InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
ADandBEare respectively altitudes oftriangle ABCsuchthatAE=BD.ProvethatAD=BE. |
|
Answer» AD=BE `/_AEB and /_BDA` AB=BA(hypotenuse) AE=BD(given) `/_AEB cong /_BDA(HL)` `EB=DA` `BE=AD`. |
|
| 2. |
Prove that the angle between internal bisector ofone base angle and the external bisector of the other base angle of atriangle is equal to one half of the vertical angle. |
|
Answer» To prove- `/_E=1/2/_A` By exterior angle theorem `/_A+/_B=/_ACD` `1/2/_A+1/2/_B=1/2/_ACD` `1/2/_A+/_1=/_2` `/_2=/_1+1/2/_A-(1)` `In /_BCE` `/_ECD=/_1+/_E` `/_2=/_1+/_E-(2)` From equation 1 and 2 `/_1+/_E=/_1+1/2/_A` `/_E=1/2/_A`. |
|
| 3. |
If perpendiculars from any point with an angle onits arms are congruent, prove that it lies on the bisector of that angle. |
|
Answer» To prove-`/_1=/_2` Proof-`In /_PMB and /_PMB` PM=PN(given) BP=BD(common) `/_PMB=/_PNB(each 90^@)` `/_PMB cong /_PNB(RHS)` `/_1=/_2` BP bisects `/_B`. |
|
| 4. |
AD, BEandCF, the altitudes oftriangle ABCare equal. Prove thatABCis an equilateral triangle. |
|
Answer» `In /_ADC and /_BEC` `/_D=/_E`(each 90) AD=BE(given) `/_C=/_C`(common) `/_ADC cong /_BEC)(A A S)` `AC=BC`-(1) `In /_ADB and /_CFB` `/_D=/_F`(each 90) `AD=CF`(given) `/_B=/_B`(common) `/_ADB cong /_CFB`(AAS) AB=CB-(2) from equation 1 and 2 `AB=BC=AC` Hence,`/_ABC` is equilateral. |
|
| 5. |
If the bisector of the exterior vertical angle ofa triangle be parallel to the base. Show that the triangle is isosceles. |
|
Answer» from the diagram we can see that `/_B=/_C=x` `AC=AB` The triangle is hence isosceles. |
|
| 6. |
In Figure, `A C=B C ,/_D C A=/_E C B`and `/_D B C=/_E A Cdot`Prove that triangles `D B C`and `E A C`are congruent, and hece `D C=E C`and `B D=A E` |
|
Answer» Given-`AC=BC`,`/_1=/_2`,`/_3=/_4` Proof-`/_1=/_2` `/_1+/_DCE=/_2+/_DCE` `/_ACE=/_DCB` `In /_DBC and /_EAC` `AC=BC` `/_ACE=/_BCD` `/_3=/_4` `/_DBC cong /_EAC`(ASA) `DC=ECand BD=EA. |
|
| 7. |
The sides `B C ,C A`and `A B`of a triangle `A B C ,`are produced in order, forming exterior angles `/_A C D ,/_B A E`and `/_C B F`. Show that `/_A C D+/_B A E+/_C B F=360^0` |
|
Answer» `x+y+z=180^@` `x+/_BAE=180^@` `y+/_CBF=180^@` `z+/_ACD=180^@` `(x+y+z)+/_BAE+/_CBF+/_ACD=540^@` `/_BAE+/_CBF+/_ACD=540-180=360^@`. |
|
| 8. |
`If`D is the mid-point of the hypotenuse `A C`of a right triangle `A B C`, prove that `B D=1/2A C`.GIVEN : A `A B C`in which `/_B=90^0`and `D`is the mid-point of `A Cdot`TO PROVE : `B D=1/2A C`CONSTRUCTION Produce `B D`to `E`so that `B D=D Edot`Join `E Cdot` |
|
Answer» `In /_ADB and /_CDE` `AD=CD`(O is midpoint of AC) `BD=DE`(given) `/_ADB=/_CDE`(UDA) `/_ADB cong /_CDE(SAS)` `EC=AB and /_CED=/_ABP` `In /_ABC and /_ECB` `AB=EC`(proved above) `BC=BC`(common) `/_ABF=/_ECB`(90) `/_ABC cong /_ECB(SAS)` `AC=BE` `1/2AC=1/2BE` `1/2AC=BD`. |
|
| 9. |
In an isosceles triangle altitude from the vertexbisects the base.GIVEN : An isosceles triangle `A B C`such that `A B=A C`and an altitude `A D`from `A`on side `B Cdot`TO PROVE : `D`bisects `B C`i.e. `B D=D Cdot`Figure |
|
Answer» Given- `AB=AC` TO prove= BD=CD Proof-`In /_ADB and /_ACD` `/_ADB=/_ADC`(each 90) `AD=AD`(common) `/_B=/_C` `/_ADB cong /_ACD`(AAS) BD=CD. |
|
| 10. |
If the altitude from one vertex of a trianglebisects the opposite side, then the triangle is isosceles.GIVEN : A `A B C`such that the altitude `A D`from `A`on the opposite side `B C`bisects `B C`i.e., `B D=D Cdot`TO PROVE : `A B=A C`i.e. the triangle `A B C`is isosceles. |
|
Answer» `BO=DC` `In /_ABD and /_ACD` `AD=AD`(common) `/_ADB=/_ADC`(each 90) `BD=CD`(given) `/_ABD cong /_ACD`(SAS) `AB=AC` ABC is isosceles. |
|
| 11. |
If `A B C`is an isosceles triangle such that `A B=A C`and `A D`is an altitude from `A`on `B C`. Prove that(i) `/_B=/_C`(ii) `A D`bisects `B C`(iii) `A D`bisects `/_A` |
|
Answer» ` In /_ADC and /_ABD` `AB=AC`(given) `/_ADB=/_ADC(each 90^@)` `AD=AD`(common) `/_ADc cong /_ABD(RHS)` `/_B=/_C,BD=CD` `/_BAD=/_CAD`. |
|
| 12. |
In Figure, diagonal `A C`of a quadrilateral `A B C D`bisects the angles `A`and `C`. Prove that `A B=A D`and `C B=CD` |
|
Answer» Given- `/_BAC=/_DAC` and `/_BCA=/_DCA` To prove- `AB=AD and CB=CD` Proof- `In /_ABC and /_ADC` `/_BAC=/_DAC`(given) `/_BCA=/_DCA`(given) `AC=AC`(common) `/_ABC cong /_ADC(ASA)` `AB=AD and CB=CD`. |
|
| 13. |
`P`is a point equidistant from two lines `l`and `m`intersecting at a point `A`see in figure, Show that `A P`bisects the angle between them.Figure |
|
Answer» `In /_PAB and /_PCB` PB=PC AP=AD `/_PBA=/_PCA` `/_PAB cong /_PCB(RHS)` `/_PAB=/_CAP`. |
|
| 14. |
If two isosceles triangles have a common base,prove that the line joining their vertices bisects them at right angles. |
|
Answer» Too prove=AD bisects BBC at right angles Proof=2N `/_ABC ans /_ADC` AB=AC(given) BD=CD(given) BC=BC(common) `/_ABC cong /_ADC(S S S)` `/_1=/_2` `In /_ABE and /_ACE` AB=AC `/_a=/_2` AE=AE(common) `/_ABE cong /_ACE(SAS)` BE=CE `/_3=/_4` `/_3+/_4=180^@` `2/_3=180^@` `/_3=90^@`. |
|