Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

Which of the following is on \(\overline{OY}\)graph? A) (4,0)B) (0, 0) C) (- 3, 0)D) (- 3, – 2)

Answer»

Correct option is (B) (0, 0)

\(\overline{OY}\) is positive y-axis and any point lies on y-axis if its x-coordinate is zero.

Among all given points only (0, 0) has x-coordinate zero.

\(\therefore\) (0, 0) lies on \(\overline{OY}\) in graph.

Correct option is  B) (0, 0)

202.

Slope of the line x/a + y/b = 1 isA) 1/bB) 1/aC) a/bD) - b/a

Answer»

Correct option is (D) -b/a

Given line is \(\frac{x}{a}+\frac{y}{b} = 1\)

\(\Rightarrow\) \(\frac{y}{b}=1-\frac{x}{a}\)

\(\Rightarrow y=-\frac bax+b\)

By comparing with \(y=mx+c,\) we get \(m=-\frac{b}{a}\)

\(\therefore\) Slope of the line \(\frac{x}{a}+\frac{y}{b} = 1\) is \(m=-\frac{b}{a}.\)

Correct option is D) - b/a

203.

The y – coordinate of a point is also called A) ordinate B) abscissa C) 1st coordinate D) origin

Answer»

Correct option is (A) ordinate

The y-coordinate of a point is called ordinate of that point.

Correct option is A) ordinate

204.

The x – coordinate of a point is also called A) ordinateB) 2nd coordinate C) abscissa D) origin

Answer»

Correct option is (C) abscissa

The x-coordinate of a point is called abscissa of that point.

Correct option is C) abscissa

205.

The meeting point of the two axis in the coordinate plane is called A) origin B) X – axis C) Y – axis D) (2, 3)

Answer»

Correct option is (A) origin

The meeting point or the intersection point of the two axes in the coordinate plane is called origin.

Correct option is A) origin

206.

The point which lies in Q4 is A) (1, 2) B) (- 1, – 2)C) (1, – 2) D)(-1, 2)

Answer»

Correct option is (C) (1, – 2)

If x > 0 & y < 0 then point (x, y) lies in \(4^{th}\) quadrant (in \(Q_4)\)

Since, 1 > 0 & -2 < 0

\(\Rightarrow\) (1, –2) lies in \(Q_4.\)

Correct option is  C) (1, – 2)

207.

x &gt; 0, y &lt; 0 then (x, y) ∈ ……………..A) Q1 B) Q2C) Q3 D) Q4

Answer»

Correct option is (D) Q4

A point that has x-coordinate positive and y-coordinate negative, will lie in IV quadrant.

\(\because\) x > 0, y < 0 is given.

\(\therefore\) (x, y) lies in IV quadrant.

\(\therefore(x,y)\in Q_4\)

Correct option is D) Q4

208.

The distance of a point from Y-axis is called A) y co-ordinate B) 2nd co-ordinate C) abscissa D) origin

Answer»

Correct option is (C) abscissa

The distance of a point (x, y) from Y-axis (x = 0 line) is called abscissa (x-coordinate of the point).

Correct option is  C) abscissa

209.

The point in Q2 which is at a distance of 6 units from X-axis, 3 units from Y- axis isA) (3, 6) B) (3, -6) C) (-3, 6) D)(-3,-6)

Answer»

Correct option is (C) (-3, 6)

In \(Q_2\), x-coordinate is negative and y-coordinate is positive.

\(\because\) Distance of point from Y-axis = 3 units

\(\therefore\) Abscissa = -3  \((\because\) x-coordinate is negative)

\(\because\) Distance of point from X-axis = 6 units

\(\therefore\) Ordinate = 6

\(\therefore\) Required point is (-3, 6).

Correct option is  C) (-3, 6)

210.

Which of the following points lie on the axis? A) (7, 0) B) (4, – 2) A) (- 2, – 3) D) (- 1, 4)

Answer»

Correct option is (A) (7, 0)

The equation of x-axis is y = 0 and the equation of y-axis is x = 0.

Among all given points only (7, 0) has y-coordinate 0.

Therefore, (7, 0) lies on x-axis.

Correct option is  A) (7, 0)

211.

The point which lies in is Q3 is A) (- 7, 4)B) (2, 0) C) (0, 4)D) (- 1, – 3)

Answer»

Correct option is (D) (-1, –3)

If point (x, y) lies in \(Q_3\) then x < 0 & y < 0.

Among all given point only point (-1, -3) has both negative coordinate.

Thus, (-1, -3) lies in \(Q_3.\)

D) (- 1, – 3)

212.

x &lt; 0, y &lt; 0 then (x, y) ∈ ………………A) Q1 B) Q2C) Q3 D) Q4

Answer»

Correct option is (C) Q3

A point that has both x & y-coordinates are negative, will lie in III quadrant.

\(\because\) x < 0, y < 0 is given.

\(\therefore\) (x, y) lies in III quadrant.

\(\therefore(x,y)\in Q_3\)

Correct option is C) Q3

213.

The point (0, – 5) lies A) on X-axis B) on Y-axis C) in Q3D) in Q4

Answer»

Correct option is (B) on Y-axis

\(\because\) Equation of Y-axis is x = 0.

\(\therefore\) Point (0, -5) lies on Y-axis.

B) on Y-axis

214.

The number of references needed to locate the exact position a point in a plane is A) 1 B) 2 C) 3 D) 4

Answer»

Correct option is (B) 2

The number of references needed to locate the exact position of a point in a plane is 2.

Correct option is  B) 2

215.

A (2, 4), B (2, 8), C (6, 8), D (6, 4) are the points in first quadrant. If AB, BC, CD and DA joined then □ABCD is A) Rectangle B) Trapezium C) Parallelogram D) Square

Answer»

Correct option is (D) Square

AB = \(\sqrt{(2-2)^2+(8-4)^2}\) = 4 units

BC = \(\sqrt{(6-2)^2+(8-8)^2}\) = 4 units

CD = \(\sqrt{(6-6)^2+(4-8)^2}\) = 4 units

DA = \(\sqrt{(2-6)^2+(4-4)^2}\) = 4 units

AC = \(\sqrt{(6-2)^2+(8-4)^2}\) = \(\sqrt{16+16}\) = \(4\sqrt2\) units

BD = \(\sqrt{(6-2)^2+(4-8)^2}\) = \(\sqrt{16+16}\) = \(4\sqrt2\) units

Since, AB = BC = CD = DA and AC = BD

\(\therefore\) ABCD is a square.

A) Rectangle

216.

x &lt; 0, y &gt; 0 then (x, y) ∈ …………….. A) Q1 B) Q2C) Q3 D) Q4

Answer»

Correct option is (B) Q2

A point that has both x-coordinates negative and y-coordinate positive, will lie in II quadrant.

\(\because\) x < 0, y > 0 is given.

\(\therefore\) (x, y) lies in II quadrant.

\(\therefore(x,y)\in Q_2\)

Correct option is B) Q2

217.

The distance from Y-axis to the point G is A)-4 B) -3 C) 3 D) 4

Answer»

Correct option is  B) -3

218.

The quadrant in which the point (- x, – y) lies where x &lt; 0, y &lt; 0 is A) Q1 B) Q2 C) Q3 D) Q4

Answer»

Correct option is (A) Q1

\(\because\) x < 0 & y < 0

\(\Rightarrow\) -x > 0 & -y > 0

\(\therefore\) (- x, – y) lies in \(Q_1\)  (Because both coordinates are positive)

Correct option is A) Q1 

219.

The point (- 2, 3) lies in ………….. quadrant. A) IV B) III C) II D) I

Answer»

Correct option is (C) II

(- 2, 3); the x-coordinates (-2) is negative and y-coordinates (3) is positive.

\(\therefore\) (- 2, 3) lies \(2^{nd}\) quadrant.

Correct option is  C) II

220.

From the given following, point on Y-axis is A) (-3,-5)B) (0, 0) C) (2, 3) D) (-3, 2)

Answer»

Correct option is (B) (0, 0)

x-coordinate is 0 of any point lying on Y-axis.

\(\therefore\) (0, 0) lies on Y-axis.

Correct option is  B) (0, 0)

221.

The quadrant in which the point (-2,4) lies is A) Q4 B) Q3 C) Q2 D) Q1

Answer»

Correct option is (C) Q2

If x < 0 & y > 0 then point (x, y) lies in \(2^{nd}\) quadrant.

\(\because\) x = -2 < 0 & y = 4 > 0

Then (-2, 4) lies in \(Q_2.\)

Correct option is  C) Q2 

222.

The quadrant in which the point (5, – 3) lies isA) Q1 B) Q2 C) Q3 D) Q4

Answer»

Correct option is (D) Q4

If x > 0 & y < 0 then point (x, y) lies in \(4^{th}\) quadrant.

\(\because\) x = 5 > 0 & y = -3 < 0

Then (5, –3) lies in \(Q_4.\)

Correct option is  D) Q4

223.

x &gt; 0, y &gt; 0, then (x, y) ∈ ……………….. A) Q1B) Q2C) Q3D) Q4

Answer»

Correct option is (A) Q1

A point that has both x & y-coordinates are positive, will lie in I quadrant.

\(\because x>0,y>0\) is given.

\(\therefore\) (x, y) lies in I quadrant.

\(\therefore(x,y)\in Q_1\)

Correct option is A) Q1

224.

If x &gt; 0, y &lt; 0, then (x, y) lies in A) Q2 B) Q1 C) Q4 D) Q3

Answer»

Correct option is (C) Q4

x > 0, y < 0 then (x, y) lie in \(4^{th}\) quadrant or in \(Q_4.\)

Correct option is  C) Q4

225.

If (x, y) = (7, 3), then (x + y, x – y) lies in A) Q4 B) Q1 C) Q2 D) Q3

Answer»

Correct option is (B) Q1

\(\because\) (x, y) = (7, 3)

\(\therefore\) x = 7 & y = 3

Now, x+y = 7+3 = 10 > 0 & x - y = 7 - 3 = 4 > 0

\(\therefore\) (x + y, x – y) = (10, 4) lies in \(Q_1.\)

Correct option is B) Q1

226.

If x &lt; 0, y &lt; 0, then (x, y) lies in A) Q1 B) Q2 C) Q3 D) Q4

Answer»

Correct option is (C) Q3

If x < 0, y < 0 then point (x, y) lies in \(3^{rd}\) quadrant.

Correct option is  C) Q3

227.

The point that lies in II quadrant is ……………… A) (-2, 3) B) (2, -3) C) (2, 3) D) (0, 0)

Answer»

Correct option is (A) (-2, 3)

A point that has x-coordinate negative and y-coordinate positive will lie in II quadrant.

\(\because-2<0\;\&\;3<0\)

\(\therefore\) (-2, 3) lies in II quadrant.

Correct option is A) (-2, 3)

228.

Find the distance between the pairs of points:(3, 4), (3, 8)

Answer»

Given points = A (3, 4) and B (3, 8) 

These two points lie on the line parallel to Y – axis. 

∴ Distance between A (3, 4) and B (3, 8)= |y2 – y1

= |8 – 4| = 4 units.

229.

The meeting point of the two axes in the coordinate plane is called A) Origin B) X-axisC) Y-axis D) (2, 3)

Answer»

Correct option is (A) Origin

The meeting point of the two axes in the coordinate plane is called origin.

Correct option is A) Origin

230.

Any point on the X-axis is of the form A) (x, y) B) (0, y) C) (x, 0) D) (x, x)

Answer»

Correct option is (C) (x, 0)

Any point on X-axis is of the form (x, 0) because y-coordinate of any point on X-axis is 0.

Correct option is  C) (x, 0)

231.

If x &gt; 0, y &lt; 0 the point (x – y, y – x) lies in A) Q1 B) Q2 C) Q3 D) Q4

Answer»

Correct option is (D) Q4

x > 0, y < 0

Then x > 0, -y > 0

\(\Rightarrow\) x - y > 0

Now, y - x = -(x - y)

\(\Rightarrow\) y - x < 0   \((\because\) x - y > 0)

\(\because\) x - y > 0 & y - x < 0

Therefore, (x - y, y - x) lies in \(Q_4\)  \((4^{th}\) quadrant)

Correct option is  D) Q4

232.

If (k, 2) lies in II quadrant then (-k, -2) lies in the quadrant A) I B) II C) III D) IV

Answer»

Correct option is (D) IV

Given that (k, 2) lies in II quadrant and we know that any point in II quadrant has x-coordinate negative and y-coordinate positive.

\(\therefore k<0\)

\(\Rightarrow-k>0\)

\(\therefore(-k,-2)\) lies in IV quadrant.

\((\because\) Any point in IV quadrant has x-coordinate positive and y-coordinate negative and here \(-k>0\;\&\;-2<0)\)

Correct option is D) IV

233.

Find the distance between the pairs of points:(-5, -8), (-5, -12)

Answer»

Given points = A (-5, -8) and B (-5, -12) 

These two points lie on the line parallel to Y – axis. 

∴ Distance between A (-5, -8) and B (-5, -12) = |y2 – y1

= |-12 – (-8)|

= |-12 + 8| 

= |-4| = 4 units.

234.

The point that lies in III quadrant A) (5, 4)B) (-5, -4) C) (-5, 4) D) (5, -4)

Answer»

Correct option is (B) (-5, -4)

A point that has both x & y-coordinates are negative, lies in III quadrant.

\(\because-5<0\;\&\;-4<0\)

\(\therefore\) (-5, -4) lies in III quadrant.

Correct option is B) (-5, -4)

235.

Among the following a line passing through origin is (x, y ≠ 0) A) x + y = 6 B) x/2 - y/3 = 3 C) y = 3x D) \(\sqrt{2}\) + 3y = 9

Answer»

Correct option is (C) y = 3x

\(y=3x\) is line passing through origin.

(Because (0, 0) satisfies the equation y = 3x)

Correct option is  C) y = 3x

236.

The equation of line parallel to X-axis A) x = 0 B) y = k C) x = k D) x = 9

Answer»

Correct option is (B) y = k

The equation of line parallel to X-axis is y = k.

Correct option is  B) y = k

237.

The point P is equidistant from A(1, 3), B(–3, 5) and C(5, –1). Then PB is equal to :(a) \(5\sqrt2\)(b) 5 (c) \(5\sqrt5\)(d) \(5\sqrt{10}\)

Answer»

(d) \(5\sqrt{10}\)

. Let P ≡ (x, y). Then, PA = PB and PB = PC. 

∴ PA2 = PB2 ⇒ (x – 1)2 + (y – 3)2 = (x + 3)2 + (y – 5)2 

⇒ x2 – 2x + 1 + y2 – 6y + 9 = x2 + 6x + 9 + y2 – 10y + 25 

⇒ –8x + 4y – 24 = 0 ⇒ 2x – y + 6 = 0            ...(i) 

PB2 = PC2 ⇒ (x + 3)2 + (y – 5)2 = (x – 5)2 + (y + 1)2 

⇒ x2 + 6x + 9 + y2 – 10y + 25 = x2 – 10x + 25 + y2 + 2y + 1 

⇒ 16x – 12y + 8 = 0 ⇒ 4x – 3y + 2 = 0           ...(ii) 

From (i), y = 2x + 6. Putting in (ii), we have 

4x – 3(2x + 6) + 2 = 0 

⇒ 4x – 6x – 18 + 2 = 0 ⇒ –2x –16 = 0 ⇒ x = –8 

∴ y = 2 × (– 8) + 6 = –10. 

∴ PB = \(\sqrt{(-8+3)^2+(-10-5)^2}\) = \(\sqrt{(-5)^2+(-15)^2}\)

\(\sqrt{250}\) = \(5\sqrt{10}\).

238.

The points (a, a), (–a, –a) and (\(-\sqrt{3a},+\sqrt{3a}\))  are the vertices of.......triangle whose area is.......(a) Isosceles, \(2\sqrt2a^2\) sq. units (b) Equilateral, \(2\sqrt3a^2\) sq. units (c) Scalene, \(4\sqrt3a^2\) sq. units (d) None of these

Answer»

(b) Equilateral, \(2\sqrt3a^2\) sq. units

Let A(a, a), B(–a, –a) and C \((-\sqrt3a,\sqrt3a)\) be the vertices of ΔABC. Then,

AB = \(\sqrt{(a+a)^2+(a+a)^2}\) = \(\sqrt{4a^2+4a^2}\) = \(\sqrt{8a^2}\) = \(2\sqrt2a\)

BC = \(\sqrt{(-a+\sqrt3a)^2+(-a-\sqrt3a)^2}\)

\(\sqrt{a^2-2\sqrt3a+3a^2+a^2+2\sqrt3a+3a^2}\) = \(\sqrt{8a^2}\) = \(2\sqrt2a\)

AC = \(\sqrt{(-a+\sqrt3a)^2+(-a-\sqrt3a)^2}\)

\(\sqrt{a^2+2\sqrt3a+3a^2+a^2-2\sqrt3a+3a^2}\) = \(\sqrt{8a^2}\) = \(2\sqrt2a\)

 AB = BC = AC, ΔABC is equilateral.

Area = \(\frac{\sqrt3}{4}\) (side)2 = \(\frac{\sqrt3}{4}\) x (\(2\sqrt2a\))2

\(\frac{\sqrt3}{4}\) x 8a2\(2\sqrt3a^2\).

239.

Find the coordinates of the point on y-axis which is nearest to the point (-2, 5).

Answer»

The point on y - axis that is nearest to the point (- 2, 5) is (0, 5).

240.

The nearest point from the origin is (a) (2, –3) (b) (6, 0) (c) (–2, –1) (d) (3, 5)

Answer»

(c) (–2, –1)

Calculating the distance of each point from the origin, we have

(a) \(\sqrt{(0-2)^2+(0+3)^2} = \sqrt{4+9} = \sqrt{13}\)

(b) \(\sqrt{(0-6)^2+0} = \sqrt{36} = 6\)

(c) \(\sqrt{(0+2)^2+(0+1)^2} = \sqrt{4+1} = \sqrt{5}\)

(d) \(\sqrt{(0-3)^2+(0-5)^2} = \sqrt{9+25} = \sqrt{34}\)

Clearly, (–2, –1) is the nearest point from the origin.

241.

If A (x, y) is equidistant from P (–3, 2) and Q (2,–3), then (a) 2x = y (b) x = – y (c) x = 2y (d) x = y

Answer»

(d) x = y

Given, AP = AQ 

⇒ AP2 = AQ2 

⇒ (x + 3)2 + (y – 2)2 = (x – 2)2 + (y + 3)2 

⇒ x2 + 6x + 9 + y2 = x2 – 4x + 4 + y2 + 6y + 9 

⇒ 10x = 10y ⇒ x = y

242.

If y is a positive integer such that the distance between the points (–6, –1) and (–6, y) is 12 units, then y = (a) 5 (b) 8 (c) 11 (d) 1

Answer»

(c) 11

Given, \(\sqrt{(-6+6)^2+(y+1)^2}\) = 12

⇒ \(\sqrt{y^2+2y+1}\) = 12

⇒ y2 + 2y + 1 = 144 ⇒ y2 + 2y – 143 = 0 

⇒ y2 + 13y – 11y – 143 = 0 

⇒ y (y + 13) – 11 (y + 13) = 0 

⇒ (y – 11) (y + 13) = 0 ⇒ y = 11 or –13 

The required positive integer is 11.

243.

The distance between the points (cos θ, sin θ) and (sin θ, –cos θ) is(a) √3 (b) √2 (c) 1 (d) 0

Answer»

(b) \(\sqrt2\)

Reqd. dist. = \(\sqrt{(sin\,\theta-cos\,\theta)^2+(-cos\,\theta-sin\,\theta)^2}\)

\(\sqrt{(sin\,\theta-cos\,\theta)^2+(-cos\,\theta-sin\,\theta)^2+(cos^2\,\theta+2cos\,\theta\,sin\,\theta+sin^2\,\theta)}\)

\(\sqrt{2(sin^2\,\theta+cos^2\,\theta)}\) = \(\sqrt2\) (∵ cos2 θ + sin2 θ = 1)

244.

Two vertices of a triangle are A (1, 1), B (2, –3). If its centroid is (2, 1) find the third vertex.

Answer»

Let the co-ordinates of the third vertex be (x, y). Then, 

Co-ordinates of the centroid are \(\bigg(\frac{1+2+x}{3},\frac{1-3+y}{3}\bigg)\) = \(\bigg(\frac{3+x}{3},\frac{-2+y}{3}\bigg)\)

Given, \(\bigg(\frac{3+x}{3},\frac{-2+y}{3}\bigg)\) = (2.1)

⇒ \(\frac{3+x}{3} = 2\) and \(\frac{-2+y}{3} = 1\)

⇒ 3 + x = 6 and – 2 + y = 3 

⇒ x = 3 and y = 5 

∴ Co-ordinates of the third vertex are (3, 5).

245.

Find the distance of the point (1, 2) from the mid-point of the line segment joining the points (6, 8) and (2, 4).

Answer»

Let D(x, y) be the midpoints of A(6, 8) and B(2, 4). Let our third given point be C(1, 2). 

By midpoint formula.

x = \(\frac{x_1+x_2}2\), y = \(\frac{y_1+y_2}2\)

For midpoint D of AB,

 x = \(\frac{6+2}2\) and y = \(\frac{8+4}2\)

∴ x =4 and y = 6 

∴D(x, y) ≡ (4, 6) 

Now to find distance between C and D, 

By distance formula,

XY = \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

For CD, 

CD = \(\sqrt{(4-1)^2+(6-2)^2}\)

\(\sqrt{9 + 16}\)

= 5 units

246.

Determine the vertex which contains a right angle in ABC where A( 4,-2),B(7,9)C(7,2)

Answer» AB ^2= (4-7}^2+ (-2-9)^2=130

BC^2 = (7-7)^2+(9-2)^2=49

CA^2 = (4-7)^2+(-2-2)^2=25

The values do not support that given three coordinates  are vertices of a right  triangle ABC as Pythagoras theorem does not fit here .
247.

Find the ratio in which the point P(x, 2) divides the line segment joining the points A (12, 5) and B (4, -3). Also, find the value of x.

Answer»

Let P divide the line joining A and B and let it divide the segment in the ratio k: 1

Now, using the section formula for the y – coordinate we have

2 = (-3k + 5)/ (k + 1)

2(k + 1) = -3k + 5

2k + 2 = -3k + 5

5k = 3

k = 3/5

Thus, P divides the line segment AB in the ratio of 3: 5

Using value of k, we get the x – coordinate as

x = 12 + 60/ 8 = 72/8 = 9

Therefore, the coordinates of point P is (9, 2)

248.

Find the ratio in which the point P(-1, y) lying on the line segment joining A(-3, 10) and B(6, -8) divides it. Also find the value of y.

Answer»

Let P divide A(-3, 10) and B(6, -8) in the ratio of k: 1

Given coordinates of P as (-1, y)

Now, using the section formula for x – coordinate we have

-1 = 6k – 3/ k + 1

-(k + 1) = 6k – 3

7k = 2

k = 2/7

Thus, the point P divides AB in the ratio of 2: 7

Using value of k, to find the y-coordinate we have

y = (-8k + 10)/ (k + 1)

y = (-8(2/7) + 10)/ (2/7 + 1)

y = -16 + 70/ 2 + 7 = 54/9

y = 6

Therefore, the y-coordinate of P is 6

249.

Find the value of k, if the point P(0, 2) is equidistant from (3, k) and (k, 5).

Answer»

Let the point P (0, 2) is equidistant from A (3, k) and B (k, 5)

So, PA = PB

PA2 = PB2

(3 -0)2 + (k -2)2 = (k – 0)2 + (5 – 2)2

9 + k2 + 4 – 4k – k2 – 9 = 0

4 – 4k = 0

-4k = -4

Therefore, the value of k = 1

250.

Ayush starts walking from his house to office, Instead of going to the office directly, he goes to bank first, from there to his daughter’s school and then reaches the office. What is the extra distance travelled by Ayush in reaching the office? (Assume that all distance covered are in straight lines). If the house is situated at (2, 4), bank at (5, 8) school at (13, 14) and office at (13, 26) and coordinates are in kilometer.

Answer»

The position of Ayush’s house is (2, 4) and the position of the bank is (5, 8).

So, the distance between the house and the bank,

d1 = √[(5 – 2)2 + (8 – 4)2

= √[(3)2 + (4)2

= √[9 + 16] 

= √25 

= 5 km

The position of the bank is (5, 8) and the position of the school is (13, 14).

So, the distance between the bank and the school,

d2 = √[(13 – 5)2 + (14 – 8)2

= √[(8)2 + (6)2

= √[64 + 36] 

= √100 

= 10 km

The position of the school is (13, 14) and the position of the office is (13, 26).

So, the distance between the school and the office,

d3 = √[(13 – 13)2 + (26 – 14)2

= √[(0)2 + (12)2

= √144 

= 12 km

Let d be the total distance covered by Ayush

d = d1 + d2 + d3 

= 5 + 10 + 12 

= 27 km

Let the D be the shortest distance from Ayush’s house to the office,

D = √[(13 – 2)2 + (26 – 4)2

= √[(11)2 + (22)2

= √[121+ 484] 

= √605 

= 24.6 km

Thus, the extra distance covered by Ayush = d – D = 27 – 24.6 = 2.4 km