Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

The coefficient of `a^8b^4c^9d^9`in `(a b c+a b d+a c d d+b c d)^(10)`is`10 !`b. `(10 !)/(8!4!9!9!)`c. `2520`d. none of theseA. `10!`B. `(10!)/(8!4!9!9!)`C. `2520`D. none of these

Answer» Correct Answer - C
`a^(10)b^(10)c^(10)d^(10)(1/a+1/b+1/c+1/d)^(10)`
Therefore the required coefficient is equal to the coefficient of
`a^(-2)b^(-6)c^(-1)d^(-1)` in `(1/a+1/b+1/c+1/d)^(10)`, which is given by
`= (10!)/(2!6!1!1!) = (10 xx 9 xx 8 xx 7)/(2) = 2520`
202.

In the expansion of `(7^(1/3)+ 11^(1/9))^6561`, the number of terms free from radicals is:A. there are exactly `730` rational termsB. there are exactly 5832 irrational termsC. the term which involves greatest binomial coefficients is irrationalD. the term which involves greatest binomial coefficients is rational

Answer» Correct Answer - A::B::C
General term is `.^(6561)C_(r) 7^((6561-r)/(3)) 11^((r)/(9))`
To make the term free of radical sign, r should be a multiple of 9.
`:. r=0, 9, 18,27,"…..",6561`.
Hence, there are 730 rational terms. The greatest binomial coefficients are
`.^(6561)C_((6561-1)/(2))` and `.^(6561)C_((6561+11)/(2))` or `.^(6561)C_(3280)` and `.^(6561)C_(3281)`.
Now `3280` are `3281` are not a multiple of 3, hence, both terms involving greatest binomial coefficients are irrational .
203.

If ` y = (1)/(3) + (1*3)/(3 *6) + (1 * 3*5)/(3*6*9) +…` then the value of `y^(2) + 2y ` isA. 2B. -2C. 0D. none of these

Answer» Correct Answer - A
204.

If` y=3 x + 6 x^(2) + 10 x^(3) +…` then x =A. `(4)/(3) - (1*4)/(3^(2)*2) y^(2) + (1*4*7)/(3^(2)*3) y^(3)...`B. `(4)/(3) + (1*4)/(3^(2)*2) y^(2) - (1*4*7)/(3^(2)*3) y^(3)...`C. `(4)/(3) + (1*4)/(3^(2)*2) y^(2) + (1*4*7)/(3^(2)*3) y^(3)...`D. none of these

Answer» Correct Answer - D
205.

If p is nearly equal to q and n `gt` 1 , such that `((n+1) p+(n-1)q)/((n-1)p+(n +1)q) = ((p)/(q))^(k)` , then the value of k, isA. n = 2r is a positive integral mulitple of 3B. `(1)/(n)`C. n+1D. `(1)/(n+1)`

Answer» Correct Answer - B
206.

If the middle term in the binomial expansion of `(1/x+xsinx^(10))`is equal to `(63)/8,`find the value of `xdot`

Answer» `(1/x+xsinx)^10`
Middle term in the above expansion `= 10/2 +1 = 6`
Then,
`T_6 = C(10,5)(1/x)^5(xsinx)^5`
`=> 63/8 = (10*9*8*7*6)/(5*4*3*2*1)sin^5x`
`=>1/8 = 4sin^5x`
`=>sin^5x = 1/32`
`=>sinx = 1/2`
`=>x = pi/6`General value for `x = npi+(-1)^npi/6, n in Z.`
207.

Given that the 4th term in the expansion of `[2+(3//8x)]^(10)`has the maximum numerical value. Then find the range of value of `xdot`

Answer» If `T_(r+1)` is the greatest term in `(a+bx)^(n)`,
`(r/(n-r+1)) a/b le |x|le ((r+1)/(n-r)) a/b`
Given that the fourth terms is in the expansion of `(2+3/(8)x)^(10)`.
`rArr (3/(10-3+1)) (2)/((3//8)) le |x|le ((3+1)/(10-3))(2)/((3//8))`
`rArr 2 le |x| le 64/21`
208.

Find the sum `.^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n)`.

Answer» Method I :
`.^(n)C_(0)+2xx.^(n)C_(1)+3xx.^(n)C_(2)+"...."+(n+1)xx .^(n)C_(n)`
`= underset(r=0)overset(n)sum(r+1).^(n)C_(r)`
`=underset(r=0)overset(n)sum[r.^(n)C_(r)+.^(n)C_(r)]`
`=n underset(r=0)overset(n)sum.^(n-1)C_(r-1)+underset(r=0)overset(n)sum.^(n)C_(r)`
`= n(.^(n-1)C_(0) + .^(n-1)C_(1) + .^(n-1)C_(2)+"..."+.^(n-1)C_(n-1)) + (.^(n)C_(0)+.^(n)C_(1)+.^(n)C_(2)+"....."+.^(n)C_(n))`
`= n2^(n-1) + 2^(n)`
`= (n+2)2^(n-1)`
Method II :
We have `(1+x)^(n) = .^(n)C_(0)+.^(n)C_(1)x+.^(n)C_(2)x^(2)+"....."+.^(n)C_(n)x^(n)`
`:. x(1+x)^(n) = .^(n)C_(0)x+.^(n)C_(1)x^(2)+.^(n)C_(2)x^(3) + "....." + .^(n)C_(n)x^(n+1)`
Differentiating w.r.t. x, we get
`n(n1+x)^(n-1)x+(1+x)^(n)=.^(n)C_(0)+2xx.^(n)C_(1)x+3xx.^(n)C_(2)x^(2)+"..."+(n+1)xx.^(n)C_(n)x^(n)`
Putting `x = 1`, we get
`n2^(n-1)+2^(n)=.^(n)C_(0) +2xx.^(n)C_(1)+3xx.^(n)C_(2)+"....."+(n+1)xx.^(n)C_(n)`
209.

If the third term in the expansion of `(1+x)^mi s-1/8x^2,`then find the value of `mdot`A. 2B. 43467C. 3D. 4

Answer» Correct Answer - B
210.

If the third term in the expansion of `(1+x)^mi s-1/8x^2,`then find the value of `mdot`

Answer» Correct Answer - `m = 1/2`
We have,
`(1+x)^(m) = 1+mx+(m(m+1))/(2!) x^(2) + "……"`
Given that the third therm is `-(1//8)^(2)`, hence
`(m(m-1))/(2)x^(2) = =1/8x^(2)`
or `4m^(2) - 4m = -1`
or `(2m-1)^(2) = 0` or `m =1/2`
211.

Find the coefficient of `x^(-25)` in the expansion of `((x^(2))/(2)-(3)/(x^(3)))^(15)`A. `(-1365)/(16)xx3^(11)`B. `(1365)/(16)xx3^(11)`C. `(-16)/(1365)xx3^(11)`D. None of these

Answer» Correct Answer - A
N/a
212.

No. of terms in the expansion of `(1+3x+3x^(2)+x^(3))^(10)` is:A. 31B. 32C. 10D. 11

Answer» Correct Answer - A
N/a
213.

Find the value of `sum_(p=1)^(n) (underset(m=p)overset(n)sum""^(n)C_(m)""^(m)C_(p))`. And hence, find the value of `lim_(nrarroo) (1)/(3^(n)) sum_(m=p)^(n) ""^(n)C_(m)""^(m)C_(p))`.

Answer» Correct Answer - `(3^(n) - 2^(n))` and `1`
`S = underset(p=1)overset(n)sum(underset(m=p)overset(n)sum.^(n)C_(m).^(m)C_(p))`
`= underset(p=1)overset(n)sum(.^(n)C_(p).^(p)C_(p)+.^(n)C_(p+1).^(p)+1)C_(p) + "....."+.^(n)C_(n).^(n)C_(p))`
`= underset(p=1)overset(n)sum` [coefficient of `x^(p)` in `{.^(n)C_(p)(1+x)^(p)+.^(n)C_(p+1)(1+x)^(p+1)+"....."+.^(n)C_(n)(1+x)^(n)}]`
`= underset(p=1)overset(n)sum` [Coefficeint of `x^(p)` in `{.^(n)C_(0)+.^(n)C_(1)(1+x)+.^(n)C_(2)(1+x)^(2)+"....."+.^(n)C_(p-1)(1+x)^(p-1)+.^(n)C_(p)(1+x)^(p)+"....."+.^(n)C_(n)(1+x)^(n)}]`
`= underset(p=1)oversetg(n)sum` [coefficient of `x^(p)` in `{1+(1+x)}^(n)`]
`= underset(p=1)overset(n)sum` [coefficient of `x^(p)` in `(2+x)^(n)`]
`= underset(p=1)overset(n)sum[.^(n)C_(p)2^(n-p)]`
` = .^(n)C_(1)2^(n-1)+.^(n)C_(2)2^(n-2)+"...".^(n)C_(n)`
`= .^(n)C_(0)2^(n)+.^(n)C_(1)2^(n-1)+.^(n)C_(2)2^(n-2)+"...."+.^(n)C_(n)-.^(n)C_(0)2^(n)`
`= (1+2)^(n)-2^(n)`
`= 3^(n) - 2^(n)`
Alternate solution :
`underset(p=1)overset(n)sum(underset(m=p)overset(n)sum.^(n)C_(m).^(m)C_(p))= underset(p=1)overset(n)sum(underset(m=p)overset(n)sum(n!)/((n-m)!m!)(m!)/((m-p)!p!))`
`= underset(p=1)overset(n)sum(underset(m=p)overset(n)sum(n!)/((n-m)!)(1)/((m-p)!p!))`
`=underset(p=1)overset(n)sum(n!)/((n-p)!p!)(underset(m=p)overset(n)sum((n-p)!)/((n-m)!(m-p)!))`
`= underset(p=1)overset(n)sum.^(n)C_(P)(underset(m=p)overset(n)sum.^(n-p)C_(m-p))`
`= underset(p=1)overset(n)sum .^(n)C_(p)2^(n-p)`
`= .^(n)C_(1)2^(n-1)+.^(n)C_(2)2^(n-2)+"....."+.^(n)C_(n)2^(0)`
`= (2+1)^(n)-.^(n)C_(0)2^(n)`
`= 3^(n) - 2^(n)`
Also,
`underset(nrarroo)"lim"1/(3^(n)) underset(p=1)overset(n)sum(overset(n)underset(m=p)sum.^(n)C_(m).^(m)C_(p))= underset(nrarroo)"lim"(3^(n)-2^(n))/(3^(n)) = 1`
214.

15th term in the expansion of `(sqrt(2)-sqrt(y)^(17)` is :A. `860x^(3//2)y^(7)`B. `680x^(7)y^(3//2)`C. `680x^(3//2)y^(7)`D. `860x^(3)y^(7//2)`

Answer» Correct Answer - C
N/a
215.

Prove that `.^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1)`. Hence, prove that `.^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N`.

Answer» Method I :
`.^(n)C_(1) + 2.^(n)C_(2)+3.^(n)C_(3)+"….."+n.^(n)C_(n)`
`=underset(r=1)overset(n)sumr.^(n)C_(r)`
`= n underset(r=1)overset(n)sum.^(n-1)C_(r-1)`
`= n(.^(n-1)C_(0) + .^(n-1)C_(1) + .^(n-1)C_(2) + .^(n-1)C_(3)+"…."+.^(n-1)C_(n-1))`
`= n2^(n-1)`
Method II :
We have `(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)x+.^(n)C_(2)x^(2)+"...."+.^(n)C_(n)x^(n)`
Differentiating w.r.t x, we get
`n(1+x)^(n-1)= .^(n)C_(1)+2 xx .^(n)C_(2)x + 3 xx .^(n)C_(3)x^(2) +"......" + n xx .^(n)C_(n)x^(n-1)`
Putting `x = 1`, we get
`n2^( n-1) = .^(n)C_(1)+2xx .^(n)C_(2) + "....." + n xx .^(n)C_(n)`
Using `A.M. ge G.M.`, we get
`(.^(n)C_(1)+2.^(n)C_(2)+3.^(n)C_(3)+".....+n.^(n)C_(n))/((n(n+1))/(2))`
`[(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)]^((1)/((pi(n-1))/2))`
`rArr (n2^(n-1))/((n(n+1))/(2))ge [(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)]^((2)/(n(n+1)))`
`(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)le((2^(n))/(n+1))^((n(n+1))/(2))`
or `(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)le((2^(n))/(n+1))^(.^(n+1)C_(2))`
216.

If the constant term in the binomial expansion of `(x^2-1/x)^n ,n in N`is 15, then the value of `n`is equal to.A. `6`B. `9`C. `12`D. `15`

Answer» Correct Answer - A
`(a)` For `(x^(2)-(1)/(x))^(n)`
`T_(r+1)=^(n)C_(r )(x^(2))^(n-r)(-1)^(r )x^(-r)=^(n)C_(r )x^(2n-3r)(-1)^(r )`
Constant term `=^(n)C_(r )(-1)^(r )` if `2n=3r` i.e. coefficient of `x=0`
Hence `.^(n)C_(2n//3)(-1)^(2n//3)=15=^(6)C_(4)impliesn=6`
217.

If `p^(4)+q^(3)=2(p gt 0, q gt 0)`, then the maximum value of term independent of `x` in the expansion of `(px^((1)/(12))+qx^(-(1)/(9)))^(14)` isA. `"^(14)C_(4)`B. `"^(14)C_(6)`C. `"^(14)C_(7)`D. `"^(14)C_(12)`

Answer» Correct Answer - B
`(b)` `(px^((1)/(12))+qx^(-(1)/(9)))^(14)`
General term `T_(r+1)=14C_(r )(px^((1)/(12)))^(14-r)(qx^((-1)/(9)))^(r )`
`=^(14)C_(r )p^(14-r)q^(r )x^((14-r)/(12)-(r )/(9))`
Term is independent of `r`, then `(14-r)/(12)-(r )/(9)=0`
`:.r=6`
`:.` Term independent of `x` is `"^(14)C_(5)p^(8)q^(6)=^(14)C_(6)(p^(4)q^(3))^(2)`
Now `p^(4)`, `q^(3)` are positive
Using `AM ge GM`
`(p^(4)+q^(3))/(2) ge (p^(4)q^(3))^(1//2)implies(p^(4)q^(3))^(2) le 1`
`implies` Maximum value of term independent of `x` is `"^(14)C_(6)`.
218.

Find the coefficient of `t^8` in the expansion of `(1+2t^2-t^3)^9`.A. `1680`B. `2140`C. `2520`D. `2730`

Answer» Correct Answer - C
`(c )` `((1+2t^(2))-t^(3))^(9)`
`="^(9)C_(0)(1+2t^(2))^(9)-^(9)C_(1)(1+2t^(2))^(8)*t^(3)+^(9)C_(2)(1+2t^(2))^(7)*t^(6)-^(9)C_(3)(1+2t^(2))^(6)*t^(9)+.....-^(9)C_(9)(t^(3))^(9)`
`:.` Coefficient of `t^(8)` in the expansion of `(1+2t^(2)-t^(3))^(9)`
`=^(9)C_(0)("coefficient of" t^(8) "in" (1+2t^(2))^(9)) -^(9)C_(1)("coefficient of" t^(5) "in" (1+2t^(2))^(8))+^(9)C_(2)("coefficient of"t^(2) "in" (1+2t^(2))^(7))`
`=^(9)C_(9)*^(9)C_(4)2^(4)-0+^(9)C_(2)*^(7)C_(1)*2`
`=2520`
219.

In the expansion of `(x^3-1/(x^2))^n ,n in N`, if the sum of the coefficients of `x^5a n dx^(10)`, then `n`isa. 25 b. 20 c. 15 d. none of theseA. `25`B. `20`C. `15`D. None of these

Answer» Correct Answer - C
`(c )` `((1)/(x^(2))-x^(3))^(n)`
`T_(r+1)=(n!)/(r!(n-r)!)(-1)^(n-r)x^(5r-2n)`
If `5r-2n=5`, then `5r=2n+5`
`r=(2n)/(5)+1`
If `5r-2n=10`, then `5r=2n+10`
`r=(2n)/(5)+2`
Let `n=5k`
According to question
`(5k!)/((2k+1)!(3k-1)!)-(5k!)/((2k+2)!(3k-2)!)=0`
`(1)/(3k-1)-(1)/(2k+2)=0`
`k=3`, `n=15`
220.

If in the expansion of `(1 + ax)^(n),n in `N, the coefficient of x and `x^(2) ` are 8 and 24 respectively, thenA. a = 2, n=4B. a = 4, n=2C. a = 2, n=6D. a = -2, n=4

Answer» Correct Answer - A
221.

In the expansion of `(x^3-1/(x^2))^n ,n in N`, if the sum of the coefficients of `x^5a n dx^(10)`, then `n`isa. 25 b. 20 c. 15 d. none of theseA. 5B. 10C. 15D. 20

Answer» Correct Answer - C
222.

In the expansion of `(x^3-1/(x^2))^n ,n in N`, if the sum of the coefficients of `x^5a n dx^(10)`, then `n`isa. 25 b. 20 c. 15 d. none of theseA. 25B. 20C. 15D. none of these

Answer» Correct Answer - C
223.

The sum of the magnitudes of the coefficients in the expansion of `(1 - x + x^(2) - x^(3))^(n)` ,is

Answer» Correct Answer - D
224.

The sum of the coefficients in `(1+x+3x^2)^2143` is (A) `2^2143` (B) 0 (C) 1 (D) -1A. -1B. 1C. 0D. none of these

Answer» Correct Answer - a
225.

Find the term independent of `x`in the expansion of `(1+x+2x^3)[(3x^2//2)-(1//3)]^9`

Answer» Correct Answer - `17/54`
In the expansion of `E = ( 3/2x^(2) - 1/ (3x))^(9)` , we have
`T_(r+1) = (-1)^(r)*^(9)C_(r)*(3/2x^(2))(9-r) (1/(3x))^(r)`
`rArr T_(r+1) = (-1)^(r)*^(9)C_(r)*(3(9-2r))/(2^((9-r)))* x^((18-3r)).`
`(1+ x + 2x^(3)) [(a_(0) xx 1/x^(3)+a_(1) xx 1/x + a^(2))" from E"]`
`=(1+x+2x^(3)) [ {(-1)^(7)*^(9)C_(7)*3^(-5)/2^(2) xx1/(x^(3))}+ {(-1)^(6)*^(9)C_(6) * 3^(-3)/2^(3)xxx^(0)}]`
`[(x=-1 rArr18-3r = -1 rArr " r is faction"),(18-3r=0 rArr r=6 and 18-3r = -3 rArr r=7)]`
`=(1+ x+ 2x^(3))[(-1)/(27x^(3))+7/18]`
`:. " required term " ((-2)/27+7/18) = 17/54.`
226.

If the sum of the coefficient in the expansion of `(alpha^2x^2-2alphax+1)^(51)`vanishes, then find the value of`alpha`A. 2B. -1C. 1D. -2

Answer» Correct Answer - C
227.

The ratio of the coefficient of `x^(15)` to the term independent of x in the expansion of `(X^(2)+(2)/(x))^(15)` is

Answer» Correct Answer - `1:32`
`T_(r+1) = .^(15) C (x^(2)) ^(15-r) xx (2/x)^(r) = .^(15) C _(r) xx 2 ^(r) xx x^(30-3r)`
`[30 - 3r = 15 rArr 3r = 15 rArr r = 5 ] and [ 30 - 3r = 0 rArr 3r = 30 rArr r = 10].`
Find ` (T_(6) : T _(11) ) = ( T _ ( 5+ 1) : T _ ( 10+1)).`
228.

The number of terms in the expansion of `(x + y + z)^(10)`, isA. 11B. 33C. 66D. 1000

Answer» Correct Answer - C
229.

If the sum of the coefficient in the expansion of` (alpha x^(2) - 2x + 1)^(35)` is equal to the sum of the coefficient of the expansion of `(x - alpha y)^(35)`, then `alpha` =

Answer» Correct Answer - B
230.

Consider the expansion `(x^(2)+(1)/(x))^(15)`. What is the ratio of coefficient of `x^(15)` to term independent of x in the given expansion ?A. `1//4`B. `1//16`C. `1//32`D. `1//32`

Answer» Correct Answer - C
231.

The range of values of the term independent of x in the expansion of `(x sin^(-1) alpha + (cos^(-1)alpha)/(x))^(10), a in [-1,1]`isA. `[-(""^(10)C_(5) pi^(10))/(2^(5)),(""^(10)C_(5) pi^(10))/(2^(20))]`B. `[(""^(10)C_(5) pi^(2))/(2^(20)),(""^(10)C_(5) pi^(2))/(2^(5))]`C. `[1,2]`D. `(1,2)`

Answer» Correct Answer - A
232.

The term independent of x in the expansion of `(1 - x)^(2) (x + (1)/(x))^10`, isA. `""^(11)C_(5)`B. `""^(10)C_(5)`C. `""^(10)C_(4)`D. none of these

Answer» Correct Answer - A
233.

The number of terms with integral coefficients in the expansion of `(17^(1/3)+35^(1/2)x)^(600)` is (A) `100` (B) `50` (C) `150` (D) `101`A. 100B. 50C. 101D. none of these

Answer» Correct Answer - C
234.

Find the coefficient of `x^(50)`in the expansion of `(1+x)^(101)xx(1-x+x^2)^(100)dot`

Answer» `(1+x)^(101)(1-x+x^(2))^(100)`
`= (1+x)[(1+x)^(100) (1-x+x^(2))^(100)]`
`= (1+x)(1-x^(3))^(100)`
`= (1-x^(3))^(100) + x(1-x^(3))^(100)`
`= (1-x^(3))^(100) + x(1-x^(3))^(100)`
Now, coefficient of `x^(50)` in `[(1-x^(3))^(100) + x(1-x^(3))^(100)]`
`=` Coefficient of `x^(50)` in `(1-x^(3))^(100)` + Coefficient of `x^(49)` in `(1-x^(3))^(100)`
`= 0` (as 49 and 50 are not a multiple of 3)
235.

Find the coefficient of `x^k` in `1 +(1 +x) +(1 +x)^2+.. +(1+x)^n (0

Answer» The expansion being in G.P., we have
`E = 1 + (1+x) + (1+x)^(2)+"…….."+(1+x)^(n)`
`= ((1+x)^(n+1)-1)/((1+x)-1) = x^(-1)[(1+x)^(n+1)-1]`
Therefore, the coefficient of `x^(k)` in E is equal to the coefficient of `x^(k+1)` in`[(1+x)^(n+1)-1]`, which is given by ` .^(n+1)C_(k+1)`.
236.

Find the coefficient of `x^(20)`in `(x^2+2+1/(x^2))^(-5)(1+x^2)^(40)dot`

Answer» Given expansion is
`E = ((x+(1)/(x))^(2))^(-5) (1+x^(2))^(40)`
`= ((x^(2) + 1)/(x))^(-10) (1+x^(2))^(40) = x^(10)(1+x^(2))^(30)`
Coefficient of `x^(20)` in E = Coefficient of `x^(10)` in `(1+x^(2))^(30)`
`= .^(30)C_(5)`
237.

Find the coefficient of `x^(13)`in the expansion of `(1-x)^5xx(1+x+x^2+x^2)^4dot`

Answer» `E = (1-x)^(5)(1-+x)^(4) (1+x^(2))^(4)`
`= (1-x)(1-x^(2))^(4)(1+x^(2))^(4)`
` = (1-x)(1-x^(4))^(4)`
` = (1-x)[1-4(x^(4))+6(x^(4))^(2) - 4(x^(4))^(3)+(x^(4))^(4)]`
Coefficient of `x^(13)` is `(-1)(-4) = 4`
238.

The coefficients of three consecutive terms of `(1+x)^(n+5)`are in the ratio 5:10:14. Then `n=`___________.

Answer» Let the three consecutive terms in `(1+x)^(n+5)` be `t_(r), t_(r+1),t_(r+2)` having coefficient `""^(n+5)C_(r-1) , ""^(n+5)C_(r), ""^(n+5)C_(r+1)`
Given , `""^(n+5)C_(r-1) ,:""^(n+5)C_(r) : ""^(n+5)C_(r+1) =5:10:14`
`:. (""^(n+5)C_(r))/(""^(n+5)C_(r-1))=(10)/(5) and (""^(n+5)C_(r+1))/(""^(n+5)C_(r))=(14)/(10) `
`implies (n+5-(r-1))/(r)=2 and (n-r+5)/(r+1)=(7)/(5)`
`implies n-r+6 =2r`
` and 5n-5r+25=7r+7`
` implies n+6 =3r and 5n+18=12r `
`:. (n+6)/(3)=(5n+18)/(12)`
`implies 4n+24 =5n+ 18implies n=6 `
239.

If `a_1,a_2, a_3, a_4`be the coefficient of four consecutive terms in the expansion of `(1+x)^n ,`then prove that: `(a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot`

Answer» First four coefficient terms of `(1+x)^n` are,
`1, C(n,1), C(n,2),C(n,3)`
`:. a_1 = 1`
`a_2 = n`
`a_3 = (n(n-1))/2`
`a_4 = (n(n-1)(n-2))/6`
Now,
`L.H.S. = a_1/(a_1+a_2) + a_3/(a_3+a_4)`
`=1/(n+1) +( (n(n-1))/2)/( (n(n-1))/2+ (n(n-1)(n-2))/6)`
`=1/(n+1) +(1/(1+((n-2))/3))`
`=1/(n+1)+3/(n+1) = 4/(n+1)`
Now, `R.H.S. = (2a_2)/(a_2+a_3)`
`=(2n)/(n+(n(n-1))/2)`
`=(2*2)/(2+n-1)`
`=4/(n+1)`
`:. L.H.S. = R.H.S.`
240.

If `a_1,a_2, a_3, a_4`be the coefficient of four consecutive terms in the expansion of `(1+x)^n ,`then prove that: `(a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot`A. `P + q = r`B. `(1 )/(2) (a_(2))/(a_(2) + a_(3))`C. `(2 a_(2))/(a_(2) +a_(3))`D. `(2 a_(3))/(a_(2) +a_(3))`

Answer» Correct Answer - c
241.

Find the last three digits in `11^(50)`

Answer» Expansion of `(10 +1)^(50)=""^(50)C_010^(50)+""^(50)C_(1)10^(49)+…..+""^(50)C_(48)10^2+""^(50)C_(49)10+""^(50)C_(50)`
`= ubrace(""^(50)C_(0)10^(50)+""^(50)C_(1)10^(49)+.......+""^(50)C_(47)10^(3))_("1000k")+49xx25xx100+500+1`
`rArr 1000k +123001`
`rArr` Last 3 digits are 001
242.

If the expansion of `(x - (1)/(x^(2)))^(2n)` contains a term independent of x, then `n` is a multiple of 2.

Answer» Given Binomial expansion is `(x - (1)/(x^(2)))^(2n)`
Let `T_(r + 1)` term is independent of `x`
Then, `T_(r + 1) = .^(2n)C_(r) (x)^(2n - r) (-(1)/(x^(2)))^(r)`
`= .^(2n)C_(r) x^(2n - r) (-1)^(r) x^(-2r) = .^(2n)C_(r) x^(2n - 3r) (-1)^(r)`
For independent of `x`
`2n - 3 r = 0`
`:. r = (2n)/(3)`
Which is not a integer
So, the given expansion is not possible
243.

Find the last three digits of the number `27^(27)dot`

Answer» Correct Answer - Last three digits are 803
`27^(27) = 3(10-1)^(40)`
`= 3(10^(40) - .^(40)C_(1) .10^(39) +"….." + .^(40)C_(38).10^(2)-.^(40)C_(39).10+1)`
`= (1000 lambda - 400 + 1)`
`= 3(1000 lambda - 399)`
Therefore, last 3 digits of this number of `803`.
244.

Write last two digits of the number `3^(400)dot`

Answer» Correct Answer - 1
Given that, `3^(400) = g^(200) = (10 - 1)^(200)`
`rArr (10 - 1)^(200) = .^(200)C_(n) 10^(200) - .^(200)C_(1) 10^(199) + .... - .^(200)C_(199) 10^(1) + .^(200)C_(200) 1^(200)`
`rArr (10 - 1)^(200) = 10^(200) - 200 xx 10^(199) + ...... - 10 xx 200 + 1`
So, it is clear that the last two digits are 01.
245.

Find (i) the last digit, (ii) the last two digits, and (iii) the lastthree digits of `17^(256)dot`

Answer» We have
`17^(256) = (17^(2))^(128) = (289)^(128) = (290-1)^(128)`
`:. 17^(256) = .^(128)C_(0)(290)^(128)-.^(128)C_(1)(290)^(127)+.^(128)C_(2)(290)^(126)-"....."`
`- .^(128)C_(125)(290)^(3)+.^(128)C_(126)(290)^(2)-.^(128)C_(127)(290)+1`
`=[.^(128)C_(0)(290)^(128) - .^(128)C_(1)(290)^(127)+.^(128)C_(2)(290)^(126)-"....."`
`-.^(128)C_(125)(290)^(3)]+.^(128)C_(126)(290)^(2) -.^(128)C_(127)(290)+1`
`=1000m+((128)(127))/(2)(290)^(2)-128xx290+1`
`= 1000 m + (128)(127)(290)(145)-128xx290-1`
`= 1000m+(128)(290)(127xx145-1)+1`
`=1000m+(128)(290)(18414)+1`
`=1000m+683527680+1`
`= 1000m+683527000+680+1`
`= 1000(m+683527)+681`
Hence, the last three digits of `17^(256)` are `6,8,1`. As a result, the last two digits of `17^(256)` are `8, 1` and the last digit of `17^(256)` is 1.
246.

`" if" C_(0)C_(1)C_(2),……C_(n)` are the binomial coefficients in the expansion of `(1+x)^(n)` then prove that: `C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+……+C_(n-2)C_(n)=(|ul2n)/(|uln-2|uln+2)`A. `((2n)!)/((n-2)!(n+2)!)`B. `((2n)!)/(((n-2)!)^(2))`C. `((2n)!)/(((n+2)!)^(2))`D. none of these

Answer» Correct Answer - A
247.

In the binomial expansion of `(1+x)^n`, coefficients of the fifth, sixth and seventh terms are in A.P. find all the values of `n`for which this can happen.

Answer» Coefficients of fifth, sixth and seventh terms in `(1+x)^n` are `C(n,4),C(n,5) and C(n,6).`
As, they are in `A.P.`,
`:. 2**C(n,5) = C(n,4)+C(n,6)`
`=>2*(n!)/(5!(n-5!)) = (n!)/(4!(n-4!)) + (n!)/(6!(n-6!))`
`=>2*1/(5(n-5)) = 1/((n-4)(n-5)) + 1/(6*5)`
`=>2/(5(n-5)) = 1/((n-4)(n-5)) + 1/30`
`=>2/(5(n-5)) = (30+(n-4)(n-5))/(30(n-4)(n-5))`
`=>12(n-4) = 30+(n^2+20-9n)`
`=>12n-48 = n^2+50 -9n`
`=>n^2-21n+98 =0`
`=>n^2-14n-7n+98 =0`
`=>(n-14)(n-7) = 0`
`=> n = 14 or n = 7`
So, `n` can be `14` and `7` for the given expansion.
248.

If n be a positive integer and `P_n` denotes the product of the binomial coefficients in the expansion of `(1 +x)^n`, prove that `(P_(n+1))/P_n=(n+1)^n/(n!)`.

Answer» `P_(n+1)/P_n=((n+1)C_0*(n+1)C_1*...(n+1)C_(n+1))/(nC_0*nC_1*...nC_n`
`P_n=n/(1!)*(n(n-1))/(2!)*...(n!)/(n!)`
`=(n^n(n-1)^(n-1)(n-1)^(n-2)...(33)^1)/(1!*2!*3!...n!`
`P(n+1)=(n+1)/1*(n(n+1))/(2!)*(n(n+1)(n-1))/(3!)...(n+1)/(n+1)`
`=((n+1)^(n+1)*(n)^n*(n-1)^(n-1)...1)/(1!*2!*3!...(n+1)!)`
`P(n+1)/P_n=((n+1)^(n+1)/((n+1)!))`
`=(n+1)^n/(n!)`.
249.

If the seventh term from the beginning and end in the binomialexpansion of `(2 3+1/(3 3))^n ,""`are equal, find `ndot`

Answer» Given expansions is `(root(3)(2) + (1)/(root(3)(3)))^(n)`
`:. T_(7) = T_(6 + 1) = .^(n)C_(6) (root(3)(2))^(n - 6) ((1)/(root(3)(3)))^(6)`
Since, `T_(7)` from end is same as the `T_(7)` from beginning of `((1)/(root(3)(3))) + ((1)/(root(3)(3)) + root(3)(2))^(n)`
Then, `T_(7) = .^(n)C_(6) ((1)/(root(3)(3)))^(n - 6) (root(3)(2))^(6)`
Given, that, `.^(n)C_(6)(2)^((n -6)/(3)) (3)^(-6//3) = .^(n)C_(6) (3)^(-((n - 6))/(3)) 2^(6//3)`
`rArr (2)^((n - 12)/(3)) = ((1)/(3^(1//3)))^(n - 12)`
Which is true, when `(n - 12)/(3) = 0`
`rArr n - 12 0 rArr n = 12`
250.

Given positive integers `r>1,n> 2, n` being even and the coefficient of `(3r)th` term and `(r+ 2)th` term in the expansion of `(1 +x)^(2n)` are equal; find rA. 3rB. 3r+1C. 2rD. 2r+1

Answer» Correct Answer - C