Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Find the value of k, if the points A (8, 1), B (3, - 4) and C (2, k) are collinear.

Answer»

Given points are A(8,1),B(3,−4) and C(2,k).It is also said that they are collinear and hence the area enclosed by them should be 0. 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Given that area of ∆ABC = 0 

∴ 0 = \(\frac{1}2\) |8(-4 – k) + 3(k – 1) + 2(1 – (-4))| 

∴ 0 = \(\frac{1}2\) |-32 – 8k + 3k -3 + 10| 

∴ 5k + 25 = 0 

∴ k = -5 

Hence, 

the value of k is -5.

152.

Find the value of a for which the area of the triangle formed by the points A (a, 2a), B (-2, 6) and C (3, 1) is 10 square units.

Answer»

Given points are A(a,2a), B(−2,6) and C(3,1). It is also said that the area enclosed by them is 10 square units. 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Given that area of ∆ABC = 10 

∴ 10 = \(\frac{1}2\) |a(6 – 1) -2 (1 – 2a) + 3(2a - 6)| 

∴ 20 = |5a – 2 + 4a + 6a - 18| 

∴ 20 = | 15a – 20| 

∴ 15a – 20 = ± 20 

Taking positive sign, 

15a – 20 = 20 

a = \(\frac{8}3\)

Taking negative sign, 

15a – 20 = -20 

a = 0 

Hence, 

the value of a are 0 and \(\frac{8}3\)

153.

Find the area of a parallelogram ABCD if three of its vertices are A(2, 4), B (2 + \(\sqrt3\) , 5) and C(2, 6).

Answer»

It is given that A(2, 4), B(2 + \(\sqrt3\), 5) and C(2, 6) are the vertices of the parallelogram ABCD. 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Area of □ABCD = 2 × Area of ∆ABC 

Area of ∆ABC = \(\frac{1}2\) |2(5 - 6)+ (2 + \(\sqrt3\))(6 - 4)+2(4 - 5)| 

\(\frac{1}2\) |-2 + 4 + 2\(\sqrt3\) - 2| 

\(\frac{1}2\) × 2\(\sqrt3\)\(\sqrt3\) sq. units 

∴ Area of □ABCD = 2 × \(\sqrt3\) = 2\(\sqrt3\) sq. units 

Hence, 

the area of given parallelogram is 2\(\sqrt3\) sq. units

154.

If the vertices of a triangle are (1,-3), (4, p) and (-9, 7) and its area is 15 sq. units, find the value(s) of p.

Answer»

Let A(1, −3), B(4, p) and C(−9, 7) be the vertices of the ∆ABC. 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Given that area of ∆ABC = 15 

∴ 15 = \(\frac{1}2\) |1(p – 7) +4 (7 – (-3)) - 9(-3 - p)| 

∴ 30 = |p – 7 + 40 + 27 + 9p| 

∴ 30 = | 10p + 60| 

∴ 10p + 60 = ± 30 

Taking positive sign, 

10p + 60 = 30 

p = -3 

Taking negative sign, 

10p + 60 = - 30 

p = -9 

Hence, 

the value of p are -3 and -9

155.

If P(-1,1) is the midpoint of the line segment joining A(-3,b) and B(1, b+4) then b = ? (a) 1 (b) -1 (c) 2 (d) 0

Answer»

Correct answer is (b) -1

The given ports are A(-3,b) and B(1,b + 4).

Then, (x1 = -3,y1 = b) and (x2 = 1,y2 = b + 4)

Therefore,

\(x=\frac{[(-3)+1]}{2}\)

\(\frac{-2}{2}\)

= -1

And

\(y=\frac{[b\,+\,(b\,+\,4)]}{2}\)

\(\frac{2b\,+\,4}{2}\)

= b + 2

But the midpoint is P(-1,1).

Therefore,

b + 2 = 1

\(\Rightarrow b=-1\)

156.

If P(a/2,4) is the midpoint of the line segment joining the points A(-6, 5) and B(-2,3) then the value of a is(a) -8 (b) 3 (c) -4 (d) 4

Answer»

Correct answer is (a) -8

The point P\((\frac{a}{2},4)\) is the midpoint of the line segment joining the points A(-6,5) and

B(-2,3).

So \(\frac{a}{2}=\frac{-6-2}{2}\)

\(\Rightarrow \frac{a}{2}=-4\)

\(\Rightarrow\) a = -8

157.

Find the value of a, if the line passing through (–5, –8) and (3, 0) is parallel to the line passing through (6, 3) and (4, a).

Answer»

Two lines are parallel if their slopes are equal

∴ \(\frac{0-(-8)}{3-(-5)}\) = \(\frac{a-3}{4-6}\) ⇒ \(\frac{8}{8}\) = \(\frac{a-3}{-2}\) ⇒ a – 3 = –2 ⇒ a = 1.

158.

If the points (x, 1), (1, 2) and (0, y + 1) are collinear show that \(\frac{1}{x}\) + \(\frac{1}{y}\) = 1.

Answer»

There are two ways to prove it. 

1st way: Area of triangle formed by the given points = 0 if they are collinear.

∴ \(\frac{1}{2}\) [\(x\)(2 – (y + 1) ) + 1((y + 1) – 1) + 0(1 – 2)] = 0

⇒ \(\frac{1}{2}\) [2\(x\) – \(x\)y – \(x\) + y + 0] = 0 

\(x\) + y – \(x\)y = 0 

\(x\) + y = \(x\)

⇒ \(\frac{x}{xy}\) + \(\frac{y}{xy}\) = 1 ⇒ \(\frac{1}{y}\) + \(\frac{1}{x}\) = 1.

2nd way: Slope of the lines formed by joining these points are equal. 

Slope of line joining (\(x\), 1), (1, 2) = \(\frac{(2-1)}{1-x}\)

Slope of line joining (1, 2), (0, y + 1) = \(\frac{y+1-2}{0-1}\)

⇒ \(\frac{1}{1-x}\) = \(\frac{y-1}{-1}\) ⇒ -1 = (1 – x) (y – 1) 

⇒ –1 = y – \(x\)y – 1 + \(x\) 

⇒ x + y = \(x\)y ⇒  \(\frac{1}{x}\) + \(\frac{1}{y}\) = 1.

159.

Without using Pythagoras’ theorem, show that the points A (0, 4), B(1, 2) and C(3, 3) are the vertices of a right angle triangle.

Answer»

Slope of AB = \(\frac{2-4}{1-0}\) = -2, Slope of BC = \(\frac{3-2}{3-1}\) = \(\frac{1}{2}\)

Slope of AC = \(\frac{3-4}{3-0}\) = \(-\frac{1}{3}\)

Slope of AB × Slope of BC = -2 x \(\frac{1}{2}\) = -1

∴ AB ⊥ BC, i.e, ∠B = 90º ⇒ ΔABC is a right angled.

160.

The centroid of the triangle with vertices (2, 1), (3, 2), (1, 3) is A) (3, 5) B) (2, 2) C) (3, 3) D) (3, 6)

Answer»

Correct option is (B) (2, 2)

Centroid of the triangle whose vertices are (2, 1), (3, 2) and (1, 3) is \((\frac{2+3+1}3,\frac{1+2+3}3)\)

\(=(\frac{6}3,\frac{6}3)=(2,2)\)

Hence, the centroid of the triangle with vertices (2, 1), (3, 2) and (1, 3) is (2, 2).

Correct option is B) (2, 2)

161.

The mid point of the line joining the points (4, 5), (- 6, 3) is ……………… A) (1, 4) B) (-1, 4) C) (1, -4) D) (-1, – 4)

Answer»

Correct option is (B) (-1, 4)

Mid-point of the line joining the points (4, 5), (- 6, 3) is \(\left(\frac{4+(-6)}2,\frac{5+3}2\right)\)

\(=(\frac{4-6}2,\frac{8}2)\)

\(=(\frac{-2}2,4)=(-1,4)\)

Correct option is B) (-1, 4)

162.

The distance of the point (3, – 4) from X- axis is ……………….. A) 3 B) 4 C) 5 D) 1

Answer»

Correct option is (B) 4

Point on X-axis which is nearest to (3, -4) is (3, 0).

\(\therefore\) The distance of point (3, -4) from X-axis

= Distance between points (3, -4) & (3, 0)

\(=\sqrt{(3-3)^2+(0-(-4))^2}\)

\(=\sqrt{0+16}\)

= 4 units

Correct option is B) 4

163.

Find the slopes of the lines passing through the given points.i. L (-2, -3), M (-6, -8) ii. E (-4, -2), F (6, 3) iii. T (0, -3), s (0,4)

Answer»

i. L (x1 , y1 ) = L (-2, -3) and M (x2 ,y2 ) = M (-6, -8) 

Here, x1 = -2, x2 = – 6, y1 = – 3, y2 = – 8

Slope of line LM = (y2 - y1)/ (x2 - x1)

= (-8 - (-3))/(-6 -(-2)) = (-8 + 3)/ (-6 + 2)

= -5/-4 = 5/4

∴ The slope of line LM is 5/4

ii. E (x1 , y1 ) = E (-4, -2) and F (x2 , y2 ) = F (6, 3) 

Here,x1 = -4, x2 = 6, y1 = -2, y2 = 3

Slope of line EF = (y2 - y1)/ (x2 - x1)

= (3 - (-2))/(6 - (-4)) = (3+2)/(6 + 4)

= 5/10 = 1/2

The slope of line EF is 1/2.

iii. T (x1 , y1 ) = T (0, -3) and S (x2 , y2 ) = S (0, 4) 

Here, x1 = 0, x2 = 0, y1 = -3, y2 = 4

Slope of line TS  = (y2 - y1)/(x2 - x1)

= (4 - 9(-3))/(0 - 0) = (4 +3)/0 = 7/0

= Not definned

∴ The slope of line TS cannot be determined.

164.

Seg AB is parallel to Y-axis and coordinates of point A are (1, 3), then coordinates of point B can be _______. (A) (3,1) (B) (5,3) (C) (3,0) (D) (1,-3)

Answer»

(D) (1,-3)

Since, seg AB || Y-axis. 

∴ x co-ordinate of all points on seg AB will be the same, 

x co-ordinate of A (1, 3) = 1 

x co-ordinate of B (1, – 3) = 1

165.

Determine whether the following points are collinear.i. A (-1, -1), B (0, 1), C (1, 3) ii. D (- 2, -3), E (1, 0), F (2, 1)

Answer»

i. Slope of line AB = (y2 - y1)/(x2 - x1)

= (1-(-1))/(0 - (-1)) = (1 + 1)/(0 + 1) = 2

Slope of line BC = (y2 - y1)/(x2 - x1)

= (3-1)/(1 - 0) = 2

∴ slope of line AB = slope of line BC 

∴ line AB || line BC 

Also, point B is common to both the lines. 

∴ Both lines are the same. 

∴ Points A, B and C are collinear.

ii. Slope of line DE = (y2 - y1)/(x2 - x1)

= (0 - (-3))/(1-(-2))

= (0 + 3)/(1 + 2) = 3/3 = 1

Slope of line EF = (y2 - y1)/(x2 - x1)

= (1 - 0)/(2 - 1) = 1

∴ slope of line DE = slope of line EF 

∴ line DE || line EF 

Also, point E is common to both the lines. 

∴ Both lines are the same. 

∴ Points D, E and F are collinear

166.

Find the slopes of the lines passing through the given points. i. A (2, 3), B (4, 7) ii. P(-3, 1), Q (5, -2) iii. C (5, -2), D (7, 3)

Answer»

i. A (x1 , y1 ) = A (2, 3) and B (x2 , y2 ) = B (4, 7) 

Here, x1 = 2, x2 = 4, y1 = 3, y2 = 7

Slope of line AB = (y2 - y1)/(x2 - x1)

=(7 - 3)/(4 - 2) 

= 4/2 = 2

∴ The slope of line AB is 2.

ii. P (x1 , y1 ) = P (-3, 1) and Q (x2 , y2 ) = Q (5, -2) 

Here, x1 = -3, x2 = 5, y1 = 1, y2 = -2

Slope of line PQ = (y2 - y1)/(x2 - x1)

= (-2 - 1)/(5 - (-3)) 

= -3/(5+3)  = -3/8

The slope of line PQ is -3/8

iii. C (x1 , y1 ) = C (5, -2) and D (x2 , y2 ) = D (7, 3)

Here, x1 = 5, x2 = 7, y1 = -2, y2 = 3

Slope of line CD = (y2 - y1)/(x2 - x1)

= (3 - (-2))/ (7 - 5)

= (3 + 2)/2 = 5/2

∴The slope of line CD is 5/2

167.

Find k, if PQ || RS and P (2, 4), Q (3, 6), R (3,1), S (5, k).

Answer»

Slope of line PQ = (y2 -y1)/(x2 - x1) = (6 -4)/(3 - 2) = 2

Slope of line RS = (y2 -y1)/(x2 - x1) = (k - 1)/(5 - 3) = (k -1)/2

But, line PQ || line RS … [Given] 

∴ Slope of line PQ = Slope of line RS 

∴ 2 = (k -1)/2

∴ 4 = k – 1 

∴ k = 4 + 1 

∴ k = 5

168.

Distance of point (-3, 4) from the origin is _________. (A) 7 (B) 1 (C) 5 (D) -5

Answer»

(C) 5

Distance of (-3, 4) form origin 

\(\sqrt {(-3)^2 + (4)^2}\)

\(\sqrt {9 + 16 }\)

\(\sqrt {25 }\) = 5

169.

Angles made by the line with the positive direction of X-axis are given. Find the slope of these lines. i. 45° ii. 60° iii. 90°

Answer»

i. Angle made with the positive direction of 

X-axis (θ) = 45° 

Slope of the line (m) = tan θ 

∴ m = tan 45° = 1 

∴ The slope of the line is 1.

ii. Angle made with the positive direction of 

X-axis (θ) = 60° 

Slope of the line (m) = tan θ

∴ m = tan 60° = √3

∴ The slope of the line is √3

iii. Angle made with the positive direction of 

X-axis (θ) = 90° 

Slope of the line (m) = tan θ 

∴ m = tan 90° 

But, the value of tan 90° is not defined. 

∴ The slope of the line cannot be determined.

170.

Find k, if R (1, -1), S (-2, k) and slope of line RS is -2.

Answer»

R(x1 , y1 ) = R (1, -1), S (x2 , y2 ) = S (-2, k) 

Here, x1 = 1, x2 = -2, y1 = -1, y2 = k

Slope of lines RS = (y2 - y1)/(x2 - x1

= (k - (-1))/(-2 - 1) = (k + 1)/-3

But, slope of line RS is -2. … [Given] 

∴ -2 = (k + 1)/-3

∴ k + 1 = 6 

∴ k = 6 – 1 

∴ k = 5

171.

Find k, if B (k, -5), C (1, 2) and slope of the line is 7.

Answer»

B(x1 , y1 ) = B (k, -5), C (x2 , y2 ) = C (1, 2) 

Here, x1 = k, x2 = 1, y1 = -5, y2 = 2

Slope of line BC = (y2 - y1)/(x2 - x1) = (2 - (-5))/(1 - k)

= (2 +5)/(1 -k) = 7/(1 - k)

But, slope of line BC is 7. …[Given] 

∴ 7 = 7/(1 - k)

∴ 7(1 – k) = 7 

∴ 1 – k = 7/7

∴ 1 – k = 1 

∴ k = 0

172.

A line makes an angle of 30° with the positive direction of X-axis. So the slope of the line is ________. (A) 1/2(B) √3/2(C) 1/√3(D) √3

Answer»

The correct answer is : (C) 1/√3

173.

Find the slope of the line joining the two given points. (4,-8) and (5,-2).

Answer»

Slope = \(\frac{y_2-y_1}{x_2-x_1}\)

\(\frac{-2+8}{5-4}\)

= 6

174.

State whether the following statement are true or false. Justify your answer.The points (4, 5), (7, 6) and (6, 3) are collinear.

Answer»

False. Since the area of the triangle formed by the points is 4 sq. units, the points are not collinear.

175.

Where do these following points lie – (0, -3), (0, -8), (0, 6), (0, 4) on coordinate plane?

Answer»

As the x – coordinate of all these points is zero, all points lie on Y – axis.

176.

State whether the following statement are true or false. Justify your answer.The points A (–1, 0), B (3, 1), C (2, 2) and D (–2, 1) are the vertices of a parallelogram.

Answer»

True. The coordinates of the mid-points of both the diagonals AC and BD are 1/2, 1, i.e., the diagonals bisect each other.

177.

The slope of the line perpendicular to 13x – 7y + 1 = 0 is ……………….A) \(\cfrac{-7}{13}\)B) \(\cfrac{7}{3}\)C) \(-\cfrac{7}{3}\)D) \(\cfrac{13}{7}\)

Answer»

Correct option is (A) \(\frac{-7}{13}\)

Given line is 13x – 7y + 1 = 0

\(\Rightarrow7y=13x+1\)

\(\Rightarrow y=\frac{13}7x+\frac17\)

\(\therefore\) Slope of line \(13x-7y+1=0\) is \(m=\frac{13}7\)

(By comparing given line with \(y=mx+c)\)

\(\therefore\) Slope of line perpendicular to the line \(13x-7y+1=0\)

\(=\frac{-1}{\text{Slope of line }13x-7y+1=0}\)

\(=\frac{-1}{\frac{13}7}\) \(=\frac{-7}{13}\)

Correct option is A) \(\cfrac{-7}{13}\)

178.

The slope of the line parallel to the line 2x + y + 4 = 0 is A) 2 B) -2 C) \(\cfrac{1}2\)D) \(-\cfrac{1}2\)

Answer»

Correct option is (B) -2

Given line is 2x+y+4 = 0

\(\Rightarrow y=-2x-4\)

By comparing with y = mx+c, we obtain \(m=-2\)

\(\therefore\) Slope of the line 2x + y + 4 = 0 is m = -2.

\(\therefore\) Slope of line parallel to line 2x+y+4 = 0 = Slope of line 2x+y+4 = 0

= -2

Hence, the slope of the line parallel to the line 2x+y+4 = 0 is -2.

Correct option is B) -2

179.

If the points A (1, 2), B (0, 0) and C (a, b) are collinear, then A. a = b  B. a = 2b C. 2a = b D. a = - b

Answer»

Let the points are;

A = (x1, y1) = (1, 2)

B = (x2, y2) = (0, 0)

C = (x3, y3) = (a, b)

∵ Area of ∆ABC= ∆ = 1/2

[x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)]

∴ ∆ =1/2 [1(0 - b) + 0(b - 2) + a(2 - 0)]

⇒Δ=1/2 ( - b + 0 + 2a)=1/2(2a - b)

As, the points A (1, 2), B (0, 0) and C (a, b) are collinear, then area of ΔABC will be equals to the zero

Area of ΔABC = 0

⇒1/2 (2a - b)

→ 2a - b = 0

→ 2a = b

Hence, the required relation is 2a = b

180.

Find the distance between the pairs of points:(-4, -3), (-8, -3)

Answer»

Given points = A (- 4, – 3) and B (- 8, – 3) 

These two points lie on the line parallel to X – axis. 

∴ Distance between A (- 4, – 3) and B (- 8, – 3) = |x2 – x1|

= |-8 – (-4)| 

= |-8 + 4| 

= |-4| = 4 units.

181.

Find the distance between the pairs of points: (3, 8), (6, 8)

Answer»

Given points = A (3, 8) and B (6, 8) 

These two points lie on the line parallel to X – axis. 

Distance between A (3, 8) and B (6, 8) = |x2 – x1

= |6 – 3| = 3 units.

182.

The point (-2,-8) lies in A) Q1 B) Q3 C) Q2 D) Q4

Answer»

Correct option is (B) Q3

If x & y coordinate of a point are negative then that point lies in \(3^{rd}\) quadrant.

\(\therefore\) (-2, -8) lies in \(3^{rd}\) quadrant, i.e., in \(Q_3\) quadrant.

Correct option is  B) Q3 

183.

The x co-ordinate of a point is also calledA) ordinate B) 2nd co-ordinate C) abscissa D) none

Answer»

Correct option is (C) abscissa

The x-coordinate of a point is called abscissa.

Correct option is  C) abscissa

184.

The point which is not on the X-axis isA) (-1,0) B) (8,0) C) (2, 0) D)(0,4)

Answer»

Correct option is (D) (0,4)

\(\because\) Equation of X-axis is y = 0.

\(\therefore\) Any point on X-axis has y-coordinate zero.

Since, y-coordinate of point (0, 4) is \(4\neq0.\)

Therefore, it does not lie on X-axis.

Correct option is  D)(0,4)

185.

The point which is not on the Y-axis is A) (-2,0) B) (0, 2)C) (0, – 3) D) (0, 4)

Answer»

Correct option is (A) (-2,0)

\(\because\) Equation of Y-axis is x = 0.

\(\therefore\) Any point on Y-axis has x-coordinate zero.

Since, x-coordinate of point (-2, 0) is \(-2\neq0.\)

\(\therefore\) (-2, 0) does not lie on Y-axis.

Correct option is  A) (-2,0)

186.

The point which lies on both the axes is A) (1,1) B) (- 1, – 1)C) (2, 2) D) (0,0)

Answer»

Correct option is (D) (0,0)

Origin is intersection point of both axes.

\(\therefore\) The point which lies on both axes is (0, 0).

Correct option is  D) (0,0)

187.

Y-axis is denoted by A) y = 0 B) x = 0 C) x = y D) all the above

Answer»

Correct option is (B) x = 0

Y-axis is denoted by x = 0.

Correct option is  B) x = 0

188.

If the distance of a point from X-axis is 8 units and its distance from Y-axis is 3 units then the point is denoted by A) (8,3) B) (-8,3) C) (- 3, 8) D) (3, 8)

Answer»

Correct option is (D) (3, 8)

The distance of point from Y-axis is x = 3 and the distance of point from X-axis is y = 8.

\(\therefore\) Point is (3, 8).

Correct option is  D) (3, 8)

189.

X-axis is denoted byA) y = 0 B) x = 0 C) x = y D) none

Answer»

Correct option is (A) y = 0

X-axis is denoted by y = 0.

Correct option is  A) y = 0

190.

If the points A(1, 2), B(0, 0) and C(a, b) are collinear, then(a) a = b (b) a = 2b (c) a = – b (d) 2a = b

Answer»

(d) 2a = b

Points A(1, 2), B(0, 0) and C(a, b) are collinear if area of ΔABC = 0.

⇒ \(\frac{1}{2}\)[1(0 – b) + 0 (b – 2) + a (2 – 0)] = 0

⇒ –b + 2a = 0 ⇒ 2a = b.

191.

A point on the Y – axis A) (4, 5) B) (0, 3) C) (3, 0) D) (4, 3)

Answer»

Correct option is (B) (0, 3)

Any point that has x-coordinate zero will lie on Y-axis.

\(\because\) Point (0, 3) has x-coordinate zero.

\(\therefore\) Point (0, 3) lies on Y-axis.

Correct option is B) (0, 3)

192.

The point that lies in IV quadrant A) (2, 3) B) (-3, -2) C) (4, -3) D) (-2, 3)

Answer»

Correct option is (C) (4, -3)

We know that any point in IV quadrant has x-coordinate positive and y-coordinate negative.

\(\because4>0\;\&\;-3<0\)

\(\therefore\) (4, -3) lies in IV quadrant.

Correct option is C) (4, -3)

193.

A point on the X – axis A) (3, 3) B) (4, 5) C) (2, 0) D) (0, 2)

Answer»

Correct option is (C) (2, 0)

Any point on X-axis has y-coordinate zero.

Or any point that has y-coordinate zero, will lie on X-axis.

\(\because\) y-coordinate of point (2, 0) is O.

\(\therefore\) Point (2, 0) lies on X-axis.

Correct option is C) (2, 0)

194.

Q1 ∩ Q2 A) {1,2} B) ΦC) {0,1} D) {1,2,3}

Answer»

Correct option is B) Φ

195.

The distance of points P(x, y) from origin O (0, 0) isA) \(\sqrt{x+y}\)B) \(\sqrt{x^2+y^2}\)C) x2 + y2D) x + y

Answer»

Correct option is (B) \(\sqrt{x^2+y^2}\)

The distance between two points \((x_1,y_1)\;\&\;(x_2,y_2)\) is given by \(d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

\(\therefore\) Distance of point P(x, y) from origin O(0, 0) is

\(d=\sqrt{(0-x)^2+(0-y)^2}\)

\(=\sqrt{(-x)^2+(-y)^2}\)

\(=\sqrt{x^2+y^2}\)

Correct option is B) \(\sqrt{x^2+y^2}\)

196.

In a coordinate system the horizontal line is called ………………A) Y – axis B) X – axis C) originD) reference

Answer»

Correct option is (B) X – axis

 In a coordinate system the horizontal line is called X-axis.

Correct option is B) X – axis

197.

The coordinates of a point are (0,0) then the point is A) origin B) X – axisC) ordinate D) abscissa

Answer»

Correct option is (A) origin

The coordinates of a point are (0, 0) then the point is origin.

Correct option is A) origin

198.

Slope of the line x = 9 is A) Not definedB) – 9 C) 0 D) 5

Answer»

Correct option is (A) Not defined

\(\because\) The equation of Y-axis is x = 0.

We know that the slope of Y-axis is not defined.

i.e., the slope of line x = 0 is not defined.

\(\because\) Line x = 9 is parallel to  line x = 0 and parallel lines have same slope.

\(\therefore\) The slope of line x = 9 is same as the slope of line x = 0.

\(\therefore\) The slope of line x = 9 is not defined.

Correct option is A) Not defined

199.

In a coordinate system the vertical line is called ………………A) Y – axis B) X – axis C) origin D) reference

Answer»

Correct option is (A) Y – axis

In a coordinate system the vertical line is called Y-axis.

Correct option is A) Y – axis

200.

The point which lies on both the axis is A) (1, 1) B) (2, 2) C) (-1, -1) D) (0, 0)

Answer»

Correct option is (D) (0, 0)

The point which lies on both of the axis is origin (0, 0).

Correct option is D) (0, 0)