Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Arguments are also called as ……….(a) variable(b) constant(c) function(d) parameters

Answer»

Arguments are also called as parameters

102.

Why do we define a function?

Answer»

● Decomposing complex problems into simpler pieces. 

● Reducing duplication of code.

103.

What is constant arguments and write its syntax?

Answer»

The constant variable can be declared using const keyword. The const keyword makes variable , value stable. The constant variable should be initialized while declaring. The const modifier enables to assign an initial value to a variable that cannot be changed later inside the body of the function.

Syntax:

(const )

104.

What is the utility of built-in function help () ?

Answer»

Python’s built in function help ( ) is very useful. When it is provided with a program-name or a module-name or a function-name as an argument, it displays the documentation of the argument as help. It also displays the docstrings within its passed-argument’s definition. For example : 

help (math) will display the documentation related to module math.

105.

Write syntax for function that takes a string as input parameter and prints it on standard screen.

Answer»

def printme (str): 

“This prints a passed string into this function” 

print str 

return

106.

Describe trignometric functions ?

Answer»

Python includes following functions that perform trignometric calculations.

 Function         Description
acos(x)Return the arc cosine of x, in radians
asin(xReturn the arc sine of x, in radians.
atan(x)Return the arc tangent of x, in radians.
atan2(y, x)Return atan(y/x), in radians.
cos(x)Return the cosine of x radians.
hypot(x, y)Return the Euclidean norm, sqrt(x*x + y^y).
sin(x)
tan(x)
degrees(x)Converts angle x from radians to degrees.
radians(x)Converts angle x from de-grees to radians.

107.

Explain default argument.

Answer»

A default argument is an argument that assumes a default value, if a value is not provided in the function call.

108.

Write a program to illustrate “default argument”.

Answer»

#!/usr/bin/python

# Function definition is here

def printinfo(name,age=35):

“This prints a passed info into this function”

print “Name: “,

name; print “Age “,

age return;

# Now you can call printinfo function

 printinfo(age=50,name=”miki”);

 printinfo(name=”miki”);

When the above code is executed, it produces following result:

Name: miki 

Age 50 

Name:miki 

Age 35

109.

Why we use return [expression] in Python?

Answer»

The statement return [expression] exits a function.

110.

“Python has certain functions that you can readily use without having to write any special code.” What type of functions are these ?

Answer»

The pre-defined functions that are always available for use are known as python’s built-in functions. For example : 

len (), type (), int (), raw-input () etc.

111.

Do Python supports built-in functions?

Answer» Yes, Python gives you many built-in functions like print() etc.
112.

Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.

Answer»

Given as f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}

f: {1, 4, 9, 16} → {-1, -2, -3, 4} and g: {-1, -2, -3, 4} → {-2, -4, -6, 8}

Co-domain of f = domain of g

Therefore, gof exists and gof: {1, 4, 9, 16} → {-2, -4, -6, 8}

(gof)(1) = g(f(1)) = g(−1) = −2

(gof)(4) = g(f(4)) = g(−2) = −4

(gof)(9) = g(f(9)) = g(−3) = −6

(gof)(16) = g(f(16)) = g(4) = 8

Therefore, gof = {(1, −2), (4, −4), (9, −6), (16, 8)}

Since, the co-domain of g is not same as the domain of f.

Therefore, fog does not exist.

113.

If f: R → R be defined by f(x) = x3 − 3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1(5)

Answer»

Given function f: R → R be defined by f(x) = x3 − 3

Let us prove that f−1 exists

Injectivity of f:

Let x and y be two elements in domain (R),

Such that, x3 − 3 = y3 − 3            

⇒ x3 = y3        

⇒ x = y

Therefore, f is one-one.

Surjectivity of f:

Let y be in the co-domain (R)

Such that f(x) = y

⇒ x3 – 3 = y

⇒ x3 = y + 3 

⇒ x = 3√(y + 3) in R

⇒ f is onto.

Therefore, f is a bijection and, hence, it is invertible.

Find f -1

Let f-1(x) = y ...(1)

⇒ x = f(y)

⇒ x = y− 3

⇒ x + 3 = y3

⇒ y = 3√(x + 3) = f-1(x) [from (1)]

Therefore, f-1(x) = 3√(x + 3)

Now, f-1(24) = 3√(24 + 3)

= 3√27

= 3√33

= 3

And f-1(5) = 3√(5 + 3)

= 3√8

= 3√23

= 2

114.

Find f−1 if it exists: f: A → B, where (i) A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3x.(ii) A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2

Answer»

(i) Given as A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3x.

Therefore, f = {(0, 0), (-1, -3), (-3, -9), (2, 6)}

Here, the different elements of the domain have different images in the co-domain.

Thus, this is one-one.

Range of f = Range of f = B

Therefore, f is a bijection and,

Clearly, f -1 exists.  

Hence, f -1= {(0, 0), (-3, -1), (-9, -3), (6, 2)}

(ii) Given as A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2

Therefore, f = {(1, 1), (3, 9), (5, 25), (7, 49), (9, 81)}

Here, the different elements of the domain have different images in the co-domain.

Thus, f is one-one.

This is not onto because the element 0 in the co-domain (B) has no pre-image in the domain (A)

⇒ f is not a bijection.

Therefore, f -1does not exist.

115.

If [x]2 – 5[x] + 6 = 0, where [∙] denotes the greatest integer function, then A. x ∈ [3, 4] B. x ∈ (2, 3] C. x ∈ [2, 3] D. x ∈ [2, 4]

Answer»

Option : (D) 

[x]2-5[x]+6 = 0 

([x]-2)([x]-3) = 0 

if [x] = 2 

2≤x<3 

And, 

if [x] = 3 

3≤x<4 

Therefore,

x ∈ [2,4]

116.

If f(x) = sin [π2] x + sin [-π2] x, where [x] denotes the greatest integer less than or equal to x, then A. f (π/2) = 1 B. f(π) = 2 C. f (π/4) = - 1 D. None of these

Answer»

π2 ≈ 9.8596

2] = 9 and

[-π2] = -10

Now, 

f(x) = sin[π2] x + sin[-π2]x 

= sin 9x - sin 10x 

Now, 

Checking values of f(x) at given points..

f(\(\frac{\pi}{2}\)) = sin 9(\(\frac{\pi}{2}\)) - sin 10(\(\frac{\pi}{2}\))

= 1-0 

= 1 

Option A is correct.. 

f(π) = sin 9π - sin 10π 

= 0 - 0 

= 0

f(\(\frac{\pi}{4}\)) = sin 9(\(\frac{\pi}{4}\)) - sin 10(\(\frac{\pi}{4}\))

\(\frac{1}{\sqrt 2}\) - 1

Option B & C are incorrect..

117.

The domain of the function `f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x])`(where [] represents the greatest integer function isA. `[-2,1)uu[2.3)`B. `[-4,1)uu[2,3)`C. `94,1)uu[2,3)`D. `[2,1)uu[2,3)`

Answer» Correct Answer - A
We have `f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x])`
We must have, `sgn(9-x^(2))gt0`
`rArr" "9-x^(2)gt0`
`rArr" "x^(2)-9lt0`
`rArr" "(x-3)(x+3)lt0`
`rArr" "-3ltxlt3`
`"Also "[x]^(3)-4[x]ge0`
`rArr" "[x]([x]^(2)-4)ge0`
`rArr" "[x]([x]-2)([x]+2)le0`
`rArr" "[x]ge2 or [x]` lies between -2 and 0,
i.e., `[x]=-2,-1or0`
Now `[x]ge2 rArrxge2`
`[x]=-2rArr-2lexlt1`
`[x]=-1 rArr-1lexlt0`
`[x]=0 rArr0lexlt1`.
Hence `[x]=-2,-1,0rArr -2 lexlt1`.
Hence `D_(f)=[-2,1)cup[2,3)`.
118.

let `f:R->R` be given by `f(x)=[x]^2+[x+1]-3,` where `[x]` denotes the greatest integer less than or equal to `x.` Then, `f(x)` isA. many-one and ontoB. many-one and intoC. one-one and intoD. one-one and onto

Answer» Correct Answer - B
We have
`f(x)=[x]^(2)+[x+1]-3`
`Rightarrow f(x)=[x]^(2)+[x]+1-3 [therefore [x+n]=[x]+n, "where n "in Z]`
`Rightarrow f(x)=[x]^(2)+[x]-2`
`Rightarrow f(x)=([x]+2) ([x]-1)`
Clearly, f(x)=0 for all `x in [1,2] uu [-2, -1]`
So, f is a many-one function.
Also, f(x) assumes only integral values.
`therefore "Range of f" ne R`.
Hence, f(x) is a many-one into function.
119.

If `f: Rvec(-1,1)`is defined by `f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x)`equals`sqrt((|x|)/(1-|x|))`(b) `-sgn(x)sqrt((|x|)/(1-|x|))``-sqrt(x/(1-x))`(d) none of theseA. `sqrt((x)/(1-|x|))`B. `-"sign"(x)sqrt((|x|)/(1-|x|))`C. `sqrt((x)/(1-x))`D. None of these

Answer» Correct Answer - B
Clearly, `f:R to (-1,1)` given by f(x)=`(-x|x|)/(1+x^(2))` is a bijection.
Now,
`fof^(-1)(x)=x`
`Rightarrow f(f^(-1)(x))=x`
`Rightarrow (f^(-1)(x)|f^(-1)(x)|)/(1+(f^(-1)(x))^(2))=x`
`Rightarrow (-(f^(-1)(x)^(2))|)/(1+(f^(-1)(x))^(2))=x, if f^(-1)(x) ge 0`
and `(f^(-1)(x))^(2)/(1+(f^(-1)(x))^(2))=x,"if",f^(-1)(x) lt 0`
`Rightarrow f^(-1)(x)={{:(,sqrt((x)/(1+x)),"if"xle 0),(,-sqrt((x)/(1-x)),"if"x gt 0):}`
`Rightarrow f^(-1)(x)={{:(,sqrt((|x|)/(1-|x|)),"if"x le 0),(,-sqrt((|x|)/(1-|x|)),"if"x gt 0):}`
`Rightarrow f^(-1)(x)=-sgn(x) sqrt((|x|)/(1-|x|))`
120.

Let A = {x ∈R : x ≠ 0, -4 ≤ x ≤ 4} and f : A → R be defined by f(x) = |x|/x for x ∈ A. Then A isA. {1, -1} B. {x : 0 ≤ x ≤ 4} C. {1} D. {x : -4 ≤ x ≤ 0}

Answer»

Option : (A)

Given,

f(x) = |x|/x 

When -4≤x<0,

f(x) = \(-\frac{x}{x}\)

= -1 

When 0<x≤4,

f(x) = \(\frac{x}{x}\)

= 1 

R(f) = {-1, 1}

121.

Find f(x), if g(x) = x2 + x – 2 and (gof) (x) = 4x2 – 10x + 4

Answer»

g(x) = x2 + x – 2

(gof) (x) = 4x2 – 10x + 4 

= (2x – 3)2 + (2x – 3) – 2 

= g(2x – 3) = g(f(x)) 

∴ f(x) = 2x – 3 

(gof) (x) = 4x2 – 10x + 4 

= (-2x + 2)2 + (-2x + 2) – 2 

= g(-2x + 2) 

= g(f(x)) 

∴ f(x) = -2x + 2

122.

Find the range of the following functions.f(x) = 1 + 2x + 4x

Answer»

f(x) = 1 + 2x + 4x 

Since, 2x > 0, 4x > 0 

∴ f(x) > 1 

∴ Range of f = (1, ∞)

123.

Find (fog) (x) and (gof) (x) :f(x) = ex , g(x) = log x

Answer»

f(x) = ex , g(x) = log x 

(fog) (x) = f(g(x)) 

= f(log x) 

= elog x 

= x 

124.

Let `f:A to A and g:A to A` be two functions such that fog(x)=gof (x)=x for all `x in A` Statement-1:`{x in A: f(x)=g(x)}={x in A: f(x)=x}={x in A: g(x)=x}` Statement-2: `f:A to A` is bijection.A. 1B. 2C. 3D. 4

Answer» Correct Answer - A
We have,
`fog(x)=gof(x)=x"for all "x in A`
`Rightarrow` f is invertible such that `g=f^(-1)`
`Rightarrow` f is a bijection
`Rightarrow [x in A: f(x)=g(x)]=[x in A: f(x)=x]={x in A: g(x)=x]`
125.

Statement-1: If `f:R to R and g:R to R ` be two functions such that `f(x)=x^(2) and g(x)=x^(3)`, then fog (x)=gof (x). Statement-2: The composition of functions is commulative.A. 1B. 2C. 3D. 4

Answer» Correct Answer - C
We have
`fog(x)=f(g(x))=f(x^(3))^(2)=x^(6)`
`and gof(x)=g(f(x))=g(x^(2))=(x^(2))^(3)=x^(6)`
`therefore fog(x)=gof(x)`
So, statement-1 is true.
If f(x`=x^(2) and g(x)=sin x` Then,
`fog(x)=sin^(2)x and gof (x)=sin x^(2)`
`therefore fog(x) ne gof (x)`.
So, the composition of functions is not commutative.
Hence, statement-2 is false.
126.

Find the domain of (i) f(x) = ln (x – 5)(ii) f(x) = log10 (x – 5x + 6)

Answer»

(i) f(x) = ln (x – 5)

f is defined, when x – 5 > 0

∴ x > 5

∴ Domain of f = (5, ∞)

(ii) f(x) = log10 (x2 – 5x + 6)

x2 – 5x + 6 = (x – 2) (x – 3)

f is defined, when (x – 2) (x – 3) > 0

∴ x < 2 or x > 3

Solution of (x – a) (x – b) > 0 is x < a or x > b

where a < b

∴ Domain of f = (-∞, 2) ∪ (3, ∞)

127.

Consider `f: Rvec[-5,oo)`given by `f(x)=9x^2+6x-5`. Show that `f`isinvertible with `f^(-1)(y)=((sqrt(y+6)-1)/3)dot`

Answer» Correct Answer - `f^(-1) (y)= (sqrt(y+6)-1)/(3)`
`y=(3x+1)^(2)-6 rArr x =(sqrt(y+6)-1)/(3) rArr f^(-1) (y)= (sqrt(y+6)-1)/(3)`
128.

If `fa n dg`are two functions defined on `N ,`such that `f(n)-{2n-1ifni se v e n2n+2ifni sod d`and `g(n)=f(n)+f(n+1)dot`Then range of `g`is`{m in N : m=`multiple of 4`}``{`set of even natural numbers`}``{m in N : m=4k+3,k`is a naturalnumber`{m in N : m=`multiple of 3 ormultiple of 4`}`A. { m `in` N : m = multiple of 4}B. { set of even natural numbers}C. {m `in` N : m = 4k + 3, k is a natural number}D. {m `in` N : m = multiple of 3 or multiple of 4}

Answer» Correct Answer - C
`g(n)=f(n)+f(n+1)`
If n is even, `n+1` is odd.
`therefore" "g(n)=2n-12(n+1)+2=4n+3`
If n is odd, `n+1` is even.
`therefore" "g(n)=2n+2+2(n+1)-1=4n+3.`
129.

Let R be the set of all real numbers let `f: R to R : f(x) = sin x ` and `g : R to R : g (x) =x^(2) .` Prove that g o f `ne ` f o g

Answer» Let x be an arbitrary real number . Then
(g o g ) (x) = g { f(x) } =g (sin x) `=(sin x)^(2)`
(f o g) (x) = f { g (x) } =` f (x^(2)) =sin x^(2)`
Clearly `(sin x)^(2) ne sin x^(2)`
Hence g o g `ne ` g o f
130.

Which of the following statements are incorrect?If `f(x)`and `g(x)`are one-one then`f(x)+g(x)`is also one-oneIf `f(x)`and `g(x)`are one-one then`f(x)dotg(x)`is also one-oneIf `f(x)`is odd then it is necessarily one-one?`Ia n dI Ion l y`b. `I Ia n dI I Ion l y`c. `I I Ia n dIon l y`d. `I ,I Ia n dI I I`A. I and II onlyB. II and III onlyC. III and I onlyD. I, II and III

Answer» Correct Answer - D
I. `f(x)=x and g(x)=-x or f(x) = x and g(x)=-x^(3)`
II. `f(x)=x and g(x)=x^(3)`
III. F(x) = sin x which is odd but not one-one or `f(x)=x^(2) sin x` which is odd but many one
131.

If `g(x)=(4cos^4x-2cos2x-1/2cos4x-x^7)^(1/7)` then the value of `g(g(100))` is equal toA. `-1`B. `0`C. 1D. 100

Answer» Correct Answer - D
We have `4cos^(4)x-2cos2x-(1)/(2)cos4x-x^(7)`
`=4cos^(4)x-2(2cos^(2)x-1)-(1)/(2)(2cos^(2)2x-1)-x^(7)`
`=4cos^(4)x-4cos^(2)x+2-(2cos^(2)x-1)^(2)+(1)/(2)-x^(7)`
`=((3)/(2)-x^(7))`
`rArr" "g(x)=((3)/(2)-x^(7))^((1)/(17))`
`rArr" "f(g(x))((3)/(2)-(g(x))^(7))^((1)/(7))=((3)/(2)-((3)/(2)-x^(7)))^((1)/(7))=x`
Hence `g(g(100))=100`
132.

If domain of `f(x)` is [1, 3], then the domain of `f(log_(2)(x^(2)+3x-2))` isA. `[-5,-4]uu[1,2]`B. `[-13,-2]uu[(3)/(5),5]`C. `[4,1]uu[2,7]`D. `[-3,2]`

Answer» Correct Answer - A
`1lelog_(e)(x^(2)+3x-2)le3`
`rArr" "2le(x^(2)+3x-2)le8`
`rArr" "-5lex le-4 and 1 le x le2`
133.

If `f(x)=x^2+x+3/4`and `g(x)=x^2+a x+1`be two real functions, then the range of `a`for which `g(f(x))=0`has no real solution is`(-oo,-2)`b. `(-2,2)`c. `(-2,oo)`d. `(2,oo)`A. `(-oo,-2)`B. `(-2,2)`C. `(-2,oo)`D. `(2,oo)`

Answer» Correct Answer - C
`f(x)=x^(2)+x+(3)/(4)=(x+(1)/(2))^(2)+(1)/(2)ge(1)/(2)`
`g(f(x))=f(x)^(2)+af(x)+1`
for g(f(x))=0,
`a=-(f(x)+(1)/(f(x)))le-2`
`therefore` If `a gt -2, g(f(x))=0` has no solutions
134.

Find gof and fog, if `f : R ->R`and `g : R ->R`are given by `f(x) = cos x`and `g(x)=3x^2`. Show that `gof!=fog`.

Answer» Let x be an arbitrary real number . Then
`(g o f) (x) =g {f (x)} =g (cos x) =3 (cos x)^(2) =3 cos ^(2) x.`
`(f o g) (x) =f {g (x)}= f(3x^(2)) `
Taking x=0 , we have
(g o f) (0) `=3 cos^(2) 0 =(3 xx 1) =3`
`(f o g) (0) =cos (3 xx 0) =cos 0=1`
`:. (g o f) (0) ne (f o g) (0)`
Hence g o f` ne ` f og
135.

If the functions `f`and `g`are given by `f={(1, 2), (3, 5), (4, 1)}`and `g={(2, 3), (5, 1), (1, 3)}`, find range of `f`and `g`. Also, write down `fog`and `gof`as sets of orderedpairs.

Answer» Here range `(f) ={1,2,5) " and dom " (g) ={1,2,5}`
Clearly range `(f ) sube " dom " (g)`
`:. (g o f)` is defined and dom `( g o f) = " dom " (f ) = {1,3,4}`
Now `(g o f) (1) = g { f (1) } =g (2) =3:`
`(g o f) (4) =g { f (4) } +g (1) =3`
Hence (g o f) `= {(1,3),(3 ,1) (4,3)}`
Again range (g) `={1,3}` and dom (f ) ={1,3,4}
Clearly rangle (g) ` sube` dom (f )
`:. ` (f o g ) is defined and dom (f o g) = dom (g) = {1,2,5}
Now (f o g) (1) `= f {g (1)} =f (3) =5,`
` (f o g) (2) = f { g (2)} =f (3) =5,`
`(f o g) (5) =f { g (5) } =f (1) =2`
Hence (f o g) ={(1,5) ,(2,5) ,(5,2)}
136.

Let `f:X->Y` be a function. Define a relation `R` in `X` given by `R={(a,b):f(a)=f(b)}.` Examine whether `R` is an equivalence relation or not.

Answer» Here R satisfies the following properties :
(i) Reflexivity
Let `a in X.` Then
`f(a) =f(a) rArr (a, a) in R`
`:.` R is reflexive .
(ii) Symmetry
Let `(a,b ) in R` Then
`(a,b) in R rArr f(a) =f(b) rArr f(b) =f(a) rArr (b,a) in R`
`:.` R is symmetric.
(iii) Transitivity
Let `(a,b) in R " and " (b,c) in R .` Then
`(a,b) in R , (b,c) in R`
`rArr f(a) =f(b) " and " f(b) =f( c)`
`rArr f(a) =f(c )`
`rArr (a,c) in R`
`:.` R is transitive.
Hence R is an equivalence relation .
137.

Let `f(x0=|x-1|dot`Then`f(x^2)=(f(x))^2`(b) `f(x+y)=f(x)+f(y)``f(|x|)-|f(x)|`(d) none of theseA. `f(x^(2))={f(x)}^(2)`B. `f(x+y)=f(x)+f(y)`C. `f(|x|)=|f(x)|`D. None of the above

Answer» Correct Answer - D
Given, `f(x)=|x-1|`
` therefore f(x^(2))=|x^(2)-1|`
`and {f(x)}^(2)=(x-1)^(2)`
`rArr f(x^(2)) ne (f(x))^(2)`, hence (a) is false.
Also, `f(x+y)=|x+y-1|`
` and f(x)=|x-1|`,
`f(y)=|y-1|`
`rArr f(x+y) ne f(x) +f(y),` hence (b) is false.
`f(|x|)=||x|-1|`
` and |f(x) |=||x-1||=|x-1|`
` therefore f(|x|) ne |f(x)|,` hence (c) is false.
138.

If `f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)]` has the valueA. -1B. `(1)/(2)`C. -2D. None of these

Answer» Correct Answer - D
Given, `f(x)=cos(logx)`
` therefore f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)]`
`=cos(logx)*cos(log y)-(1)/(2) [cos(logx-log y)+cos(logx+log y)]`
`=cos(logx)*cos(log y)-(1)/(2)[(2 cos(logx)*cos(logy)]`
`=cos (logx)*cos(logy)-cos(logx)*cos(logy)=0`
139.

The total number of onto functions from the set {1,2,3,4) to the set (3,4,7) isA. 18B. 36C. 64D. none of these

Answer» Correct Answer - B
If A and B are two sets consisting of m and n elements respectively such that `1 le n le m`, then number of onto functions from A to B is:
`underset(r=1)overset(n)sum(-1)^(n-r) .^(n)C_(r) r^(m)`
Here, m=4 and n=3
So, total number of onto functions.
`underset(r=1)overset(3)sum(-1)^(3-r) .^(3)C_(r) r^(4)`
`^(3)C_(1)-^(3)C_(2)xx2^(4)+^(3)C_(3)xx3^(4)=3-48+81=36`
140.

`f(x)=log_(x^(2)) 25 and g(x)=log_(x)5.` Then f(x)=g(x) holds for x belonging toA. RB. `{x:0 lt x lt oo, xne 1}`C. `phi`D. None of these

Answer» Correct Answer - B
We have
`f(x)=log_(x^(2)) 25=log_(x^(2)) 5^(2)=(2)/(2)log_(x)5=log_(x)5=g(x)`
for all x in their common domain.
Now, `D_(1)="Domain of f"=R-{0,-1,1}`
`and D_(2)="Domain of g"={x:x gt 0, x ne 1}`
`therefore D_(1) nn D_(2)={x:x gt 0, x ne 1}`
`"Thus", f(x)=g(x)"for all" x in {x:x gt 0, xne1}`
141.

`f:R to R" given by "f(x)=x+sqrtx^(2)`,isA. injectiveB. surjectiveC. bijectiveD. none of these

Answer» Correct Answer - D
We have
`f(x)=x+sqrtx^(2)=x|x|={(,2x,xge0),(,x-x=0,xle0):}}`
Clearly f is many-one into functions:
142.

If `g(f(x))=|sinx|` and `f(g(x))=(sin(sqrtx))^2` thenA. `f(x)=sin^(2)x, g(x)=sqrt(x)`B. `f(x)=sinx, g(x)=|x|`C. `f(x)=x^(2), g(x)=sin sqrt(x)`D. f and g cannot be determined

Answer» Correct Answer - A
Let `f(x)=sin^(2)x and g(x)=sqrt(x)`
Now, `fog(x)=f[g(x)] = f(sqrt(x))=sin^(2) sqrt(x)`
` and gof(x)=g[f(x)]=g(sin^(2)x)=sqrt(sin^(2)x)=|sinx|`
Again, let `f(x)=sinx, g(x) =|x|`
`fog(x)=f[g(x)]=f(|x|)`
`=sin|x| ne (sin sqrt (x))^(2)`
When ` f(x) = x^(2), g(x)=sin sqrt(x)`
`fog(x) = f[g(x)]=f(sin sqrt(x))=(sin sqrt(x))^(2)`
`and (gof) (x) = g[f(x)]=g(x^(2))=sin sqrt(x^(2))`
`=sin|x| ne |sinx|`
143.

If `g(f(x))=|sinx|` and `f(g(x))=(sin(sqrtx))^2` thenA. `f(x)=sin^(2)x, g(x)=sqrtx`B. `f(x)=sinx, g(x)=|x|`C. `f(x)=x^(2),g(x)=sinsqrtx`D. f and g cannot be determined

Answer» Correct Answer - A
We have,
`f(g(x))=(sin sqrtx)^(2)and,g(f(x))=|sinx|=sqrt(sin^(2)x)`
`Rightarrow g(x)=sqrtx and f(x)=(sin x)^(2)`
144.

The inverse of the function `f:R to {x in R: x lt 1}"given by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)),` isA. `(1)/(2)"log" (1+x)/(1-x)`B. `(1)/(2)"log" (2+x)/(2-x)`C. `(1)/(2)"log" (1-x)/(1+x)`D. None of these

Answer» Correct Answer - A
Clearly, f is a bijection and hence invertible. Let `f(x)=y "Clearly, "y lt 1`
`"fof"^(-1)(x)=x" for all "xlt 1`
`Rightarrow f(f^(-1)(x))=x`
`(e^(f^(-1)(x))-e^(-f^(-1)(x)))/(e^(f^(-1)(x))+e^(-f^(-1)(x)))=(x)/(1)Rightarrow(2e^(f^(-1))(x))/(-2e^(-f^(-1))(x))=(x+1)/(x-1)`
`e^(2f^(-1)(x))=(1+x)/(1-x) Rightarrow f^(-1)(x)=(1)/(2)"log"((1+x)/(1-x))`
`"Hence", f^(-1):{x in R: x lt 1} to R` is given by
`f^(-1)(x)=(1)/(2)"log"((1+x)/(1-x))`
145.

Let `A=(x in R: x ge 1)`. The inverse of the function of `f:A to A` given by `f(x)=2^(x^((x-1))`. IsA. `((1)/(2))^(x^((x-1)))`B. `(1)/(2){1+sqrt(1+4log_(2)x)}`C. `(1)/(2){1-sqrt(1+4log_(2)x)}`D. None of these

Answer» Correct Answer - B
It can be easily verified that `f:A to A` is a bijection.
`"Let"f(x)=y"Then"`
`f(x)=y`
`Rightarrow 2^(x^((x-1)))=y``Rightarrow x(x-1)=log_(2)y`
`Rightarrow x^(2)-x-log_(2) y=0`
`x=(1pmsqrt(1+4log_(2)y))/(2)`
`Rightarrow x=(1)/(2) [1+sqrt(1+4log_(2)y)]" "[therefore x lt 1]`
`Rightarrow f^(-1)(y)=(1)/(2){1+sqrt(1+4log_(2)y)}`
`Rightarrow f^(-1)(y)=(1)/(2){1+sqrt(1+4log_(2)y)}`
x`f^(-1)(x)=(1)/(2) {1+sqrt(1+4log_(2) x)}`
146.

Let `f(x)=(1)/(1-x)."Then (fp (fof)) (x)"`A. x for all ` xin R`B. x for all `x in R-[1]`C. x for all `x imn R-[0,1]`D. None of these

Answer» Correct Answer - C
We have, `f(x)=(1)/(1-x)`
Clearly, f(x) is defined for all `x ne 1`.
For any `x(ne 1)` we have
`"fof" (x)=f(f (x))=f((1)/(1-x))=(1)/((1-(1)/(1-x)))=(x-1)/(x)`
It is evident from the defination of `f of (x)` is defined for all `x ne 0,1`.
`[fo (fof)](x)=f(fof(x))=f((x-1)/(x))=(1)/((1-(x-1)/(x)))=x`
`"Hence", [fo(fof)(x)=x" for all " x in R[(0,1)]`
147.

if `f(x)=(a-x^n)^(1/n),` where `a > 0 and n` is a positive integer, then `f(f(x))=`(i) `x^3`(ii) `x^2`(iii) `x`(iv) `-x`

Answer» Correct Answer - 1
Given, `f(x)=(a-x^(n))^(1//n)`
`rArr f[f(x)]=[a-{(a-x^(n))^(1//n)}^(n)]^(1//n)=(x^(n))^(1//n)=x`
` therefore f[f(x)]=x`
Hence, given statement is true.
148.

Let `A={x inR: x >=1/2} and B={x in R: x>=3/4}.` If `f:A->B` is defined as `f(x)=x^2-x=1,` then the solution set of the equation `f(x)=f^-1(x)` isA. {1}B. {2}C. {1//2}D. None of these

Answer» Correct Answer - A
Clearly, `f:A to B` is a bijection. This fact can also be observed from the graph of f(x) as it represents an arc of the parabola `y=x^(2)-x+1` lying on the right side of the vertex `(1//2, 3//4)`
We know that the curves `y=f(x) and y=f^(-1)(x)` are mirror images of each other in the line mirror y=x. This means that the two curves interest at points lying on the line y=x.
`therefore f(x)=f^(-1)(x)`
`therefore f(x)=x Rightarrow x^(2)-x+1 Rightarrow (x-1)^(2)=0 Rightarrow x=1`
149.

Let the function `f:R -(-b) to r-(-1)` is defined by `(x+a)/(x+b)=(y+a)/(y+b)`, thenA. f is one-one but not ontoB. f is onto but not one-oneC. f is both one-one and ontoD. None of these

Answer» Correct Answer - C
`Rightarrow (x+a)/(x+b)=(y+a)/(y+b) Rightarrow 1+(a-b)/(x+b)=1+(a-b)/(a+b) Rightarrow x=y`
So, if one-one
Let `y in R` such that f(x)=y. Then.
`f(x)=y Rightarrow (x+a)/(x+b)=y Rightarrow x=(a-by)/(y-1)`
`"Clearly", x in R -(-b)"for all "y in R -(-1).So,
Hence, f is both one-one and onto.
150.

Let `f(x)=(alphax)/((x+1)),x!=-1.`The for what value of `alpha`is `f(f(x))=x ?``sqrt(2)`(b) `-sqrt(2)`(c) `1`(d) `-1`A. `sqrt2`B. `-sqrt2`C. 1D. `-1`

Answer» Correct Answer - D
We have
`f(f(x))=x " " "for all "x ne -1`
`Rightarrow f((alpha x)/(x+1))=x "for all "xne -1`
`Rightarrow (alpha((alpha x)/(x+1)))/((alpha x)/(x+1)+1)=x" for all"xne-1`
`Rightarrow (alpha^(2)x)/(alphax+x+1)=x"for all"x ne-1`
`Rightarrow alpha^(2)x=(alpha+1)x^(2)+x"for all "x ne-1`
`Rightarrow (alpha+1)x^(2)+(1-alpha^(2))x=0"for all "xne-1`
`Rightarrow alpha+1=0 and 1-alpha^(2)=0`
`Rightarrow alpha=-1`