InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
The foci of the hyperbola `4x^(2)-9y^(2)-1=0` areA. `(+-sqrt(13),0)`B. `(+-sqrt(13)/6,0)`C. `(0,+-sqrt(13)/6)`D. None of these |
|
Answer» Correct Answer - B `4x^(2)-9y^(2)=1` `x^(2)/(1/2)^(2)-y^(2)/(1/3)^(2)=1` `"eccentricity, e"=sqrt(1+(1/3)^(2)/(1/2)^(2))=sqrt(13)/3` `"foci "=(+-1/2xxsqrt(13)/3,0)=(+-sqrt(13)/6,0)` |
|
| 2. |
What is the locus of points, the difference of whose distances from two points being constant ?A. Pair of straight linesB. An ellipseC. A hyperbolaD. A parabola |
|
Answer» Correct Answer - C We know that the locus of the difference of whose distances form two points being constant, is a hyperbola. |
|
| 3. |
What is the eccentricity of the conic `4x^(2)+9y^(2)=144`?A. `sqrt5/3`B. `sqrt5/4`C. `3/sqrt5`D. `2/3` |
|
Answer» Correct Answer - A Given equation can be written as `x^(2)/(36)+y^(2)/(16)=1` ltbtgt This is an ellipse. `rArra^(2)=36, b^(2)=16` `e=sqrt(1-b^(2)/a^(2))=sqrt(1-16/36)=sqrt(20/36)=(2sqrt5)/6=sqrt5/3` |
|
| 4. |
The eccentricity e of an ellipse satisfies the condition :A. `elt0`B. `0ltelt1`C. `e=1`D. `egt1` |
|
Answer» Correct Answer - B The eccentricity e of an ellipse satisfies the condition : `0ltelt1`. |
|
| 5. |
The sum of focal distances of a point on the ellipse `x^(2)/4+y^(2)/9=1` is:A. 4 unitsB. 6 unitsC. 8 unitsD. 10 units |
|
Answer» Correct Answer - A Given equation of ellipse is `x^(2)/36+y^(2)/16=1` This is an ellipse. `rArr" "x^(2)/((2)^(2))+y^(2)/((3)^(2))=1` `rArr" "a=2" and "b=3` Length of major axis = 2a = 4 Since, we have Sum of the focal distances of a point on ellipse = length of major axis. `:." Required Ans = 4 units. |
|
| 6. |
Consider the parabola `y=x^(2)+7x+2` and the straight line `y=3x-3`. The two parabolas `y^(2)=4ax" and "x^(2)=4ay` intersectA. at two points on the line y = xB. only at the originC. at three points one of which lies on y + x = 0D. only at (4a, 4a) |
|
Answer» Correct Answer - A The parabolas `y^(2)=4ax" and "x^(2)=4ay` They intersect at(0, 0) and (4a, 4a) These points lie on `y=x` |
|
| 7. |
Consider the parabola `y=x^(2)+7x+2` and the straight line `y=3x-3`. The sum of the focal distances of a point on an ellipse is constant and equal to theA. length of equal to theB. length of major axisC. length of major axisD. length of latus rectum |
| Answer» Correct Answer - B | |
| 8. |
Consider the parabola `y=x^(2)+7x+2` and the straight line `y=3x-3`. The equation of the ellipse whose centre is at origin, major axis is along x-axis with eccentricity `3/4` and latus rectum 4 units isA. `x^(2)/1024+(7y^(2))/64=1`B. `(49x^(2))/1024+(7y^(2))/64=1`C. `(7x^(2))/1024+(49y^(2))/64=1`D. `(x^(2))/1024+(49y^(2))/64=1` |
|
Answer» Correct Answer - B `"Given, "b^(2)=2a, c^(2)=(3/4)^(2)a^(2)=9/16a^(2)` `"We know, "a^(2)=b^(2)+c^(2)` So, `a^(2)=2a+9/16a^(2)rArr16a^(2)=32a+9a^(2)rArr7a^(2)=32arArra=32/7` `rArr a = 32/7` `:. b^(2)=64/7` Equation of ellipse is `x^(2)/a^(2)+y^(2)/b^(2)=1rArrx^(2)/(32/7)^(2)+y^(2)/(64/7)=1rArr(49x^(2))/(1024)+(7y^(2))/64=1`. |
|
| 9. |
Consider the parabola `y=x^(2)+7x+2` and the straight line `y=3x-3`. What is equation of the ellipse having foci `(+-2, 0)` the eccentricity `1/4` ?A. `x^(2)/64+y^(2)/60=1`B. `x^(2)/60+y^(2)/64=1`C. `x^(2)/20+y^(2)/24=1`D. `x^(2)/24+y^(2)/20=1` |
|
Answer» Correct Answer - A `"Foci: "(+-2, 0), e= 1/4` `c=2, e=1/4=c/arArr2/arArra=8` `"We know, "a^(2)-b^(2)=c^(2)` `rArrb^(2)=a^(2)-c^(2)=8^(2)-2^(2)=64-4=60` `"Eqn of ellipse"rArrx^(2)/a^(2)+y^(2)/b^(2)=1` `rArr" "x^(2)/64+y^(2)/60=1` |
|
| 10. |
If the latusrectum of anellipse is equal to half of minor axis, find its eccentricity.A. `1/2`B. `sqrt3`C. `sqrt3//2`D. `1/sqrt2` |
|
Answer» Correct Answer - C Let the equation of ellipse be `x^(2)/a^(2)+y^(2)/b^(2)=1` `"Length of minor axis = 2b"` `" and length of latus rectum "=(2b^(2))/a` According to the equation, `(2b^(2))/a=brArr2b=arArr4b^(2)=a^(2)` Now, eccentricity of ellipse `e=sqrt(a^(2)-b^(2))/a` `e=sqrt(4b^(2)-b^(2))/(2b)=(sqrt3b)/(2b)=sqrt3/2` `rArr" "e=sqrt3/2` |
|
| 11. |
If the latusrectum of anellipse is equal to half of minor axis, find its eccentricity.A. `1//4`B. `1//2`C. `sqrt3//5`D. `sqrt3//2` |
|
Answer» Correct Answer - D Since, Latusrectum of an ellipse `=(2b^(2))/a` and minor axis =2b `:." "b=(2b^(2))/arArra=2b` `"Also, "e=sqrt(1-b^(2)/a^(2))=sqrt(1-b^(2)/(4b^(2)))=sqrt(3/4)=sqrt3/2` |
|
| 12. |
If the latus rectum of an ellipse is equal to the half of minor axis, then find its eccentricity.A. `1/2`B. `sqrt3/2`C. `3/4`D. `sqrt(15)/4` |
|
Answer» Correct Answer - B Length of latus rectum of an ellipse is `(2b^(2))/a` whereb is semi minor axis. As given , `(2b^(2))/a=b` `rArr" "2b=arArrb/a=1/2` `"We know that occentricitye "=sqrt(1-b^(2)/a^(2))=sqrt(1-1/4)=sqrt3/2` |
|
| 13. |
The line `2y=3x+12` cuts the parabola `4y=3x^(2)`. What is the equation of the hyperbola having rectum and eccentrieity 8 and `3/sqrt5` respectivly ?A. `x^(2)/25+y^(2)/20=1`B. `x^(2)/40+y^(2)/20=1`C. `x^(2)/40+y^(2)/30=1`D. `x^(2)/30+y^(2)/25=1` |
|
Answer» Correct Answer - A Let the equation of hyperbola be `x^(2)/a^(2)-y^(2)/b^(2)=1` `"Latus rectum = 8 ="(2b^(2))/arArrb^(2)=4a" …..(i)"` Also, `b^(2)=a^(2)(e^(2)-1)" [From (i)]"` `rArr" "4a=a^(2)[(3/sqrt5)^(2)-1]` `rArr" "a=5&b^(2)=20` `:." Equation is "x^(2)/25-y^(2)/20=1` |
|
| 14. |
The line `2y=3x+12` cuts the parabola `4y=3x^(2)`. Where does the line cut the parabola ?A. 7 square unitB. 14 square unitC. 20 square unitD. 21 square unit |
|
Answer» Correct Answer - C Equation of line `2y=3x+12` and equations of parabola `4y=3x^(2)` `=int_(0)^(4)((3x+12)/2-(3x)^(2)/4)dx=(3/4x^(2)+6x-x^(3)/4)_(0)^(4)` `=3xx4+24-16=36-16=20" sq. units"` `:." Area enclosed by the parabola, the line and the y axis in first quadrant = 20 sq. units"` |
|
| 15. |
The line `2y=3x+12` cuts the parabola `4y=3x^(2)`. Where does the line cut the parabola ?A. `At(-2, 3)` onlyB. At (4, 12) onlyC. At both (-2, 3) and (4, 12)D. Neither at (-2, 3) nor (4, 12) |
|
Answer» Correct Answer - C Equation of line `2y=3x+12" ..(1)"` Equation of parabola `4y=3x^(2)" …(2)"` From eqs. (i) and (ii), we get `2(3x+12)=3x^(2)` `3x^(2)-6x-24=0` `x^(2)-2x-8=0` `(x-4)(x+2)=0` `:." "x=4` `" and "x = -2` Now putting the value of x in eqn (ii) We get y = 12 and y = 3 Thus, the points (-2, 3) and (4, 12) |
|
| 16. |
The line `2y=3x+12` cuts the parabola `4y=3x^(2)`. What ishte eccentricity of rectangular hyper bola ?A. `sqrt2`B. `sqrt3`C. `sqrt5`D. `sqrt6` |
|
Answer» Correct Answer - A Here, `b^(2)=a^(2)(e^(2)-1)` For rectangular hyperbola : a = b `rArrb^(2)=b^(2)(e^(2)-1)` `rArr" "e^(2)-1=1` `rArr" "e^(2)=2rArre=+-sqrt2` `"For hyperbola, "egt1`. Hence, `e=sqrt2` |
|
| 17. |
The focal distance of a point on the parabola `y^2=12 xi s4.`Find the abscissa of this point.A. 1B. `-1`C. `2sqrt2`D. `-2` |
|
Answer» Correct Answer - A Focal distance of a point `(x_(1), y_(1))` on the parabola is `y^(2)=4ax` is equal distance from directrix x+a=0 is `x_(1)+a` `"For "y^(2)=12x,` comparing with `y^(2)=4ax`. `4a=12rArra=3` `"so, "x_(1)+2=4` `rArr" "x_(1)=1` |
|
| 18. |
Which one of the following points lies outside the ellipse `(x^(2)//a^(2))+(y^(2)//b^(2))`?A. (a, 0)B. (0, b)C. (-a, 0)D. (a, 0) |
|
Answer» Correct Answer - D `"The equation of ellipse is "x^(2)/a^(2)+y^(2)/b^(2)-1=0` The point for which `x^(2)/a^(2)+y^(2)/b^(2)-1=0gt0` is outside ellipse. Since, at (a, 0)1 + 0 - 1 = 0 It lies on the ellipse. At (0, b), 0 + 1 - 1 = 0 It lies on the ellipse. At (-a, 0), 1 + 0 - 1 = 0 It lien on the ellipse. At (a, 0), `1 + 1 - 1 gt 0` So, the point (a, b) lies outside the ellipse. |
|
| 19. |
Consider an ellipse `x^(2)/a^(2)+y^(2)/b^(2)=1` What is the eauation of parabola whose verted is at (0, 0) and focus is at (0, 2) ?A. `y^(2)+8x=0`B. `y^(2)-8x=0`C. `x^(2)+8y=0`D. `x^(2)-8y=0` |
|
Answer» Correct Answer - C Focus is (0, 2) a= -2 and parabola is along y-axis downward x`x^(2)=4ay` `x^(2)=-8y` or `x^(2)+8y=0` |
|