt(3)i)^(3)+"...."+.^(6m)C_(6m)(sqrt(3)i)^(6m)`
`rArr sqrt(3) xx .^(6m)C_(1) -(sqrt(3))^(3).^(6m)C_(3)+(sqrt(3))^(5).^(6m)C_(5)+"...."`
= Imaginary part in `(1+sqrt(3)i)^(6m)`
`= "Im"[2^(6m)(1/2+(sqrt(3))/(2))^(6m)]`
` = "Im"[2^(6m)(cos2mpi + i sin 2m pi)]`
` = "Im" [2^(6m)] = 0`
`rArr S = 0`
68.

Prove that ` sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)`

Answer» We have,
`S = underset(k = 0)overset(n)sum(-1)^(k) . .^(3n)C_(k) = .^(3n)C_(0) - .^(3n)C_(1) + .^(3n)C_(2) + "……" + (-1)^(n)..^(3n)C_(n)`
But
`.^(3n)C_(0) = .^(3n-1)C_(0)`
`-.^(3n)C_(1) = -.^(3n-1)C_(0) - .^(3n-1)C_(1)`
`.^(3n)C_(2) = .^(3n-1)C_(1) .^(3n-1)C_(2)`
`-.^(3n)C_(3) = -.^(3n-1)C_(2) - .^(3n-1)C_(3)`
`{:("......"),("......"):}" "{:("......"),("......"):}`
`(-1)^(n)..^(3n)C_(n) = (-1)^(n).^(3n-1)C_(n-1)+(-1)^(n).^(3n-1)C_(n)`
On adding, we get
`S = (-1)^(n).^(3n-1)C_(n)`.
69.

If the second term of the expansion `[a^(1/(13))+a/(sqrt(a^(-1)))]^n`is `14 a^(5//2)`, then the value of `(^n C_3)/(^n C_2)`is.

Answer» Correct Answer - 4
`T_(2) = .^(n)C_(1) (a^(1//13))^(n-1).asqrt(a)= 14a^(5//2)`
or `n.a^((n-1)/(13)) = 14a`
or `n.a^((n-14)/(13)) = 14`
or `(n-14)/(13) = 0`
or `n = 14`
`rArr (.^(14)C_(3))/(.^(14)C_(2)) = (14!)/(3!.11!) (2!12!)/(14!) = 12/3 = 4`
70.

The sum of the series` ""^20 C_0-""^20 C_1+""^20C_2-""^20C_3+...-...+""^20C_10`is:

Answer» `(1+x)^n=^n C_0+^n C_1x+^n C_2x^2+.........^nC_nx^x`
`if x=-1,x=20`
`(1-1)^20=^20C_0-^20C_1+^20C_2-^20C_3.....^20C_19+^20C_20`
`^nC_r=^nC_(n-r)`
`0=2 ^20C_0-2^20C_1.....-^20C_9 2+2^20C_10 -^20C_10`
`0=2(S)-^20C_10`
`S=(^20C_10) /2`
option`(2)`
71.

The remainder left out when `8^(2n)""(62)^(2n+1)`is divided by 9 is(1) 0(2) 2(3) 7(4) 8

Answer» `f(x) = 8^(2n) - (62)^(2n+1)`
`= (9-1)^(2n) - (9 xx 7-1)^(2n+1)`
`(1+x)^n = .^nC_0(1)^nx^0 + .^nC_1(x)^1 + ........ + .^nC_(n-1)x^(n-1) + .^nC_n x^n`
remainder= `.^(2n)C_(2n) (-1)^(2n) - .^(2n+1)C_(2n+1)(-1)^(2n+1)`
`= 1 xx 1 - 1xx(-1) = 1+1 = 2`
Answer
72.

The value of `(.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10))` is

Answer» `(C(21,1) - C(10,1)) + (C(21,2) - C(10,2)) +...(C(21,10) - C(10,10))`
Now, we know, `C(21,0) = C(10,0) = 1`
So, we can write the given exprssion as ,
`(C(21,0) - C(10,0))+ (C(21,0) - C(10,1)) + (C(21,2) - C(10,2)) +...(C(21,10) - C(10,10))`
`=[C(21,0) + C(21,1) +C(21,2) +...+ C(21,10) ] - [C(10,0)+C(10,1)+C(10,2)+...+C(10,10)]`
`=1/2[C(21,0) + C(21,1) +C(21,2) +...+ C(21,21) ] - [C(10,0)+C(10,1)+C(10,2)+...+C(10,10)]`
`= 1/2(2^21) - 2^10`
`=2^20-2^10.`
So, option `(2)` is the correct option.
73.

The value of `(.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10))` isA. `2^(20) - 2^(10)`B. `2^(21) - 2^(11)`C. `2^(21) - 2^(10)`D. `2^(20) - 2^(9)`

Answer» Correct Answer - A
We have
`(.^(21)C_(1)+.^(21)C_(2)"....."+.^(21)C_(10))-(.^(10)C_(1)+.^(10)C_(2)"....".^(10)C_(10))`
`= 1/2[.^(21)C_(0)+.^(21)C_(1)+.^(21)C_(2)+"..."+.^(21)C_(21)]-2^(10)`
`= 2^(20) - 2^(10)`
74.

The value of `(.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10))` is(A) `2^(21) - 2^(11)`(B) `2^(21) - 2^(10)`(C) `2^(20) - 2^(9)`(D) `2^(20) - 2^(10)`A. `2^(21) - 2^(11)`B. `2^(21) - 2^(10)`C. `2^(20) - 2^(9)`D. `2^(20) - 2^(10)`

Answer» `(.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + …. + (.^(21)C_(10) - .^(10)C_(10))`
`= (.^(21)C_(1) + .^(21)C_(2) + … + .^(21)C_(10)) - (.^(10)C_(1) + .^(10)C_(2) + ….+ .^(10)C_(10))`
`= (1)/(2) (.^(21)C_(1) + .^(21)C_(2) + .... + .^(21)C_(20)) - (2^(10) - 1)`
`= (1)/(2) (.^(21)C_(1) + .^(21)C_(2) + .... + .^(21)C_(21) - 1) - (2^(10) - 1)`
`= (1)/(2) (2^(21) - 2) - (2^(10) - 1) = 2^(20) - 1 - 2^(10) + 1 = 2^(20) - 2^(10)`
75.

If the number of terms in the expansion of `(1-2/x+4/(x^2))^n , x!=0,`is 28, then the sum of the coefficients ofall the terms in this expansion, is :(1) 64(2) 2187(3) 243(4) 729A. 64B. 2187C. 243D. 729

Answer» Clearly, number of terms in the expansion of
`(1 - (2)/(x) + (4)/(x^(2)))^(n)` is `((n + 2)(n + 1))/(2)` or `.^(n + 2)C_(2)`
assuming `(1)/(x)` and `(1)/(x^(2))` distinct]
`:.((n+2) (n + 1))/(2) = 28`
`implies (n + 2) (n + 1) = 56 = (6 + 1) (6 + 1) implies n = 6`
Hence, sum of coefficients `= (1 - 2 + 4)^(6) = 3^(6) = 729`
Note As `(1)/(x)` and `(1)/(x^(2))` are functions of same variables therefore number of dissimilar terms will be `2n + 1`, i.e., odd, which is not possible, Hence it contains error.
76.

If the number of terms in the expansion of `(1-2/x+4/(x^2))^n , x!=0,`is 28, then the sum of the coefficients ofall the terms in this expansion, is :(1) 64(2) 2187(3) 243(4) 729A. 2187B. 243C. 729D. 64

Answer» Correct Answer - C
Theroectically the number of terms are `2n+1`(i.e, odd)
But given that number of term is `28`.
So considering number of term `= .^(n+2)C_(2) = 28`. (Here we are ignoring clubbing of terms)
`:. N = 6`
`:.` Sum of coefficient `= 3^(n) = 3^(6) = 729` (Putting `x = 1`)
77.

The sum of the co-efficients of all odd degree terms in the expansion of (x+sqrt(x^3-1))^5+(x-(sqrt(x^3-1))^5`, (x gt 1)`A. 2B. -1C. 0D. 1

Answer» Correct Answer - A
`(x+sqrt(x^(3)-1))^(5) + (x-sqrt(x^(3)-1))^(5)`
`= 2[.^(5)C_(0)x^(5)+.^(5)C_(2)x^(3)(sqrt(x^(3)-1))^(2) + .^(5)C_(4)x(sqrt(x^(3)-1))^(4)]`
`=2[x^(5)+10x^(3)(x^(3)-1)+5x(x^(3)-1)^(2)]`
`= 2[x^(5)+10x^(6)-10x^(3)+5x^(7)-10x^(4)+5x]`
`:.` Sum of the coeffcient of odd degree terms
`= 2(1-0+5+5) = 2`
78.

If m and n are positive integers, then prove that the coefficients of `x^(m) " and " x^(n)` are equal in the expansion of `(1+x)^(m+n)`

Answer» In the binomial expansion of `(1+x)^(m+n)` , the general term is given by
` T_(r+1) = ^(m+n)C_(r) xxx^(r)`.
`:."coefficient of "x^(m) " in the expansion of "(1+x)^(m+n)`
`.^(m+n)C_(m)=((m+n)!)/({(m+n-m)!}xx (m!))=((m+n)!)/((m!) xx(n !)).`
coefficient of `x^(n)" in the expansion of "(1+x)^(m+n)`
`=.^(m+n)C_(n)=((m+n)!)/({(m+n-n)!} xx(n!))+((m=n)!)/((m!) xx(n!)).`
Hence, the coefficents fo `x^(m) and x^(n)` are equal.
79.

Find the coefficent of`x^(6)y^(3)` in the expansion of `(x+2y)^(9)`.

Answer» The general term in the expansion of `(x+2y)^(9)` is given by
`T_(r+1)=.^(9)C_(r) xx x^((9-r)) xx(2y)^(r)`
`rArr T_(r+1)=.^(9)C_(r) xx2^(r) xxx^((9-r)) xxy^(r)." "`...(i)
We have to find the coeffcient of `x^(6)y^(3)`.
Putting r=3 in (i), we get
`T_(3+1)=.^(9)C_(3) xx 2^(3) xx (x^(6)y^(3))`.
`:." coefficient of "x^(6) y^(3)` in the given expansion
`=(.^(9)C_(3) xx 2^(3))=((9 xx8xx7)/(3xx2xx1) xx8) =672`.
Hence, the coefficient of `x^(6)y^(3)` in the given expansion is 672.
80.

Find the coefficient of `x^(4)` in the expansion of `(1+x+x^(2)+x^(3))^(11)`.

Answer» We have
`(1+x+x^(2) + x^(3))^(11) = {(1+x)+x^(2)(1+x)}^(11)={(1+x)(1+x^(2))}^(11)`
`=(1+x)^(11) xx(1+x^(2))^(11)`
`=(.^(11)C_(0)x^(0)+.^(11)C_(1)x_ +.^(11)C_(2)x^(2)+.^(11)C_(3)x^(3)+.^(11)C_(4)x^(4)+...)`
` xx[.^(11)C_(0)(x^(2))^(0) +.^(11)C_(1)(x^(2)) + .^(11)C_(2)(x^(2))^(2)+...]`
`(1+11x+55x^(2)+165x^(3) + 330x^(4)+...)`
`xx(1+11x^(2)+55x^(4)+...).`
`:. "coefficient of " x^(4) " in the given expansion "`
`=(1 xx55) + ( 55 xx11) +(330 xx1)`
`=(55+605 + 330)=990`.
Hence, the coefficient of `x^(4)` in the given expansion is 990.
81.

Find the coefficent of ` x^(4)` in the product `(1+2x)^(4) xx (2-x)^(5).`

Answer» Using the binomial expansion, we get
`(1+2x)^(4) = .^(4) C _(0) + .^(4) C _(1) ( 2x) + .^(4) C _(2) (2x)^(2) + .^(4) C _(3) ( 2x) ^ (3) + .^(4) C _(4) ( 2x) ^ (4)`
`=1 + 8x + 24x^(2) + 32x^(3) + 16x^(4)`
and `( 2-x) ^ (5) = 2^(5) - . ^ (5) C _(1) (2^(4))x + .^(5) C _ (2)(2^(3))x^(2) - .^(5) C _(3) ( 2^(2))x^(3)`
`=.^(5) C _(4) ( 2) x^(4) - .^(5) C _ (5) x ^ (5)`
`= 32 - 80x + 80x^(2) - 40x^(3) + 10x^(4) - x^(5)`
` :. (1+2x)^(4) xx (2-x)^(5)`
` =(1+ 8x + 24x^(2) + 32x^(3) + 16x^(4))`
`xx ( 32 - 80x + 80x^(2) - 40x^(3) + 10x^(4) - x^(5)).`
Sum of the terms containing `x^(4)` in the given product
`(1 xx 10x^(4)) + 8x (-40x^(3)) + (24x^(2)) (80x^(2))`
` ( 32 x^(3) ) (-80x) + ( 16x^(4) xx 32 ) `
`= 10^(x^(4)) - 320 x^(4) + 1920x^(4) - 2560x^(4) + 512 x^(2) `
`= (10- 320 + 1920 - 2560 + 512) x^(4) = - 438x^(4)`.
Hence , the coefficient of `x^(4)` in the given product is `-438`.
82.

If P be the sum of all odd terms and Q that of all even terms in the expansion of `(x+a)^(n)`, prove that

Answer» By the binomial expansion, we have
`( x+ a) ^(n) = . ^(n) C _ (0) x^(n) + .^(n) C _ ( 1) x^(n-1) + .^(n) C _(2)x ^ ( n-2) + .^ (n) C_(3)x^ (n-3) + . ^ (n)C_(4) x^ ( n-4) + ... + .^(n) C _(n) a^(n).`
`(T_(1) + T _(2) + T _ (3) + T _ (4) + T _( 5) + ... + T _ (n ) + T _ ( n+ 1 ) )`
`( T _ ( 1 ) + T _ (3) + T _ ( 5 )...) + (T _ ( 2) + T _ ( 4 ) + ... + T_ ( 6 ) + ...)`
`= P + Q." "` ...(I)
And `( x - a) ^ (n) + .^ ( n) C _(0) x ^ (n ) - . ^ (n ) C _ ( 1 ) x ^ ( n-1) a + . ^ ( n) C _ ( 2 ) x ^ ( n-2) a ^ ( 2 ) - . ^ ( n) C _ ( 3 ) x ^ ( n-3) a^ ( 3 ) `
` ...+(-1)^(n) .^(n)C_(n)a^(n)`
`= ( T _ ( 1 ) - T _ ( 2 ) + T _ ( 3 ) - T _ ( 4 ) + ...)`
`= ( T _ ( 1 ) + T _ ( 3 ) + T _ ( 5 ) + ...) - ( T _ ( 2 ) + T _ ( 4 ) + T _ ( 6 ) ...)`
`= P- Q." " ... ( II)`
(i ) On multiplying ( I ) and ( I I ) , we get
`(x^ ( a) - a ^ ( 2 ) ) ^ ( n) = ( p ^ ( 2 ) _ Q ^ ( 2 ) ) .`
On squaring ( I ) and (I I ) and subtracting , we get
`{( x + a) ^ ( 2n) - ( x - a ) ^ ( 2n) } = { ( P + Q ) ^ ( 2 ) - ( P - Q ) ^ ( 2 ) } = 4 P Q .`
( iii) On squaring ( I ) and ( I I) and adding , we get
`{ ( x + a ) ^ ( 2n) + ( x - a ) ^ ( 2n) } = { (P + Q ) ^ ( 2 ) + ( P - Q ) ^ ( 2 ) } = 2 ( P ^ ( 2 ) + Q ^ ( 2 ) ) .`
83.

Largest real value for x such that `sum_(k=0)^(4) ((3^(4-k))/((4-k)!))((x^(k))/(k!))= 32/3`

Answer» Correct Answer - 1
`underset(k=0)overset(4)sum((3^(4-k))/((4-k)!))((x^(k))/(k!))`
`=underset(k=0)overset(4)sum((4!)/((4-k)!k!)3^(4-k).x^(4).(1)/(4!))`
`= underset(k=0)overset(4)sum(.^(4)C_(k).3^(4-k).x^(4))/(04!)`
`= ((3+x)^(4))/(4!)`
According to the question ,
`((3+x)^(4))/(4!) = 32/3`
or `(3+x)^(4) = 256`
or `x + 3 = 256`
or `x = 1`
84.

Using binomial theorem, find the value of`(103)^(4)`.

Answer» By the binomial expansion, we have
`(103)^(4) = (100+3)^(4)`
` .^(4)C_(0)*(100)^(4)+.^(4) C_(1) xx(100)^(3)xx3+ .^(4)C_(2) xx(100)^(2) xx3^(2)+.^(4)C_(3) xx100 xx3^(3)+.^(4)C_(4) xx3^(4)`
`(100)^(4) + 12 xx (100)^(3)+ 54 xx(100)^(2) + 108 xx 100 + 81`
`=100000000 + 12 xx 1000000 + 540000 + 10800 + 81`
`= 100000000 +12000000 + 540000 + 10800 + 81`
`=112550881.`
Hence, `(103)^(4) = 112550881.`
85.

The coefficient of `x^(103)` in `(1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201)` is `"___"`.

Answer» `E = (1+x+x^(2)+x^(3)+x^(4))^(199) (x-1)^(201)`
`= ((1-x^(5))/(1-x))^(199)(x-1)^(201)`
`= - (1-x)^(2)(1-x^(5))^(199)`
`= - 1(1-2x+x^(2))(1-.^(199)C_(1)x^(5)+.^(199)C_(2)x^(10)-"…..")`
`:.` Coefficient `x^(103)` in `E = 0`
86.

The total number of different terms in the product `(.^(101)C_(0) - .^(101)C_(1)x+.^(101)C_(2)x^(2)-"….."-.^(101)C_(101)x^(101))(1+x+x^(2)+"…."+x^(100))^(101)` is `"____"`.

Answer» Correct Answer - 102
`(.^(101)C_(0).^(101)C_(1)x+.^(101)C_(2)x^(2)-"...."-.^(101)C_(101)x^(101))(1+x+x^(2)+"...."+x^(100))^(101)`
`= (1-x)^(101).((1-x^(101))/(1-x))^(101)`
`= (1-x^(101))^(101)`
`:.` Number of different terms `= 102`
87.

The value of `sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r))` is `"_____"`.

Answer» Correct Answer - 220
`underset(r=0)overset(3)sum.^(8)(C_(r+1)-.^(4)C_(r))=underset(r=0)overset(3)sum.^(8)C_(r).^(4)C_(r+1)`
`= .^(8)C_(0) xx.^(4)C_(1)+.^(8)C_(1)xx.^(4)C_(2)+.^(8)C_(2)xx.^(4)C_(3)+.^(8)C_(3)xx.^(4)C_(4)`
`=` coefficient of `x^(3)` in `(1+x)^(4)(1+x)^(8)`
`=` coeficient of `x^(3)` in `(1+x)^(12)`
`=.^(12)C_(3) = 220`
88.

the value of `x`, for which the 6th term in the expansions of`[2^log_2sqrt(9^((x-1)+7))+1/(2^(1/5)(log)_2(3^(r-1)+1))]i s84`, is equal toa. 4 b. 3 c. `2`d. `1`A. 4B. 3C. 2D. 1

Answer» Correct Answer - C
89.

Find the term independent of x in the expansion of `(2^(x) + 2^(-x)+log_(e)e^(x+2)))^(30)`.

Answer» We have `(2^(x) + 2^(-x)+log_(e)e^(x+2))^(30)`
`= (2^(x)+2^(-x)+x+2)^(30)`
` = ((2x^(x//2) + 2^(-x//2))^(2) + x )^(30)`
Therefore, the term independent of x occurs in `.^(30)C_(0)(2^(x//2) + 2^(-x//2))^(60)` which is `.^(30)C_(0) xx .^(60)C_(30)` or `.^(60)C_(30)`.
90.

If the third in the expansion of `[x + x^(logx)]^(6)` is ` 10^(6)` , then x (x>1) may beA. 1B. 10C. `10^(-5//2)`D. 102

Answer» Correct Answer - B
91.

The value of `x`in the expression `(x+x^((log)_(10)))^5`if third term in the expansion is 10,00,000 is/area. 10 b. 100 c. `10^(-5//2)`d. `10^(-3//2)`A. 10B. 100C. `10^(-5//2)`D. `10^(-3//2)`

Answer» Correct Answer - A::C
Inclusion of log x implies `x gt 0`
Now, `3^(nd)` term in expension is
`T_(2+1) = .^(5)C_(2)x^(5-2)(x^(log_(10)x))^(2) = 10000000` (given)
or `x^(3+2log_(10)x) = 10^(5)`
Taking logarithm of both sides, we get
`(3+2log_(10)x)log_(10)x = 5`
or `2y^(2) + 3 y - 5 = 0`, where `log_(10) x = y`
or `(y-1) (2y+5) = 0 y = 1` or `-5//2`
or `log_(10)x=1` or `-5//2`
`:. x = 10^(1) = 10` or `10^(-5//2)`
92.

If the `4^(th)` term of `{sqrt(x^((1)/(1+log_(10)x)))+root(12)(x)}^(6)` is equal to `200`, `x gt 1`and the logarithm is common logarithm, then`x` is not divisible byA. `2`B. `5`C. `10`D. `4`

Answer» Correct Answer - D
`(d)` Given expression is
`{sqrt((1)/(x^(1+log_(10)x)))+root12x}^(6)={x^((1)/(2))((1)/(1+log_(10x)))+x^((1)/(12))}^(6)`
`T_(4)=200`
`implies^(6)C_(3)*x^((1)/(2)((1)/(1+log_(10)x))^(6-3))xx(x^((1)/(12)))^(3)=200`
`impliesx^((3)/(2)(1)/(1+log_(10)x)+(1)/(4))=10`
`=(3)/(2(1+log_(10)x))+(1)/(4)=log_(x)10`
`implies(3)/(2(1+log_(10)x))+(1)/(4)=(1)/(log_(10)x)`
Put `log_(10)x=y`
`implies(3)/(2(1+y))+(1)/(4)=(1)/(y)`
`impliesy^(2)+3y-4=0`
`impliesy=-4`, `y=1`
`implieslog_(10)x=-4`, `log_(10)x=1`
`impliesx=10` (as `x gt 1`)
93.

Show that coefficient of `x^(-3)` in the expansion of `(x-1/x)^(11) is -330`.

Answer» `T_(r+1) = (-1)^(r) * . ^(11)C_(r)x^((11-1)) * (1/x)^(r) = (-1)^(r) *.^(11)C_(r)x^((11-2r)).`
Now `11- 2r = - 3 rArr 2r = 14 rArr r = 7.`
`T_(8) = (-1)^(7)*.^(11)C_(7) x^(-3) = -.^(11) C _(4)x^(-3) = - ( 11 xx 10 xx 9 xx 8)/(4 xx 3 xx 2 xx 1) x^(-3) = -330x^(-3).`
94.

If the coefficents of `x^(2) and x^(3)` in the expansion of `(3+px)^(9)` are the same then prove that `p= 9/7`.

Answer» `T_(r+1)= .^(9)C_(r)3^((9-1)) xx(px)^(r) = .^(9)C_(r)3^((9-r))* p ^(r)x^(r).`
`" Coeff. of " x^(2) = " coeff.of " x^(3) rArr .^(9) C_(2) xx 3^(7) xx p^(2) = .^(9) C _(3) xx 3^(6) xx p^(3).`
95.

No. of terms in the expansion of `(1+2x)^(9) +(1-2x)^(9)` is :A. 10B. 9C. 7D. 5

Answer» Correct Answer - D
N/a
96.

Find the middle term in the expansion of : ` (x-1/x)^(10)`A. 126B. -126C. -252D. 252

Answer» Correct Answer - C
N/a
97.

The coefficient `x^5` in the expansion of `(2 - x + 3x^2)^6` isA. `-5051`B. 4632C. `-4631`D. none of these

Answer» Correct Answer - A
N/a
98.

Prove that `C_(1)^(2) - 2. C_(2)^(2) + 3. C_(3)^(2) - …. -2n . C_(2n)^(2) = (-1)^(n). C_(n)`

Answer» We know that , `(1 + x )^(2n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(2n) x^(2n)`
On differntiating both sides w.r.t.x, we get
` 2n (1 + x)^(2n-1) = C_(1) + 2.C_(2) x + 3. C_(3) x^(3) + …+ 2nC_(2n x^(2n-1) ` …(i)
and ` (1 - (1)/(x))^(2n) = C_(0) - C_(1).(1)/(x) + C_(2) .(1)/(x^(2)) C_(3) . (1)/(x^(3)) + ...+ C_(2n). (1)/(x^(2n))` ...(ii)
On multiplying Eqs. (i) and (ii) , we get
` 2n (1 + x)^(2n-1) (1 - (1)/(x))^(2n)`
= `[C_(1) + 2*C_(2)x + 3. C_(3) x^(2) +...+ 2n*C_(2n)x^(2n-1)] xx[C_(0) - C_(1) ((1)/(x)) + C_(2) ((1)/(x^(3))) -...+C_(2n) ((1)/(x^(2n)))]`
Coefficent of ` ((1)/(x))` on the LHS
= Coefficient of ` (1)/(x) `in 2n `((1)/(x^(2n)))(1 + x)^(2n - 1) (x - 1)^(2n)`
Coefficient if ` x^(2n - 1)` in 2n ` (1 - x^(2))^(2-1) (1 - x)`
` 2n (-1)^(n-1) . (2n -1) C_(n-1) (-1)`
` = (-1)^(n) (2n) ((2n -1)!)/((n-1)!n!) = (-1)^(n)n((2n)!)/((n!^(2)))n`
` = - (-1)^(n)n . C_(n)` ...(iii)
Again , the coefficient of `((1)/(x))` on the RHS
` = - (C_(1)^(2) - 2 *C_(2)^(2) + 3*C_(3)^(2)-...-2nC_(2n)^(2))` ...(iv)
From Eqs. (iii) and (iv),
`- C_(1)^(2) - 2 *C_(2)^(2) + 3*C_(3)^(2)-...-2nC_(2n)^(2) = (-1)^(n) n.C_(n)`.
99.

Prove that `(.^(2n)C_(0))^(2) - (.^(2n)C_(1))^(2) + (.^(2n)C_(2))^(2) - …. + (.^(2n)C_(2n))^(2) = (-1)^(n) .^(2n)C_(n)`

Answer» `(1+x)^2n(1-(1)/(x))^2n`
`=(.^2nC_0 -(.^2n C_1)x+(.^2nC_2)x62+.....+(.^2nC_2n)x^2n]`
`xx[.^2nC_0 -(.^2nC_1)(1)/(X)+(.^2n C_2)(1)/(x^2)+.....+(.^2n C_2n)(1)/(x^2n)]`
Independent terms of x on RHS
`=(.^2n C_0)^2-(.^2n C_1)^2+(.^2nC_2)^2 -......+(.^2n C_2n)^2`.
LHS `=(1+x)^2n((x-1)/(x))^2n =(1)/(x^2n)(1-x^2)^2n`.
Independent term of x on the LHS `=(-1)^n .^2n C_n`.
100.

`^404C_4-^303C_4.^4C_1+^202C_4.^4C_2-^101C_4.^4C_3=`A. `(401)^(4)`B. `(101)^(4)`C. `0`D. `(201)^(4)`

Answer» Correct Answer - B
The given expression is the coefficient of `x^(4)` in
`.^(4)C_(0)(1+x)^(404)-.^(4)C_(1)(1+x)^(303)+.^(4)C_(2)(1+x)^(202)-.^(4)C_(3)(1+x)^(101)+.^(4)C_(4)`
= Coefficient of`x^(4)` in `[(1+x)^(101)-1]^(4)`
`=` Coefficient of `x^(4)` in `(.^(101)C_(1)x+.^(101)C_(2)x^(2)+".....")^(4)`
`= (101)^(4)`