Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Find the equation of the straight line with a positive gradient which passes through the point (–5, 0) and is at a perpendicular distance of 3 units from the origin. (a) 3x + 4y – 15 = 0 (b) 4x – 3y + 15 = 0 (c) 3x – 4y + 15 = 0 (d) 3y – x + 10 = 0

Answer»

(c) 3x – 4y + 15 = 0 

Let (m > 0) be the gradient (slope) of the required line. Then, 

Equation of any line through (–5, 0) having slope = m is 

y – 0 = m(x – (–5)) or mx – y + 5m = 0           ...(i) 

Its perpendicular distance from origin is 3

⇒ \(\frac{\pm|\,m.\,0-0+5m\,|}{\sqrt{m^2+(-1)^2}}\) = 3 ⇒ | 5m | = 3\(\sqrt{m^2+1}\)

\(\bigg(\because\text{Distance of}\,(x_1,y_1)\,\text{from line}\,as+by+c=\frac{|as_1+by_1+c|}{\sqrt{a^2+b^2}}\bigg)\)

⇒ 25m2 = 9(m2 + 1) ⇒ 16m2 = 9 ⇒ m = \(\frac{3}{4}\) (∵ m is +ve)

∴ Required equation: y = \(\frac{3}{4}\) (x + 5)

⇒ 3x – 4y + 15 = 0.

102.

Define Co-ordinate geometry.

Answer»

Co-ordinate geometry is the system of geometry where the position of points on the plane is described using an ordered pair of numbers.

103.

If A(-4, 8), B(-3, -4), C(0, -5) and D(5, 6) are vertices of quadrilateral then find its area.

Answer»

Let A(x1, y1) = (-4, 8), B(x2, y2) = (-3, -4), C(x3, y3) = (0, –5) and D(x4, y4) = (5, 6) be the vertices of quadrilateral ABCD.

Area of quad. ABCD = \(\frac{1}{2}\) |{(x1 y2 – x2 y1) + (x2y3 – x3y2) + (x3y4 – x4y3) + (x4y1 – x1y4)}|

\(\frac{1}{2}\) |{(-4 × (-4) – (-3) × 8) + (-3 × (–5) – 0 × (-4)) + (0 × 6 – 5 × (–5)) + (5 × 8 – (-4) × 6)}|

\(\frac{1}{2}\) |{(16 + 24) + (15 + 0) + (0 + 25) + (40 + 24)}|

\(\frac{1}{2}\) |{40 + 15 + 25 + 64}| 

\(\frac{1}{2}\)x 144 

= 72 sq. units.

104.

A straight line passes through the points (a, 0) and (0, b). The length of the line segment contained between the axes is 13 and the product of the intercepts is 60. Find the equation of the straight line (a) 5x + 12y = 60 (b) 7x – 12y = 50 (c) 5x + 12y + 60 = 0 (d) Both (a) and (c)

Answer»

(d) Both (a) and (c)

Since the line passes through A(a, 0) and B(0, b), it makes intercepts a and b on x-axis and y-axis respectively. 

Let the equation of this line in the intercept from be \(\frac{x}{a}\) + \(\frac{y}{a}\) = 1

By the given condition, AB = \(\sqrt{a^2+b^2}\) = 13 and ab = 60

a2 + b2 = 169 ⇒ a2 + b2 + 2ab = 169 + 120 

⇒ (a + b)2 = 289 ⇒ a + b = ±17                 ...(i) 

Also, a2 + b2 – 2ab = 169 – 120 ⇒ (a – b)2 = 49 

⇒ a – b = ±7.                         ...(ii) 

∴ From (i) and (ii) a = 12, b = 5 and a = –12, b = –5 

∴ The required equations of the straight line are:

\(\frac{x}{12}\) + \(\frac{y}{5}\) = 1 and \(\frac{x}{-12}\) + \(\frac{y}{-5}\) = 1

5x + 12y = 60 and 5x + 12y + 60 = 0.

105.

What is the perimeter of the triangle with the vertices A(–4, 2), B(0, –1) and C(3, 3) ?(a) \(7+3\sqrt2\)(b) \(10+5\sqrt2\)(c) \(11+6\sqrt2\)(d) \(5+\sqrt2\)

Answer»

(b)10 + \(5\sqrt2\)

Perimeter of ΔABC = AB + BC + CA

\(\sqrt{(0+4)^2+(-1-2)^2}\) + \(\sqrt{(3-0)^2+(3+1)^2}\) + \(\sqrt{(3-4)^2+(3-2)^2}\)

\(\sqrt{16+9}\) + \(\sqrt{9+16}\) +\(\sqrt{49+1}\)

\(\sqrt{25}\) + \(\sqrt{25}\) + \(\sqrt{50}\) = 5 + 5 + \(5\sqrt2\) = 10 + \(5\sqrt2\)

106.

Show that the equation of the parallel line midway between the parallel lines ax + by + c1 = 0 and ax + by + c2 = 0 is as + by + \(\frac{c_1+c_2}{2}\) = 0.

Answer»

The two given lines are ax + by + c1 = 0 and ax + by + c2 = 0. 

Any line parallel to these two lines and midway between them is 

ax + by + c = 0              ...(i) 

Putting x = 0, y = \(-\frac{c}{b}\) is a point on line (i)

It is equidistant from the given lines but in opposite directions, so

\(\frac{\big|a\times0+b\times-\frac{c}{b}+c_1\big|}{\sqrt{a^2+b^2}}\) = \(-\frac{\big|a\times0+b\times-\frac{c}{b}+c_2\big|}{\sqrt{a^2+b^2}}\) ⇒ – c + c1 = c – c2 ⇒ c = \(\frac{c_1+c_2}{2}\)

∴ Required equation is ax + by + \(\frac{c_1+c_2}{2}\) = 0.

107.

The distance between the points (0, 0), (X1 ,Y1) is ………………units.A) \(\sqrt{x_1^2+y_1^2}\)B) \(\sqrt{x_1+y_1}\)C) \(\sqrt{x^2+y^2}\)D) \(\sqrt{x+y}\)

Answer»

Correct option is (A) \(\sqrt{x_1^2+y_1^2}\)

Distance between points \(A(0,0)\;\&\;B(x_1,y_1)\) is

\(AB=\sqrt{(x_1-0)^2+(y_1-0)^2}\)

\(=\sqrt{x_1^2+y_1^2}\) units

Correct option is A) \(\sqrt{x_1^2+y_1^2}\)

108.

Show that the points (- 3, 2), (- 5, - 5), (2, - 3) and (4, 4) are the vertices of a rhombus. Find the area of this rhombus.

Answer»

Vertices of the rhombus are: A(- 3, 2), B(- 5, - 5), C(2, -3) and D(4, 4)

We know that diagonals of a rhombus bisect each other, therefore point of intersection of diagonals is: 

Abscissa of Mid point of AC = \(\frac{2 - 3}2\) = \(\frac{ - 1}2\)

Ordinate of Mid point of AC = \(\frac{-3 + 3}2\) = \(\frac{ - 1}2\)

Abscissa of Mid point of BD = \(\frac{4 - 5}2\) = \(\frac{ - 1}2\)

Ordinate of Mid point of BD = \(\frac{4 - 5}2\) = \(\frac{ - 1}2\)

Since the diagonals AC and BD bisect each other at O, therefore it is a rhombus. 

Length of diagonal AC 

\(\sqrt{(2 + 3)^2 + (-3 - 2)^2}\) = \(\sqrt{25 + 25}\) = \(\sqrt{50}\) = \(5\sqrt{2}\) units

Length of diagonal BD 

\(\sqrt{(4 + 5)^2 + (4 + 5)^2}\) = \(\sqrt{81 + 81}\) = \(\sqrt{162}\) = \(9\sqrt{2}\) units

Area of rhombus = \(\frac{1}2\times{d1}\times{d2}\) = \(\frac{1}2\times{5\sqrt2}\times{9\sqrt2}\) = 45 sq units

Area of rhombus is 45 sq units

109.

Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, - 6) and (4,-1). Also, find its circumradius.

Answer»

Coordinates of points on a circle are A (3, 0), B(-1, - 6) and C(4,-1) 

Let the coordinates of the centre of the circle be O(x, y) 

Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

Since the distance of the points A, B and C will be equal from the center, therefore 

⇒ OA = OC

\(\sqrt{(x - 3)^2 + (y - 0)^2}\) = \(\sqrt{(x + 1)^2 + (y + 6)^2}\)

On squaring both sides, we get

(x - 3)2 + (y - 0)2 = (x + 1)2 + (y + 6)

⇒ x2 + 9 - 6x + y2 = x2 + 2x +1 + y2 + 36 + 12y 

⇒ - 8x - 12y = 28 

⇒ 2x + 3y = -7------------- (1) 

Similarly, OC = OB

\(\sqrt{(x - 4)^2 + (y + 1)^2}\) = \(\sqrt{(x + 1)^2 + (y + 6)^2}\)

On squaring both sides, we get 

(x - 4)2 + (y + 1)2 = (x + 1)2 + (y + 6)

⇒ x2 + 16 - 8x + y2 + 1 + 2y = x2 + 1 +2x + y2 + 36 + 12y 

⇒ - 10x - 10y = 20 

⇒ x + y = - 2 ------------- (2) 

Solving eqn (1) and (2), we get 

x = 1; y = - 3 

Coordinates of circum center are (1, - 3) 

Circum radius of the circle = OA = \(\sqrt{(1 - 3)^2 + (3)^2}\)

\(\sqrt{4 +13}\)

\(\sqrt{13}\) units

110.

Find a point on the x-axis which is equidistant from the points (7, 6) and (- 3, 4).

Answer»

points A(7, 6) and B(-3, 4) are equidistance from point P. 

Let the coordinates of point are P(x, 0) 

Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

⇒ PA = PB

\(\sqrt{(x - 7)^2 + (0 - 6)^2}\) = \(\sqrt{(x + 3)^2 + (0 - 4)^2}\)

On squaring both sides, we get 

(x - 7)2 + (0 - 6)2 = (x + 3)2 + (0 - 4)2

x2 - 14x + 49 + 36 = x2 + 6x + 9 + 16

5x = 15

x = 3

Therefore coordinates are (3, 0)

111.

Find the point on x-axis which is equidistant from the points (- 2, 5) and (2,- 3).

Answer»

Points A(-2, 5) and B(2, -3) are equidistant from point P. 

Let the coordinates of point are P(x, 0) 

Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

⇒ PA = PB

\(\sqrt{(x + 2)^2 + (0- 5)^2}\) = \(\sqrt{(x - 2)^2 + (0+ 3)^2}\)

On squaring both sides, we get 

(x + 2)2 + (0 - 5)2 = (x - 2)2 + (0 + 3)2

x2 + 4x + 4 + 25 = x2 - 4x + 4 + 9

8x = - 16x = -2 

Hence, 

coordinates are (- 2, 0).

112.

If the point P(x, y) is equidistant from the points A(5, 1) and B (1, 5), prove that x = y.

Answer»

Coordinates are P(x, y), A(5, 1) and B (1, 5) 

Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

⇒ PA = PB

\(\sqrt{(x - 5)^2 + (y - 1)^2}\) = \(\sqrt{(x - 1)^2 + (y - 5)^2}\)

On squaring both sides, we get

(x -5)2 + (y - 1)2 = (x - 1)2 + (y - 5)2

x2 - 10x + 25 + y2 - 2y + 1 = x2 - 2x + 1 + y2 - 10y + 25

- 8x + 8y = 0

x = y proved

113.

If A (3, y) is equidistant from points P (8, -3) and Q (7,6) , find the value of y and find the distance AQ.

Answer»

Coordinates are P(8, -3) and Q(7,6) 

The point A (3, y) is equidistant. 

Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

⇒ PA = QA

\(\sqrt{(3 - 8)^2 + (y + 3)^2}\) = \(\sqrt{(3 - 7)^2 + (y - 6)^2}\)

On squaring both sides, we get

(3 - 8)2 + (y + 3)2 = (3 - 7)2 + (y - 6)2

25 + y2 + 6y + 9 = 16 + y2 - 12y + 36

y = 1

AQ = \(\sqrt{(3 - 7)^2 + (1 - 6)^2}\) = \(\sqrt{16 + 25}\) = \(\sqrt{41}\) units

114.

If the point P (x, 3) is equidistant from the points A (7,-1) and B (6, 8), find the value of x and find the distance AP.

Answer»

Coordinates are A (7,-1) and B (6, 8) 

The point P (x, 3) is equidistant. 

Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

⇒ PA = PB

\(\sqrt{(x - 7)^2 + (3 + 1)^2}\) = \(\sqrt{(x - 6)^2 + (3 - 8)^2}\)

On squaring both sides, we get

(x - 7)2 + (3 + 1)2 = (x - 6)2 + (3 - 8)2

x2 - 14x + 49 + 16 = x2 - 12x + 36 + 25

x = 2

AP = \(\sqrt{(x - 7)^2 + (3 + 1)^2}\) = \(\sqrt{25 + 16}\) = \(\sqrt{41}\) units

115.

Find the slope and inclination of the line which passes through the points (1, 2) and (5, 6) ?

Answer»

Slope (m) = \(\frac{(y_2-y_1)}{(x_2-x_1)}\) = \(\frac{6-2}{5-1}\) = \(\frac{4}{4}\) = 1

Also slope (m) = tan θ, where θ is the inclination of the line to the positive direction of the x-axis in the anticlockwise direction. 

tan θ = 1 ⇒ θ = tan –11 = 45º.

116.

The hill in the form of a right triangle has its foot at (19, 3). The inclination of the hill to the ground is 45°. Find the equation of the hill joining the foot and top.

Answer»

θ = 45°

Coordinate of foot of hill = (19, 3) let equation of line be y = mx + c

m = tan θ = tan 45° = 1

⇒ y = x + c

Substituting y = 3 & x = 19, 3 = 19 + c ⇒ c = -16

∴ Equation of line:

y = x - 16

= x - y - 16 = 0 

117.

When proving that a quadrilateral is a trapezium, it is necessary to show …(1) Two sides are parallel.(2) Two parallel and two non-parallel sides.(3) Opposite sides are parallel.(4) All sides are of equal length.

Answer»

(2) Two parallel and two non-parallel sides.

118.

Prove that the points (-2, 5), (0, 1) and (2, -3) are collinear.

Answer»

Let A (-2, 5), B(0, 1) and C (2, -3) be the given points

So, we have

AB = √[(0 – (-2))2 + (1 – 5)2

= √[(2)2 + (-4)2

= √[4 + 16] 

= √20 

= 2√5 units

BC = √[(2 – 0)2 + (-3 – 1)2

= √[(2)2 + (-4)2

= √[4 + 16] 

= √20 

= 2√5 units

AC = √[(2 – (-2))2 + (-3 – 5)2

= √[(4)2 + (-8)2

= √[16 + 64] 

= √80 

= 4√5 units

Now, it’s seen that

AB + BC = AC

2√5 + 2√5 = 4√5

4√5 = 4√5

Therefore, we can conclude that the given points (-2, 5), (0, 1) and (2, -3) are collinear.

119.

Which point on x – axis is equidistant from (5, 9) and (-4, 6)?

Answer»

Let A (5, 9) and B (-4, 6) be the given points

Let the point on x – axis equidistant from the above points be C(x, 0)

Now, we have

AC = √[(x – 5)2 + (0 – 9)2

= √[x2 – 10x + 25 + 81] 

= √[x2 – 10x + 106]

And,

BC = √[(x – (-4))2 + (0 – 6)2

= √[x2 + 8x + 16 + 36] 

= √[x2 + 8x + 52]

As AC = BC (given condition)

So, AC2 = BC2

x2 – 10x + 106 = x2 + 8x + 52

18x = 54

x = 3

Therefore, the point on the x-axis is (3, 0)

120.

Which point on x-axis is equidistant from (5, 9) and (- 4, 6)?

Answer»

Since the point is on x-axis, therefore coordinate of y-axis is zero.

 Therefore the point is P(k, 0) which is equidistance from A(5, 9) and B(- 4, 6) 

PA = PB

\(\sqrt{(5 - k)^2 + 9^2}\) = \(\sqrt{(-4 - k)^2 + 6^2}\)

 On squaring both sides

(5 - k)2 + 92 = (- 4 - k)2 + 62

25 - 10k + k2 + 81 = 16 - 8k + k2 + 36

25 - 2k + 81 = 16 + 36 - 25 - 81

k = 27

Therefore coordinate is (27, 0)

121.

Two vertices of an isosceles triangle are (2, 0) and (2, 5). Find the third vertex if the length of the equal sides is 3.

Answer»

Let the third vertex be C (x, y)

And, given A (2, 0) & B (2, 5)

We have,

Length of AB = √[(2 – 2)2 + (5 – 0)2

= √[(0)2 + (5)2

= √[0 + 25] 

= 5 units

Length of BC = √[(x – 2)2 + (y – 5)2

= √[x2 – 4x + 4 + y2 – 10y + 25]

= √[ x2 – 4x + y2 – 10y + 29] units

Length of AC = √[(x – 2)2 + (y – 0)2

= √[x2 – 4x + 4 + y2] units

Given that,

AC = BC = 3

So, AC2 = BC2 = 9

x2 – 4x + 4 + y2 = x2 – 4x + y2 – 10y + 29

10y = 25

y = 25/10 = 2.5

And,

AC2 = 9

x2 – 4x + 4 + y2 = 9

x2 – 4x + 4 + (2.5)2 = 9

x2 – 4x + 4 + 6.25 = 9

x2 – 4x + 1.25 = 0

D = (-4)2 – 4 x 1 x 1.25 

= 16 – 5 

= 11

So, the roots are

x = -(-4) + √11/ 2 

= (4 + 3.31)/ 2 

= 3.65

And,

x = -(-4) – √11/ 2 

= (4 – 3.31)/ 2 

= 0.35

Therefore, the third vertex can be C (3.65, 2.5) or (0.35, 2.5).

122.

y = 0 represents …………………. A) X – axis B) Y – axis C) (0, 0) D) y = mx + C

Answer»

Correct option is (A) X-axis

Equation y = 0 represents X-axis.

Correct option is A) X – axis

123.

x = k represents ………………. A) parallel to X – axis B) parallel to Y – axis C) parallel to X, Y axes D) (0, 0)

Answer»

Correct option is (B) parallel to Y–axis

Equation of Y-axis is x = 0.

\(\therefore\) Equation x = 0 represents Y-axis.

\(\therefore\) Equation x = k represents line parallel to Y-axis.

Correct option is B) parallel to Y – axis

124.

y = k represents ……………A) parallel to X – axis B) parallel to Y – axis C) parallel to X, Y axes D) (0, 0)

Answer»

Correct option is (A) parallel to X–axis

\(\because\) Equation y = 0 represents X-axis.

\(\therefore\) Equation y = k represents line parallel to X-axis.

Correct option is A) parallel to X – axis

125.

Write the quadrants for the following points.A(3,4)

Answer»

Here both coordinates are positive therefore point A lies in Ist quadrant. 

126.

Distance Formula for co-ordinates:

Answer»

(a) The distance d between any two points say P(x1, y1) and Q(x2, y2) is given by:

d = \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

⇒ d2 = (x2 – x1)2 + (y2 – y1)2 ⇒ d = ±\(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

(b) The distance of a point P(x1, y1) form the origin

\(\sqrt{(x_2-0)^2+(y_2-0)^2}\) = \(\sqrt{x^2_1+y^2_1}\)

127.

Write any point lies on \(\overline{OY}\) (Positive Y – axis) and any point lies on \(\overline{OX}\) (Negative X-axis).

Answer»

Point lies on \(\overline{OY}\) be (x = 0, y ≥ 0)

example : (0, 2) (0, 3).

Point lies on \(\overline{OX}\) be (x = 0, y ≤ 0)

example : (2, 0) (3, 0).

128.

What will be the lengths of line segments that are parallel to X-axis, as shown in figure ?

Answer»

In the above figure, length of the line segment above the X-axis is 4 – 2 = 2 

And length of line segment below X-axis is 4 – 1 = 3

129.

Show that the points (-2, 5), (3, -4) and (7, 10) are the vertices of a right triangle.

Answer»

Let the three points be A(-2, 5), B(3, - 4) and C(7, 10).

Then AB2 = (3 + 2)2 + (-4 - 5)2 = 106

BC2 = (7 - 3)2 + (10 + 4)2 = 212

AC2 = (7 + 2)2 + (10 - 5)2 = 106 

We see that BC2 = AB21 + AC2

212 = 106 + 106 

212 = 212

A = 900 

Thus, ABC is a right triangle, right angled at A.

130.

Which of the following points is at a distance of 6 units from Y – axis measured along positive X – axis ? A) (8, 6) B) (6, 8) C) (0, 6) D) (8, 2)

Answer»

Correct option is (B) (6, 8)

\(\because\) Points is at a distance of 6 units from Y–axis.

\(\therefore\) x-coordinate of that point is 6.

Among all given points only (6, 8) has x-coordinate 6.

Correct option is B) (6, 8)

131.

Find the ratio in which the point P(3/4, 5/12) divides the line segments joining the point A(1/2, 3/2) and B(2, -5).

Answer»

Given,

Points A(1/2, 3/2) and B(2, -5)

Let the point P(3/4, 5/12) divide the line segment AB in the ratio k: 1

Then, we know that

P(3/4, 5/12) = (2k + 1/2)/ (k +1) , (2k + 3/2)/ (k + 1)

Now, equating the abscissa we get

3/4 = (2k + 1/2)/ (k +1)

3(k + 1) = 4(2k + 1/2)

3k + 3 = 8k + 2

5k = 1

k = 1/5

Therefore, the ratio in which the point P(3/4, 5/12) divides is 1: 5

132.

The y – co-ordinate of the point A (-4, -3) exceeds its x – co-ordinate by A) – 1 B) – 7 C) 1 D) 7

Answer»

Correct option is (C) 1

The y–coordinate of point (-4, -3) is -3 and x–coordinate of point (-4, -3) is -4.

\(\because\) -3 - (-4) = -3 + 4 = 1

\(\therefore\) y–coordinate of point A (-4, -3) exceeds its x-coordinate by 1.

Correct option is  C) 1

133.

If x < 0, y < 0, then (x, y) lies in A) Q4 B) Q2 C) Q1 D) Q3

Answer»

Correct option is (D) Q3

x < 0, y < 0 then (x, y) will lie in \(3^{rd}\) quadrant or \(Q_3.\)

Correct option is  D) Q3

CORRECT OPTION IS D)Q3 BECAUSE BOTH X AND Y WILL B NEGATIVE.
134.

Write the quadrants for the following points. E(-5,-5)

Answer»

Point E lies in III quadrant. 

135.

The point on the x-axis which is equidistant from the points (7, 6) and (–3, 4) is (a) (0, 3) (b) (3, 0) (c) (–3, 0) (d) (0, –3)

Answer»

(b) (3,0)

Let a point on the x-axis be (a, 0) . Then, 

Dist. bet. (a, 0) and (7, 6)  = Dist. bet. (a, 0) and (–3, 4) 

(7 – a)2 + (6 –0)2 = (–3 – a)2 + (4 – 0)2 

Now solve.

136.

The co-ordinates of vertices P and Q of an equilateral ΔPQR are (1, √3 ) and (0, 0). Which of the following could be co-ordinates of R? (a) (1, 2) (b) (2, 0) (c) \(\big(1,\frac{\sqrt3}{2}\big)\)(d) (√3,1)

Answer»

(b) (2,0)

The co-ordinates of point R which satisfy the equation PQ = QR = PR is the reqd. point.

137.

Which point on y - axis is equidistant from (2, 3) and (-4, 1)?

Answer»

Since the point is on y-axis, therefore coordinate of x-axis is zero.

Therefore the point is P(0, k) which is equidistance from A(2, 3) and B(- 4, 1) 

PA = PB

\(\sqrt{(2 - 0)^2 + (3 - k)^2}\) = \(\sqrt{(- 4)^2 + (1 - k)^2}\)

\(\sqrt{4 + 9 + k^2 - 6k}\) = \(\sqrt{16 + 1 + k^2 - 2k}\)

On squaring both sides, we get 

- 4k = 4

k = - 1

Therefore coordinate is (0, -1)

138.

The three vertices of a parallelogram are (3, 4), (3, 8) and (9, 8). Find the fourth vertex.

Answer»

Consider A(3, 4), B (3, 8) and C(9, 8). 

Let the coordinates of fourth vertex are D (x, y) 

In a parallelogram diagonals bisect each other 

Coordinate of mid point of AC = X = \(\frac{3 + 9}2\) = \(\frac{12}2\) = 6

Y = \(\frac{4 + 8}2\) = \(\frac{12}2\) = 6

Therefore coordinates of mid point of AC are (6, 6) Coordinate of mid point of BD = X = \(\frac{3 + x}2\)

Y = \(\frac{y + 8}2\)

Coordinates of point D are

\(\frac{3 + x}2\) = 6

x = 12 - 3 = 9

\(\frac{y + 8}2\) = 6

y = 12 - 8 = 4

Therefore coordinates of fourth vertex D are (9, 4)

139.

Find the value of k, if the point P (0, 2) is equidistant from (3, k) and (k, 5).

Answer»

Let the point is P(0, 2) which is equidistance from A(3, k) and B(k, 5) 

PA = PB

\(\sqrt{(3 - 0)^2 + (k - 2)^2}\) = \(\sqrt{(k - 0)^2 + (5 - 2)^2}\)

On squaring both sides, we get

9 + k2 + 4 - 4k = k2 + 9

- 4k = - 4

k = 1

140.

Find the circumcentre of the triangle whose vertices are (-2, -3), (- 1, 0), (7, - 6).

Answer»

Vertices of triangle are A(-2, -3), B(- 1, 0), C(7, - 6) 

Let the coordinates of P are (x, y) 

PA = PB = PC 

PA = PB

\(\sqrt{(x + 2)^2 + (y + 3)^2}\) = \(\sqrt{(x + 1)^2 + (y + 0)^2}\)

On squaring both sides, we get

x2 + 4x + 4 +y2 +6y + 9

= x2 + 2x + 1 + y2

2x + 6y = - 12

x + 3y = - 6.......(1)

PA = PC

\(\sqrt{(x + 2)^2 + (y + 3)^2}\) = \(\sqrt{(x - 7)^2 + (y + 6)^2}\)

On squaring both sides, we get

x2 + 4x + 4 + y2 + 6y + 9

= x2 - 14x + 49 + y2 + 12y + 36

18x - 6y = 72

3x - y = 12.......(2)

On solving equations (1) & (2), We get 

x = 3 and y = -3 

Therefore coordinates are (3, -3)

141.

Find the centre of the circle passing through (2, 1), (5, - 8) and (2, - 9).

Answer»

Coordinates of points on a circle are A(2,1), B(5,-8) and C(2,-9). 

Let the coordinates of the centre of the circle be O(x, y) 

Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

Since the distance of the points A, B and C will be equal from the center, therefore 

⇒ OA = OB

\(\sqrt{(x - 2)^2 + (y - 1)^2}\) = \(\sqrt{(x - 5)^2 + (y + 8)^2}\)

On squaring both sides, we get 

⇒ x2 + 4 - 4x + y2 + 1 - 2y = x2 + 25 - 10x + y2 + 64 + 16y 

⇒ 6x - 18y - 84 = 0 

⇒ x - 3y - 14 = 0 ------------- (1) 

Similarly, OC = OB

\(\sqrt{(x - 2)^2 + (y + 9)^2}\) = \(\sqrt{(x - 5)^2 + (y + 8)^2}\)

⇒ x2 + 4 - 4x + y2 + 81 + 18y 

= x2 + 25 - 10x + y2 + 64 + 16y 

⇒ 6x - 2y - 4 = 0 

⇒ 3x - y - 2 = 0 ------------- (2) 

By solving equations (1) and (2), we get x = -1, y = -5 

So, 

the coordinates of the centre of the circle is (-1, -5). 

Radius of the circle = OA = \(\sqrt{(-1 - 2)^2 + (-5 - 1)^2}\)

\(\sqrt{9+36}\)

\(\sqrt{45}\)

\(3\sqrt5\) units

142.

Find the angle subtended at the origin by the line segment whose end points are (0,100) and (10, 0).

Answer»

Since the abscissa of first coordinate is zero, therefore this point lies on y - axis. Ordinate of second point is zero, therefore this point lies on y-axis. We know that both the axes are perpendicular to each other, therefore the angle between these points is 90°.

143.

Find the angle subtended at the origin by the line segment whose end points are (0, 100) and (10, 0).

Answer»

Let the point P(0, 100) and Q(10, 0) be the given points.

Therefore, The angle subtended by the line segment PQ at the origin O is 90°.

144.

Find the perpendicular distance between the lines 9x + 40y – 20 = 0 and 9x + 40y + 21 = 0.

Answer»

Putting \(x\) = 0 in equation of one of the lines say 9\(x\) + 40y –20 = 0, we get y = \(\frac{1}{2}\)

∴ A point on 9\(x\) + 40y – 20 = 0 is \(\big(0,\frac{1}{2}\big)\)

∴ Distance of \(\big(0,\frac{1}{2}\big)\) from 9\(x\) + 40y + 21 = 0 is \(\frac{\big|9\times0+40\times\frac{1}{2}+21\big|}{\sqrt{9^2+40^2}}\) = \(\frac{|41|}{\sqrt{1681}}\) = \(\frac{41}{41}\) = 1.

145.

If p is the length of the perpendicular drawn from the origin to the line \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1, then show that \(\frac{1}{p^2}\) = \(\frac{1}{a^2}\) + \(\frac{1}{b^2}\)

Answer»

 Length of perpendicular from point (x1, y1) to line a\(x\) + by + c = 0 = \(\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}\)

∴ Length of perpendicular from (0, 0) to \(\frac{x}{a}\) + \(\frac{y}{b}\) = 1 ⇒ \(\frac{\big|\frac{1}{a}\times0+\frac{1}{b}\times0-1\big|}{\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}}\) = p

⇒ \(\frac{|-1|}{\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}}\) = p

⇒ \(\frac{1}{p}\) = \(\sqrt{\frac{1}{b^2}+\frac{1}{b^2}}\) ⇒ \(\frac{1}{p^2}\) = \(\frac{1}{a^2}\) + \(\frac{1}{b^2}\)

146.

If the points with the co-ordinates {a, ma}, {b, (m + 1)b}, {c, (m + 2)c} are collinear, then which of the following is correct ?(a) a, b, c are in A.P. only for all m (b) a, b, c are in G.P. only for all m (c) a, b, c are in H.P. only for all m (d) a, b, c are in A.P. only for all m = 1

Answer»

(c) a, b, c are in H.P. only for all m 

As the points A(a, ma), B[b, (m + 1)b] and C[c, (m + 2)c] are collinear. 

Area of Δ ABC should be equal to zero.

⇒ \(\frac{1}{2}\)[x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)] = 0

⇒ \(\frac{1}{2}\)[a {(m + 1) b – (m + 2) c} + b {(m + 2) c – ma} + c {ma – (m + 1)b}] = 0 

⇒ mab + ab – mac – 2ac + mbc + 2bc – mab + mac – mbc – bc = 0 

⇒ ab – 2ac + 2bc – bc = 0 ⇒ ab + bc = 2ac 

⇒ b = \(\frac{2ac}{a+c}\)

a, b, c are harmonic progression (H.P.) for all m.

147.

Find the equation of the line through the point (3, 2) which makes an angle of 45º with the line x – 2y = 3 ?

Answer»

Given line: x – 2y = 3 ⇒ y = \(\frac{x}{2}\) - \(\frac{3}{2}\)            ....(i)

∴ Its slope = m1 \(\frac{1}{2}\)

Let m2 be the slope of line through (3, 2). Since this line is inclined at 45º to line (i),

tan 45º = \(\bigg|\frac{m_1-m_2}{1+m_1m_2}\bigg|\) = \(\bigg|\frac{\frac{1}{2}-m_2}{1+\frac{1}{2}m_2}\bigg|\)

\(\frac{\frac{1}{2}-m_2}{1+\frac{1}{2}m_2}\) = ± 1 ⇒ \(\frac{1-2m_2}{2+m_2}=±\,1\) 

⇒ 1 – 2m2 = 2 + m2 or 1 – 2m2 = –2 – m2

⇒ 3m2 = –1 or –m2 = –3 

⇒ m2\(-\frac{1}{3}\) or m2 = 3

Since the line passes through (3, 2), the equation of the required line is

(y – 2) = \(-\frac{1}{3}\)(x – 3) or (y – 2) = 3 (x –3)

⇒ 3y – 6 = – x + 3 or y – 2 = 3x – 9 

3y + x – 9 = 0 or y – 3x + 7 = 0.

148.

The line through the points (4, 3) and (2, 5) cuts off intercepts of lengths \(\lambda\) and \(\mu\) on the axes. Which one of the following is correct ?(a) \(\lambda\) &gt; \(\mu\) (b) \(\lambda\) &lt; \(\mu\) (c) \(\lambda\) &gt; \(-\mu\) (d) \(\lambda\) = \(\mu\) 

Answer»

(d) \(\lambda\) = \(\mu\) 

Let the equation of the line in the intercept from be

\(\frac{x}{\lambda}\)\(\frac{y}{\mu}\) = 1

Since it passes through (4, 3) and (2, 5)

\(\frac{4}{\lambda}\) + \(\frac{3}{\mu}\) = 1                    ....(i)

and  \(\frac{2}{\lambda}\) + \(\frac{5}{\mu}\) = 1            ....(ii)

Multiplying (ii) by 2 and subtracting from (i), we get

\(\bigg(\)\(\frac{4}{\lambda}\) + \(\frac{3}{\mu}\)\(\bigg)\) - \(\bigg(\)\(\frac{4}{\lambda}\) + \(\frac{10}{\mu}\)\(\bigg)\)= 1 - 2

⇒ \(\frac{-7}{\mu}\) = -1⇒ \(\mu\) = 7

Putting \(\mu\) = 7 in (i), we get \(\frac{4}{\lambda}\) + \(\frac{3}{7}\) = 1

⇒ \(\frac{4}{\lambda}\) = 1 - \(\frac{3}{7}\) = \(\frac{4}{7}\) = \(\lambda\) = 7

 \(\lambda\) = \(\mu\) = 7.

149.

What is the equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinates axes whose sum is –1 ?

Answer»

Let the x-intercept = a. Then y-intercept = –1 – a 

The equation of the required line is \(\frac{x}{a}\) + \(\frac{y}{-1-a}\) = 1

Given, it passes through (4, 3), so,

\(\frac{4}{a}\) + \(\frac{3}{-1-a}\) = 1

⇒ – 4 – 4a + 3a = – a – a2 

⇒ a2 – 4 = 0 

⇒ (a + 2) (a – 2) = 0 

⇒ a = –2, or 2.

When a = 2, required line is \(\frac{x}{2}\) - \(\frac{y}{3}\) = 1

When a = –2, required line is \(\frac{x}{-2}\) + \(\frac{y}{3}\) = 1

150.

If R (x, y) is a point on the line segment joining the points P (a, b) and Q (b, a), then prove that x + y = a + b.

Answer»

Given : 

R (x, y) is a point on the line segment joining the points P (a, b) and Q (b, a). 

To prove: 

x + y = a + b 

Proof:

It is said that the point R(x, y) lies on the line segment joining the points P(a, b) and Q(b, a). Thus, these three points are collinear. 

So 

the area enclosed by them should be 0. 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3) is:

Area (△) = \(\frac{1}2[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]\)

Given that area of ∆PQR = 0 

∴ \(\frac{1}2\) |x(b – a) + a(a – y) + b(y – b)| = 0 

∴ bx – ax + a2 - ay + by - b2 = 0 

∴ ax + ay –bx – by - a2 - b2 = 0 

∴ ax + ay –bx – by = a2 + b

(a – b)(x + y) = (a – b )(a + b) 

∴ x +y = a + b 

Hence proved.