Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Let `f(x)=[|x|-|x-1|]^(2)` Which of the following equation is/are correct? 1. `f(-2)=f(5)` 2. `f'(-2)+f'(0.5)+f'(3)=4` Select the correct answer using the code given below:A. 1 onlyB. 2 onlyC. Both 1 and 2D. Neither 1 nor 2

Answer» Correct Answer - A
Given `f(x)=(|x|-|x+1|)^(2)`
`f(x)={{:(1" "x le 0),((2x-1)^(2)" "0 lt x lt 1),(1" "x ge 1):}`
For x = -2
f(x) = 1 so f(-2) = 1
For x = 5
f(x) = 1 `rArr` f(5) = 1
Hence f(-2) = f(5)
Now, for x = -1
f'(x) = 0
f'(-2) = 0
For x = 0.5
`f'(x) = 8 rArr f'(0.5) = 8`
For x = 3
`f'(x) = 0 rArr f'(3) = 0`
`rArr f'(-2) + f'(0.5) + f'(3) = 8 ne 4`
52.

y = (ax+b)m 

Answer»

The required condition is

n=m+1

53.

If y = a sin mx + b cos mx, then \(\frac{d^2y}{dx^2}\) is equal to A. –m2y B. m2y C. –my D. my

Answer»

Correct Answer is (A) –m2y

Given:

y = a sin mx + b cos mx

\(\frac{dy}{dx}\)= ma cos mx - mb sin mx

\(\frac{d^2y}{dx^2}\)= -m2 a sin mx - m2 b cos mx

= -m2 [a sin mx + b cos mx]

= - m2y

54.

If `y=ln(e^(mx)+e^(-mx))`, then what is `(dy)/(dx)` at x = 0 equal to ?A. `-1`B. 0C. 1D. 2

Answer» Correct Answer - B
`y=ln(emx+e-mx)`
`Phi" "(dy)/(dx)=(1)/(e^(mx)+e^(-mx)).(d)/(dx)(emx+e-mx)`
`=(me^(mx)-me^(-mx))/(e^(mn)+e^(-mx))=(m(e^(mx)-e^(-mx)))/(e^(mx)+e^(-mx))`
`=(m[e^(mn)-(1)/(e^(mx))])/(e^(mx)+(1)/(x^(nx)))=(m[e^(2mx)-1])/(e^(2mx)+1)`
so, `(dy)/(dx):|_(x=0)=(m(e_(0)-1))/(e^(0)+1)=m(0)=0`
55.

Find the derivative of \(\frac{1}{x^{11}}.\)

Answer»

Let,

\(y=\frac{1}{x^{11}}\)

\(=x^{-11}\) 

∴ \(\frac{dy}{dx}=\frac{d}{dx}(x^{-11})\) 

\(=-11\,x^{-11-1}\)

\(=-\frac{11}{x^{12}}\)

56.

If y = a + bx2, a, b arbitrary constants, thenA. \(\frac{d^2y}{dx^2}=2xy\)B. \(x\frac{d^2y}{dx^2}=y_1\)C. \(x\frac{d^2y}{dx^2}-\frac{dy}{dx}+y=y\)D.\(x\frac{d^2y}{dx^2}=2xy\)

Answer»

Correct Answer is (C) \(x\frac{d^2y}{dx^2}-\frac{dy}{dx}+y=y\)

Given:

\(\frac{dy}{dx}=2bx\)

\(\frac{d^2y}{dx^2}=2b\neq2xy\)

\(x\frac{d^2y}{dx^2}=2bx\)

\(=\frac{dy}{dx}\)

\(x\frac{d^2y}{dx^2}-\frac{dy}{dx}+y\) \(=2bx-2bx+y\)

= y

57.

Find the derivative of (x2 + 1) cos x.

Answer»

Let,

y = (x2 + 1) cos x

∴ \(\frac{dy}{dx}=\frac{d}{dx}[(x^2+1)cos\,x]\) 

\(=cos\,x\frac{d}{dx}(x^2+1)+(x^2+1)\frac{d}{dx}cos\,x\) 

\(=cos\,x.2x+(x^2+1).(-sin\,x)\) 

= 2x cos x − x2 sin x − sin x

58.

If `y=sin(ax+b)`, then what is `(d^(2)y)/(dx^(2))` at `x=-(b)/(a)`, where a, be are constants and `a ne 0`?

Answer» Correct Answer - A
Let y = sin(ax + b)
`rArr (dy)/(dx) = a cos(ax + b)`
`rArr (d^(2)y)/(dx^(2))= -a^(2) sin(ax+b)`
Now, `(d^(2)y)/(dx^(2)) "at x" = -(b)/(a)` is
`-a^(2)sin(a(-(b)/(a))+b)=-a^(2) sin 0 = 0`
59.

Find the derivative of x2 - 2 at x = 10 from first principle.

Answer»

Let,

f(x) = x2 − 2

∴ f' (x) = \(\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\)

\(\lim\limits_{h \to 0}\frac{[(x+h)^2-2]-(x^2-2)}{h}\)

\(\lim\limits_{h \to 0}\frac{x^2+2xh+h^2-2-x^2+2}{h}\)

\(\lim\limits_{h \to 0}\frac{2xh+h^2}{h}\)

\(\lim\limits_{h \to 0}(2x+h)\)

= 2x + 0

= 2x

∴ At x = 10, 

f'(x) = 2 ∙10 

= 20.

60.

Find the derivative of \(\sqrt{4-x}\) from first principle.

Answer»

Let,

\(f(x)=\sqrt{4-x}\) 

∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\)

\(=\lim\limits_{h \to 0}\frac{\sqrt{4-(x+h)}-\sqrt{4-x}}{h}\)

\(=\lim\limits_{h \to 0}\frac{[\sqrt{4-(x+h)}-\sqrt{4-x}][\sqrt{4-(x+h)}+\sqrt{4-x}]}{[h\sqrt{4-(x+h)}+\sqrt{4-x}]}\)

\(=\lim\limits_{h \to 0}\frac{[{4-(x+h)}]-(4-x)}{h[\sqrt{4-(x+h)}+\sqrt{4-x}]}\)

\(=\lim\limits_{h \to 0}\frac{-h}{h\sqrt{4-(x+h)}+\sqrt{4-x}}\)

\(=\lim\limits_{h \to 0}\frac{1}{\sqrt{4-(x+h)}+\sqrt{4-x}}\)

\(-\frac{1}{2\sqrt{4-x}}\)

61.

Find the derivative of cot3x.

Answer»

Let,

y = cot3x

∴ \(\frac{dy}{dx}=\frac{d}{dx}(cot^3\,x)\) 

\(=3\,cot^2\frac{d}{dx}(cot\,x)\) 

\(=3\,cot^2\,x(-cosec^2\,x)\) 

\(=3\,cot^2\,x.cosec^2\,x\)

62.

If `y=sin^(-1)(x-y),x=3t,y=4t^(3)`, then what is the derivative of u with respect to t?A. `3(1-t^(2))`B. `3(1-t^(2))^(-(1)/(2))`C. `5(1-t^(2))^((1)/(2))`D. `5(1-t^(2))`

Answer» Correct Answer - B
`u=sin^(-1)(x-y)x=3t,y=4t^(3)`
So, `u=sin^(-1)(3t-4t^(3))`
Let `t=sin theta rArr theta=sin^(-1)t`,
So, `u=sin^(-1)(3sin theta-4sin^(3)theta)`
`=sin^(-1)(sin3theta)=3 theta`
Hence, `u=3sin^(-1)t`
`(du)/(dt)=3(1)/(sqrt(1-t^(2)))=3(1-t^(2))^(-1//2)`
63.

If `y=x+e^x ,`then `(d^2x)/(dy^2)`is equal toA. `e^(x)`B. `-(e^(x))/((1+e^(x))^(3))`C. `-(e^(x))/((1+e^(x))`D. `(e^(x))/((1+e^(x))^(2))`

Answer» Correct Answer - B
Givne that `y=x+e^(x)`
Differentiating w.r.t. x
`(dy)/(dx)=1+e^(x)`
`rArr" "(dx)/(dy)=(1)/(1+e^(x))`
Differentiating w.r.t. y
`(d^(2)x)/(dy^(2))=-((1)(e^(x)))/((1+e^(x))^(2)).(dx)/(dy)`
`=-(e^(x))/((1+e^(x))^(2)).(1)/((1+e^(x)))=-(e^(x))/((1+e^(x))^(3))`
64.

If `f(x)=(x-2)/(x+2), x ne 2,` then what is `f^(-1)(x)` equal to?A. `(4(x+2))/(x-2)`B. `(x+2)/(4(x-2))`C. `(x+2)/(x-2)`D. `(2(1+x))/(1-x)`

Answer» Correct Answer - D
65.

If `y=sin^(-1)x+sin^(-1)sqrt(1-x^(2))`, what is `(dy)/(dx)` equal to?A. `cos^(-1)x+cos^(-1)sqrt(1-x^(2))`B. `(1)/(cosx)+(1)/(cos sqrt(1-x^(2)))`C. `(pi)/(2)`D. 0

Answer» Correct Answer - D
Given function is :
`y=sin^(-1)x+sin^(-1)sqrt(1-x^(2))`
On differentiating, w.r.t. x, we get
`(dy)/(dx)=(1)/(sqrt(1-x^(2)))+(1)/(sqrt(1-1+x^(2))).(1)/(2sqrt(1-x^(2)))(-2x)`
`=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-x^(2)))=0`
66.

Find the first principle the derivative of sin2x.

Answer»

Let, 

f(x) = sin2x

∴ \(f'(x) = \lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) 

\( = \lim\limits_{h \to 0}\frac{sin^2(x+h)-sin^2x}{h}\) 

\( = \lim\limits_{h \to 0}\frac{\{sin(x+h)+sinx\}\{sin(x+h)-sin\,x\}}{h}\) 

\( = \lim\limits_{h \to 0}\frac{(2sin\frac{x+h+x}{2}cos\frac{x+h-x}{2}).(2cos\frac{x+h+x}{2}sin\frac{x+h-x}{2})}{h}\) 

\( = \lim\limits_{h \to 0}\frac{4cos\frac{h}{2}sin\frac{h}{2}.cos(x+\frac{h}{2})sin(x+\frac{h}{2})}{h}\) 

\( = 2\lim\limits_{h \to 0}\frac {sin \frac{h}{2}}{\frac{h}{2}}\)\( \lim\limits_{h \to 0}\cos\frac{h}{2}cos(x+\frac{h}{2})\) 

= 2 ∙ 1 ∙ 1 ∙ cos x ∙ sin x

= 2 cos x sin x

= sin 2x.

67.

If `x=cost, y=sint,` then what is `(d^(2)y)/(dx^(2))` equal to?A. `y^(-3)`B. `y^(3)`C. `-y^(-3)`D. `-y^(3)`

Answer» Correct Answer - C
Given that `x=cost, y=sint`
`rArr" "(dx)/(dt)-sint and (dy)/(dt)=cot`
`rArr" "(dy)/(dx)=((dy)/(dt))/((dx)/(dt))=-(cost)/(sint)rArr (dy)/(dx)=-cot t`
`rArr" "(d^(2)y)/(dx^(2))="cosec"^(2)t.(dt)/(dx)="cosec"^(2)t.(1)/(-sint)=(1)/(sin^(3)t)`
`rArr" "(d^(2)y)/(dx^(2))=-y^(-3)`
68.

If `y=tan^(-1)((5-2tansqrtx)/(2+5tansqrtx))`, then what is `(dy)/(dx)` equal to ?A. `-(1)/(2sqrtx)`B. 1C. `-1`D. `(1)/(2sqrtx)`

Answer» Correct Answer - A
69.

If `y=e^(x^(2))sin2x`, then what is `(dy)/(dx)` at `x=pi` equal to?A. `(1+pi)e^(pi^(2))`B. `2pie^(pi^(2))`C. `2e^(pi^(2))`D. `e^(pi^(2))`

Answer» Correct Answer - C
70.

For the curve `sqrtx+sqrty=1`, what is the value of `(dy)/(dx)` at `((1)/(4),(1)/(4))`?A. `(1)/(2)`B. 1C. `-1`D. 2

Answer» Correct Answer - C
Given function : `sqrtx+sqrty=1`
is an implicit functionb
Differentiating both sides w.r.t. x, we get
`(1)/(2sqrtx)+(1)/(2sqrty)(dy)/(dx)=0`
`rArr(dy)/(dx)=-sqrt((y)/(x))`
Value of `(dy)/(dx)" at "x=(1)/(4),y=(1)/(4)`
`((dy)/(dx))_(((1)/(4)","(1)/(4)))=-sqrt((1//4)/(1//4))=-1`
71.

What is the derivative of `tan^(-1)((sqrtx-x)/(1+x^(3//2)))` at x = 1?A. `-(1)/(4)`B. `(1)/(2)`C. `(3)/(2)`D. 1

Answer» Correct Answer - A
Let `y=tan^(-1)((sqrtx-x)/(1+x^(3//2)))=tan^(-1).(sqrtx-x)/(1+sqrtx.x)`
`=tan^(-1)sqrtx-tan^(-1)x`
On differentiating w.r.t. we get
`(dy)/(dx)=(1)/(1+x).(1)/(2sqrtx)-(1)/(1+x^(2))`
Now, `((dy)/(dx))_(x=1)=(1)/(1+1).(1)/(2)-(1)/(1+1)=(1)/(4)-(1)/(2)=-(1)/(4).`
72.

Find the derivative of the following function:\(f(x)=\frac{sin\,x+cos\,x}{sin\,x-cos\,x}\)

Answer»

Let,

\(f(x)=\frac{sin\,x+cos\,x}{sin\,x-cos\,x}\)

\((sin\,x-cos\,x)\frac{d}{dx}(sin\,x+cos\,x)-(sin\,x+cos\,x)\)

\(∴f'(x)=\frac{(sin\,x-cos\,x)\frac{d}{dx}(sin\,x+cos\,x)-(sin\,x+cos\,x)​​\frac{d}{dx}(sin\,x-cos\,x)}{(sin\,x-cos\,x)^2}\)  \(=\frac{-(sin\,x-cos\,x)(cos\,x-sin\,x)-(sin\,x+cos\,x)(sin\,x+cos\,x)}{(sin\,x-cos\,x)^2}\) \(=\frac{-sin^2\,x+2sin\,x\,cos\,x\,-cos^2\,x\,-sin^2\,x-2\,sin\,x\,cos\,x-cos^2\,x}{(sin\,x\,-cos\,x)^2}\)\(=\frac{-2\,(sin^x+cos^2x)}{(sin\,x-cos^\,x)^2}\) 

\(=\frac{-2}{(sin\,x-cos^\,x)^2}\)


\(f(x)={(sinx+cosx)\over(sinx−cosx)}\)

=>\(f(x)=-{(1+tanx)\over(1-tanx)}\)

=> \(f(x)=-{tan(pi/4+x)}\)

=>\(f'(x)=-{sec^2(pi/4+x)}\)

73.

If `y=cost and x=sint`, then what is `(dy)/(dx)` equal to?A. xyB. `x//y`C. `-y//x`D. `-x//y`

Answer» Correct Answer - D
Let `y=cost, x=sint`
`(dy)/(dt)=-sint,(dx)/(dt)=cost`
`(dy)/(dx)=(dy//dt)/(dx//dt)=-(sint)/(cost)=-(x)/(y)`
74.

What is the derivative of `sqrt((1+cosx)/(1-cosx))`?A. `(1)/(2)sec^(2).(x)/(2)`B. `-(1)/(2)"cosec"^(2_.(x)/(2)`C. `-"cosec"^(2).(x)/(2)`D. None of these

Answer» Correct Answer - B
Let `y = sqrt((1+cos x)/(1-cos x))=(sqrt(2)"cos"(x)/(2))/(sqrt(2)"sin"(x)/(2))="cot"(x)/(2)`
`(dy)/(dx)=-"cosec"^(2)(x)/(2).(1)/(2)=-(1)/(2)"cosec"^(2)(x)/(1)`
75.

If `x = t^(2)` and `y = t^(3)`, then `(d^(2)y)/(dx^(2))` is equal toA. 1B. `(3)/(2t)`C. `(3)/(4t)`D. `(3)/(2)`

Answer» Correct Answer - C
Let `x=t^(2) and y=t^(3)`
`rArr" "(dx)/(dt=2t and (dy)/(dt)=3t^(2)`
`therefore" "(dy)/(dx)=(dy//dt)/(dx//dt)=(3t^(2))/(2t)=(3)/(2)t`
`rArr" "(d^(2)y)/(dx^(2))=(3)/(2).(dt)/(dx)=(3)/(2).(1)/(2t)(because(dx)/(dt)=2t)`
`=(3)/(4t)`
76.

If `sqrtx+sqrty=2`, then what is `(dy)/(dx)` at y = 1 and x = 1 equal to ?A. 5B. 2C. 4D. `-1`

Answer» Correct Answer - D
Let `sqrtx+sqrty=2`
Differentiate w.r.t. x, we get
`(1)/(2sqrtx)+(1)/(2sqrty)(dy)/(dx)=0" ...(1)"`
Put `y=1, x=1` in equation (1)
`(1)/(2)+(1)/(2)(dy)/(dx)=0`
`rArr" "(dy)/(dx)=-1`
77.

What is the derivative of `sin(sinx)?`A. `cos(cosx)`B. `cos(sinx)`C. `cos(sinx)cosx`D. `cos(cosx)cosx`

Answer» Correct Answer - C
`(d)/(dx) sin(sin x) = cos(sin x). "cos x"`
78.

What is the derivative of `x^(3)` with respect to `x^(2)`?A. `3x^(2)`B. `(3x)/(2)`C. `x`D. `(3)/(2)`

Answer» Correct Answer - B
`U = x^(3)`
`(dU)/(dx)=3x^(2)" "...(1)`
`V = x^(2)`
`(dV)/(dx)=2x`
From (1) and (2)
`(dU)/(dV)=(3x^(2))/(2x)=(3)/(2)x`
79.

What is the derivative of `log_(x)5` with respect to `log_(5)x`?A. `-(log_(5)x)^(-2)`B. `(log_(5)x)^(-2)`C. `-(log_(x)5)^(-2)`D. `(log_(x)5)^(-2)`

Answer» Correct Answer - A
Let `u_(1)=log_(x)5 and u_(2)=log_(5)x`
`rArr u_(1)=(log_(e)5)/(log_(e)x) and u_(2)=(log_(e)x)/(log_(e)5)`
On differentiating w.r.t. x, we get
`(du_(1))/(dx)[(log_(e)x(0)-((1)/(x)))/((log_(e)x)^(2))]log_(e)5=-(log_(e)5)/(x(log_(e)x))`
`and (du_(2))/(dx)=(1)/(xlog_(e)5)`
`therefore(du_(1))/(du_(2))=(du_(1)//dx)/(du_(2)//dx)=-(log_(e)5)/(x(log_(e)x)^(2))xx x log_(e)5`
`=-((log_(e)5)/(log_(e)x))^(2)=-(log_(x)5)^(2)=-(log_(5)x)^(-2)`
80.

Consider the curve `x=a(cos theta+thetasin theta)and y=a(sin theta-thetacos theta).` If `y=xln x+xe^(x)`, then what is the value of `(dy)/(dx)` at x = 1?A. `1+e`B. `1-e`C. `1+2e`D. None of these

Answer» Correct Answer - C
`y = "x In x" + xe^(x)`
After differentiating both sides with respect to x,
we get `(dy)/(dx)=x.(1)/(x)+log x + xe^(x) + e^(x)`
or `=1 + log x + xe^(x) + e^(x)`
Therefore `((dy)/(dx))_(x=1)=1 + log 1 + 1.e^(1) + e^(1) = 1 = 2e" "[because log 1 = 0]`