InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Let `f(x)=[|x|-|x-1|]^(2)` Which of the following equation is/are correct? 1. `f(-2)=f(5)` 2. `f'(-2)+f'(0.5)+f'(3)=4` Select the correct answer using the code given below:A. 1 onlyB. 2 onlyC. Both 1 and 2D. Neither 1 nor 2 |
|
Answer» Correct Answer - A Given `f(x)=(|x|-|x+1|)^(2)` `f(x)={{:(1" "x le 0),((2x-1)^(2)" "0 lt x lt 1),(1" "x ge 1):}` For x = -2 f(x) = 1 so f(-2) = 1 For x = 5 f(x) = 1 `rArr` f(5) = 1 Hence f(-2) = f(5) Now, for x = -1 f'(x) = 0 f'(-2) = 0 For x = 0.5 `f'(x) = 8 rArr f'(0.5) = 8` For x = 3 `f'(x) = 0 rArr f'(3) = 0` `rArr f'(-2) + f'(0.5) + f'(3) = 8 ne 4` |
|
| 52. |
y = (ax+b)m |
|
Answer» The required condition is n=m+1 |
|
| 53. |
If y = a sin mx + b cos mx, then \(\frac{d^2y}{dx^2}\) is equal to A. –m2y B. m2y C. –my D. my |
|
Answer» Correct Answer is (A) –m2y Given: y = a sin mx + b cos mx \(\frac{dy}{dx}\)= ma cos mx - mb sin mx \(\frac{d^2y}{dx^2}\)= -m2 a sin mx - m2 b cos mx = -m2 [a sin mx + b cos mx] = - m2y |
|
| 54. |
If `y=ln(e^(mx)+e^(-mx))`, then what is `(dy)/(dx)` at x = 0 equal to ?A. `-1`B. 0C. 1D. 2 |
|
Answer» Correct Answer - B `y=ln(emx+e-mx)` `Phi" "(dy)/(dx)=(1)/(e^(mx)+e^(-mx)).(d)/(dx)(emx+e-mx)` `=(me^(mx)-me^(-mx))/(e^(mn)+e^(-mx))=(m(e^(mx)-e^(-mx)))/(e^(mx)+e^(-mx))` `=(m[e^(mn)-(1)/(e^(mx))])/(e^(mx)+(1)/(x^(nx)))=(m[e^(2mx)-1])/(e^(2mx)+1)` so, `(dy)/(dx):|_(x=0)=(m(e_(0)-1))/(e^(0)+1)=m(0)=0` |
|
| 55. |
Find the derivative of \(\frac{1}{x^{11}}.\) |
|
Answer» Let, \(y=\frac{1}{x^{11}}\) \(=x^{-11}\) ∴ \(\frac{dy}{dx}=\frac{d}{dx}(x^{-11})\) \(=-11\,x^{-11-1}\) \(=-\frac{11}{x^{12}}\) |
|
| 56. |
If y = a + bx2, a, b arbitrary constants, thenA. \(\frac{d^2y}{dx^2}=2xy\)B. \(x\frac{d^2y}{dx^2}=y_1\)C. \(x\frac{d^2y}{dx^2}-\frac{dy}{dx}+y=y\)D.\(x\frac{d^2y}{dx^2}=2xy\) |
|
Answer» Correct Answer is (C) \(x\frac{d^2y}{dx^2}-\frac{dy}{dx}+y=y\) Given: \(\frac{dy}{dx}=2bx\) \(\frac{d^2y}{dx^2}=2b\neq2xy\) \(x\frac{d^2y}{dx^2}=2bx\) \(=\frac{dy}{dx}\) \(x\frac{d^2y}{dx^2}-\frac{dy}{dx}+y\) \(=2bx-2bx+y\) = y |
|
| 57. |
Find the derivative of (x2 + 1) cos x. |
|
Answer» Let, y = (x2 + 1) cos x ∴ \(\frac{dy}{dx}=\frac{d}{dx}[(x^2+1)cos\,x]\) \(=cos\,x\frac{d}{dx}(x^2+1)+(x^2+1)\frac{d}{dx}cos\,x\) \(=cos\,x.2x+(x^2+1).(-sin\,x)\) = 2x cos x − x2 sin x − sin x |
|
| 58. |
If `y=sin(ax+b)`, then what is `(d^(2)y)/(dx^(2))` at `x=-(b)/(a)`, where a, be are constants and `a ne 0`? |
|
Answer» Correct Answer - A Let y = sin(ax + b) `rArr (dy)/(dx) = a cos(ax + b)` `rArr (d^(2)y)/(dx^(2))= -a^(2) sin(ax+b)` Now, `(d^(2)y)/(dx^(2)) "at x" = -(b)/(a)` is `-a^(2)sin(a(-(b)/(a))+b)=-a^(2) sin 0 = 0` |
|
| 59. |
Find the derivative of x2 - 2 at x = 10 from first principle. |
|
Answer» Let, f(x) = x2 − 2 ∴ f' (x) = \(\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) = \(\lim\limits_{h \to 0}\frac{[(x+h)^2-2]-(x^2-2)}{h}\) = \(\lim\limits_{h \to 0}\frac{x^2+2xh+h^2-2-x^2+2}{h}\) = \(\lim\limits_{h \to 0}\frac{2xh+h^2}{h}\) = \(\lim\limits_{h \to 0}(2x+h)\) = 2x + 0 = 2x ∴ At x = 10, f'(x) = 2 ∙10 = 20. |
|
| 60. |
Find the derivative of \(\sqrt{4-x}\) from first principle. |
|
Answer» Let, \(f(x)=\sqrt{4-x}\) ∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(=\lim\limits_{h \to 0}\frac{\sqrt{4-(x+h)}-\sqrt{4-x}}{h}\) \(=\lim\limits_{h \to 0}\frac{[\sqrt{4-(x+h)}-\sqrt{4-x}][\sqrt{4-(x+h)}+\sqrt{4-x}]}{[h\sqrt{4-(x+h)}+\sqrt{4-x}]}\) \(=\lim\limits_{h \to 0}\frac{[{4-(x+h)}]-(4-x)}{h[\sqrt{4-(x+h)}+\sqrt{4-x}]}\) \(=\lim\limits_{h \to 0}\frac{-h}{h\sqrt{4-(x+h)}+\sqrt{4-x}}\) \(=\lim\limits_{h \to 0}\frac{1}{\sqrt{4-(x+h)}+\sqrt{4-x}}\) = \(-\frac{1}{2\sqrt{4-x}}\) |
|
| 61. |
Find the derivative of cot3x. |
|
Answer» Let, y = cot3x ∴ \(\frac{dy}{dx}=\frac{d}{dx}(cot^3\,x)\) \(=3\,cot^2\frac{d}{dx}(cot\,x)\) \(=3\,cot^2\,x(-cosec^2\,x)\) \(=3\,cot^2\,x.cosec^2\,x\) |
|
| 62. |
If `y=sin^(-1)(x-y),x=3t,y=4t^(3)`, then what is the derivative of u with respect to t?A. `3(1-t^(2))`B. `3(1-t^(2))^(-(1)/(2))`C. `5(1-t^(2))^((1)/(2))`D. `5(1-t^(2))` |
|
Answer» Correct Answer - B `u=sin^(-1)(x-y)x=3t,y=4t^(3)` So, `u=sin^(-1)(3t-4t^(3))` Let `t=sin theta rArr theta=sin^(-1)t`, So, `u=sin^(-1)(3sin theta-4sin^(3)theta)` `=sin^(-1)(sin3theta)=3 theta` Hence, `u=3sin^(-1)t` `(du)/(dt)=3(1)/(sqrt(1-t^(2)))=3(1-t^(2))^(-1//2)` |
|
| 63. |
If `y=x+e^x ,`then `(d^2x)/(dy^2)`is equal toA. `e^(x)`B. `-(e^(x))/((1+e^(x))^(3))`C. `-(e^(x))/((1+e^(x))`D. `(e^(x))/((1+e^(x))^(2))` |
|
Answer» Correct Answer - B Givne that `y=x+e^(x)` Differentiating w.r.t. x `(dy)/(dx)=1+e^(x)` `rArr" "(dx)/(dy)=(1)/(1+e^(x))` Differentiating w.r.t. y `(d^(2)x)/(dy^(2))=-((1)(e^(x)))/((1+e^(x))^(2)).(dx)/(dy)` `=-(e^(x))/((1+e^(x))^(2)).(1)/((1+e^(x)))=-(e^(x))/((1+e^(x))^(3))` |
|
| 64. |
If `f(x)=(x-2)/(x+2), x ne 2,` then what is `f^(-1)(x)` equal to?A. `(4(x+2))/(x-2)`B. `(x+2)/(4(x-2))`C. `(x+2)/(x-2)`D. `(2(1+x))/(1-x)` |
| Answer» Correct Answer - D | |
| 65. |
If `y=sin^(-1)x+sin^(-1)sqrt(1-x^(2))`, what is `(dy)/(dx)` equal to?A. `cos^(-1)x+cos^(-1)sqrt(1-x^(2))`B. `(1)/(cosx)+(1)/(cos sqrt(1-x^(2)))`C. `(pi)/(2)`D. 0 |
|
Answer» Correct Answer - D Given function is : `y=sin^(-1)x+sin^(-1)sqrt(1-x^(2))` On differentiating, w.r.t. x, we get `(dy)/(dx)=(1)/(sqrt(1-x^(2)))+(1)/(sqrt(1-1+x^(2))).(1)/(2sqrt(1-x^(2)))(-2x)` `=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-x^(2)))=0` |
|
| 66. |
Find the first principle the derivative of sin2x. |
|
Answer» Let, f(x) = sin2x ∴ \(f'(x) = \lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \( = \lim\limits_{h \to 0}\frac{sin^2(x+h)-sin^2x}{h}\) \( = \lim\limits_{h \to 0}\frac{\{sin(x+h)+sinx\}\{sin(x+h)-sin\,x\}}{h}\) \( = \lim\limits_{h \to 0}\frac{(2sin\frac{x+h+x}{2}cos\frac{x+h-x}{2}).(2cos\frac{x+h+x}{2}sin\frac{x+h-x}{2})}{h}\) \( = \lim\limits_{h \to 0}\frac{4cos\frac{h}{2}sin\frac{h}{2}.cos(x+\frac{h}{2})sin(x+\frac{h}{2})}{h}\) \( = 2\lim\limits_{h \to 0}\frac {sin \frac{h}{2}}{\frac{h}{2}}\)\( \lim\limits_{h \to 0}\cos\frac{h}{2}cos(x+\frac{h}{2})\) = 2 ∙ 1 ∙ 1 ∙ cos x ∙ sin x = 2 cos x sin x = sin 2x. |
|
| 67. |
If `x=cost, y=sint,` then what is `(d^(2)y)/(dx^(2))` equal to?A. `y^(-3)`B. `y^(3)`C. `-y^(-3)`D. `-y^(3)` |
|
Answer» Correct Answer - C Given that `x=cost, y=sint` `rArr" "(dx)/(dt)-sint and (dy)/(dt)=cot` `rArr" "(dy)/(dx)=((dy)/(dt))/((dx)/(dt))=-(cost)/(sint)rArr (dy)/(dx)=-cot t` `rArr" "(d^(2)y)/(dx^(2))="cosec"^(2)t.(dt)/(dx)="cosec"^(2)t.(1)/(-sint)=(1)/(sin^(3)t)` `rArr" "(d^(2)y)/(dx^(2))=-y^(-3)` |
|
| 68. |
If `y=tan^(-1)((5-2tansqrtx)/(2+5tansqrtx))`, then what is `(dy)/(dx)` equal to ?A. `-(1)/(2sqrtx)`B. 1C. `-1`D. `(1)/(2sqrtx)` |
| Answer» Correct Answer - A | |
| 69. |
If `y=e^(x^(2))sin2x`, then what is `(dy)/(dx)` at `x=pi` equal to?A. `(1+pi)e^(pi^(2))`B. `2pie^(pi^(2))`C. `2e^(pi^(2))`D. `e^(pi^(2))` |
| Answer» Correct Answer - C | |
| 70. |
For the curve `sqrtx+sqrty=1`, what is the value of `(dy)/(dx)` at `((1)/(4),(1)/(4))`?A. `(1)/(2)`B. 1C. `-1`D. 2 |
|
Answer» Correct Answer - C Given function : `sqrtx+sqrty=1` is an implicit functionb Differentiating both sides w.r.t. x, we get `(1)/(2sqrtx)+(1)/(2sqrty)(dy)/(dx)=0` `rArr(dy)/(dx)=-sqrt((y)/(x))` Value of `(dy)/(dx)" at "x=(1)/(4),y=(1)/(4)` `((dy)/(dx))_(((1)/(4)","(1)/(4)))=-sqrt((1//4)/(1//4))=-1` |
|
| 71. |
What is the derivative of `tan^(-1)((sqrtx-x)/(1+x^(3//2)))` at x = 1?A. `-(1)/(4)`B. `(1)/(2)`C. `(3)/(2)`D. 1 |
|
Answer» Correct Answer - A Let `y=tan^(-1)((sqrtx-x)/(1+x^(3//2)))=tan^(-1).(sqrtx-x)/(1+sqrtx.x)` `=tan^(-1)sqrtx-tan^(-1)x` On differentiating w.r.t. we get `(dy)/(dx)=(1)/(1+x).(1)/(2sqrtx)-(1)/(1+x^(2))` Now, `((dy)/(dx))_(x=1)=(1)/(1+1).(1)/(2)-(1)/(1+1)=(1)/(4)-(1)/(2)=-(1)/(4).` |
|
| 72. |
Find the derivative of the following function:\(f(x)=\frac{sin\,x+cos\,x}{sin\,x-cos\,x}\) |
|
Answer» Let, \(f(x)=\frac{sin\,x+cos\,x}{sin\,x-cos\,x}\) \((sin\,x-cos\,x)\frac{d}{dx}(sin\,x+cos\,x)-(sin\,x+cos\,x)\) \(∴f'(x)=\frac{(sin\,x-cos\,x)\frac{d}{dx}(sin\,x+cos\,x)-(sin\,x+cos\,x)\frac{d}{dx}(sin\,x-cos\,x)}{(sin\,x-cos\,x)^2}\) \(=\frac{-(sin\,x-cos\,x)(cos\,x-sin\,x)-(sin\,x+cos\,x)(sin\,x+cos\,x)}{(sin\,x-cos\,x)^2}\) \(=\frac{-sin^2\,x+2sin\,x\,cos\,x\,-cos^2\,x\,-sin^2\,x-2\,sin\,x\,cos\,x-cos^2\,x}{(sin\,x\,-cos\,x)^2}\)\(=\frac{-2\,(sin^x+cos^2x)}{(sin\,x-cos^\,x)^2}\) \(=\frac{-2}{(sin\,x-cos^\,x)^2}\)
=>\(f(x)=-{(1+tanx)\over(1-tanx)}\) => \(f(x)=-{tan(pi/4+x)}\) =>\(f'(x)=-{sec^2(pi/4+x)}\) |
|
| 73. |
If `y=cost and x=sint`, then what is `(dy)/(dx)` equal to?A. xyB. `x//y`C. `-y//x`D. `-x//y` |
|
Answer» Correct Answer - D Let `y=cost, x=sint` `(dy)/(dt)=-sint,(dx)/(dt)=cost` `(dy)/(dx)=(dy//dt)/(dx//dt)=-(sint)/(cost)=-(x)/(y)` |
|
| 74. |
What is the derivative of `sqrt((1+cosx)/(1-cosx))`?A. `(1)/(2)sec^(2).(x)/(2)`B. `-(1)/(2)"cosec"^(2_.(x)/(2)`C. `-"cosec"^(2).(x)/(2)`D. None of these |
|
Answer» Correct Answer - B Let `y = sqrt((1+cos x)/(1-cos x))=(sqrt(2)"cos"(x)/(2))/(sqrt(2)"sin"(x)/(2))="cot"(x)/(2)` `(dy)/(dx)=-"cosec"^(2)(x)/(2).(1)/(2)=-(1)/(2)"cosec"^(2)(x)/(1)` |
|
| 75. |
If `x = t^(2)` and `y = t^(3)`, then `(d^(2)y)/(dx^(2))` is equal toA. 1B. `(3)/(2t)`C. `(3)/(4t)`D. `(3)/(2)` |
|
Answer» Correct Answer - C Let `x=t^(2) and y=t^(3)` `rArr" "(dx)/(dt=2t and (dy)/(dt)=3t^(2)` `therefore" "(dy)/(dx)=(dy//dt)/(dx//dt)=(3t^(2))/(2t)=(3)/(2)t` `rArr" "(d^(2)y)/(dx^(2))=(3)/(2).(dt)/(dx)=(3)/(2).(1)/(2t)(because(dx)/(dt)=2t)` `=(3)/(4t)` |
|
| 76. |
If `sqrtx+sqrty=2`, then what is `(dy)/(dx)` at y = 1 and x = 1 equal to ?A. 5B. 2C. 4D. `-1` |
|
Answer» Correct Answer - D Let `sqrtx+sqrty=2` Differentiate w.r.t. x, we get `(1)/(2sqrtx)+(1)/(2sqrty)(dy)/(dx)=0" ...(1)"` Put `y=1, x=1` in equation (1) `(1)/(2)+(1)/(2)(dy)/(dx)=0` `rArr" "(dy)/(dx)=-1` |
|
| 77. |
What is the derivative of `sin(sinx)?`A. `cos(cosx)`B. `cos(sinx)`C. `cos(sinx)cosx`D. `cos(cosx)cosx` |
|
Answer» Correct Answer - C `(d)/(dx) sin(sin x) = cos(sin x). "cos x"` |
|
| 78. |
What is the derivative of `x^(3)` with respect to `x^(2)`?A. `3x^(2)`B. `(3x)/(2)`C. `x`D. `(3)/(2)` |
|
Answer» Correct Answer - B `U = x^(3)` `(dU)/(dx)=3x^(2)" "...(1)` `V = x^(2)` `(dV)/(dx)=2x` From (1) and (2) `(dU)/(dV)=(3x^(2))/(2x)=(3)/(2)x` |
|
| 79. |
What is the derivative of `log_(x)5` with respect to `log_(5)x`?A. `-(log_(5)x)^(-2)`B. `(log_(5)x)^(-2)`C. `-(log_(x)5)^(-2)`D. `(log_(x)5)^(-2)` |
|
Answer» Correct Answer - A Let `u_(1)=log_(x)5 and u_(2)=log_(5)x` `rArr u_(1)=(log_(e)5)/(log_(e)x) and u_(2)=(log_(e)x)/(log_(e)5)` On differentiating w.r.t. x, we get `(du_(1))/(dx)[(log_(e)x(0)-((1)/(x)))/((log_(e)x)^(2))]log_(e)5=-(log_(e)5)/(x(log_(e)x))` `and (du_(2))/(dx)=(1)/(xlog_(e)5)` `therefore(du_(1))/(du_(2))=(du_(1)//dx)/(du_(2)//dx)=-(log_(e)5)/(x(log_(e)x)^(2))xx x log_(e)5` `=-((log_(e)5)/(log_(e)x))^(2)=-(log_(x)5)^(2)=-(log_(5)x)^(-2)` |
|
| 80. |
Consider the curve `x=a(cos theta+thetasin theta)and y=a(sin theta-thetacos theta).` If `y=xln x+xe^(x)`, then what is the value of `(dy)/(dx)` at x = 1?A. `1+e`B. `1-e`C. `1+2e`D. None of these |
|
Answer» Correct Answer - C `y = "x In x" + xe^(x)` After differentiating both sides with respect to x, we get `(dy)/(dx)=x.(1)/(x)+log x + xe^(x) + e^(x)` or `=1 + log x + xe^(x) + e^(x)` Therefore `((dy)/(dx))_(x=1)=1 + log 1 + 1.e^(1) + e^(1) = 1 = 2e" "[because log 1 = 0]` |
|