

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
101. |
Arguments are also called as ……….(a) variable(b) constant(c) function(d) parameters |
Answer» Arguments are also called as parameters |
|
102. |
Why do we define a function? |
Answer» ● Decomposing complex problems into simpler pieces. ● Reducing duplication of code. |
|
103. |
What is constant arguments and write its syntax? |
Answer» The constant variable can be declared using const keyword. The const keyword makes variable , value stable. The constant variable should be initialized while declaring. The const modifier enables to assign an initial value to a variable that cannot be changed later inside the body of the function. Syntax: (const ) |
|
104. |
What is the utility of built-in function help () ? |
Answer» Python’s built in function help ( ) is very useful. When it is provided with a program-name or a module-name or a function-name as an argument, it displays the documentation of the argument as help. It also displays the docstrings within its passed-argument’s definition. For example : help (math) will display the documentation related to module math. |
|
105. |
Write syntax for function that takes a string as input parameter and prints it on standard screen. |
Answer» def printme (str): “This prints a passed string into this function” print str return |
|
106. |
Describe trignometric functions ? |
||||||||||||||||||||||
Answer» Python includes following functions that perform trignometric calculations.
|
|||||||||||||||||||||||
107. |
Explain default argument. |
Answer» A default argument is an argument that assumes a default value, if a value is not provided in the function call. |
|
108. |
Write a program to illustrate “default argument”. |
Answer» #!/usr/bin/python When the above code is executed, it produces following result: Name: miki Age 50 Name:miki Age 35 |
|
109. |
Why we use return [expression] in Python? |
Answer» The statement return [expression] exits a function. |
|
110. |
“Python has certain functions that you can readily use without having to write any special code.” What type of functions are these ? |
Answer» The pre-defined functions that are always available for use are known as python’s built-in functions. For example : len (), type (), int (), raw-input () etc. |
|
111. |
Do Python supports built-in functions? |
Answer» Yes, Python gives you many built-in functions like print() etc. | |
112. |
Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof. |
Answer» Given as f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)} Co-domain of f = domain of g (gof)(1) = g(f(1)) = g(−1) = −2 (gof)(4) = g(f(4)) = g(−2) = −4 (gof)(9) = g(f(9)) = g(−3) = −6 (gof)(16) = g(f(16)) = g(4) = 8 Therefore, gof = {(1, −2), (4, −4), (9, −6), (16, 8)} Since, the co-domain of g is not same as the domain of f. Therefore, fog does not exist. |
|
113. |
If f: R → R be defined by f(x) = x3 − 3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1(5) |
Answer» Given function f: R → R be defined by f(x) = x3 − 3 Let us prove that f−1 exists Injectivity of f: Such that, x3 − 3 = y3 − 3 ⇒ x3 = y3 ⇒ x = y Therefore, f is one-one. Surjectivity of f: Such that f(x) = y ⇒ x3 – 3 = y ⇒ x3 = y + 3 ⇒ x = 3√(y + 3) in R ⇒ f is onto. Find f -1 Let f-1(x) = y ...(1) ⇒ x = f(y) ⇒ x = y3 − 3 ⇒ x + 3 = y3 ⇒ y = 3√(x + 3) = f-1(x) [from (1)] Therefore, f-1(x) = 3√(x + 3) Now, f-1(24) = 3√(24 + 3) = 3√27 = 3√33 = 3 And f-1(5) = 3√(5 + 3) = 3√8 = 3√23 = 2 |
|
114. |
Find f−1 if it exists: f: A → B, where (i) A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3x.(ii) A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2 |
Answer» (i) Given as A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3x. Here, the different elements of the domain have different images in the co-domain. Clearly, f -1 exists. (ii) Given as A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2 Here, the different elements of the domain have different images in the co-domain. ⇒ f is not a bijection. |
|
115. |
If [x]2 – 5[x] + 6 = 0, where [∙] denotes the greatest integer function, then A. x ∈ [3, 4] B. x ∈ (2, 3] C. x ∈ [2, 3] D. x ∈ [2, 4] |
Answer» Option : (D) [x]2-5[x]+6 = 0 ([x]-2)([x]-3) = 0 if [x] = 2 2≤x<3 And, if [x] = 3 3≤x<4 Therefore, x ∈ [2,4] |
|
116. |
If f(x) = sin [π2] x + sin [-π2] x, where [x] denotes the greatest integer less than or equal to x, then A. f (π/2) = 1 B. f(π) = 2 C. f (π/4) = - 1 D. None of these |
Answer» π2 ≈ 9.8596 [π2] = 9 and [-π2] = -10 Now, f(x) = sin[π2] x + sin[-π2]x = sin 9x - sin 10x Now, Checking values of f(x) at given points.. f(\(\frac{\pi}{2}\)) = sin 9(\(\frac{\pi}{2}\)) - sin 10(\(\frac{\pi}{2}\)) = 1-0 = 1 Option A is correct.. f(π) = sin 9π - sin 10π = 0 - 0 = 0 f(\(\frac{\pi}{4}\)) = sin 9(\(\frac{\pi}{4}\)) - sin 10(\(\frac{\pi}{4}\)) = \(\frac{1}{\sqrt 2}\) - 1 Option B & C are incorrect.. |
|
117. |
The domain of the function `f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x])`(where [] represents the greatest integer function isA. `[-2,1)uu[2.3)`B. `[-4,1)uu[2,3)`C. `94,1)uu[2,3)`D. `[2,1)uu[2,3)` |
Answer» Correct Answer - A We have `f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x])` We must have, `sgn(9-x^(2))gt0` `rArr" "9-x^(2)gt0` `rArr" "x^(2)-9lt0` `rArr" "(x-3)(x+3)lt0` `rArr" "-3ltxlt3` `"Also "[x]^(3)-4[x]ge0` `rArr" "[x]([x]^(2)-4)ge0` `rArr" "[x]([x]-2)([x]+2)le0` `rArr" "[x]ge2 or [x]` lies between -2 and 0, i.e., `[x]=-2,-1or0` Now `[x]ge2 rArrxge2` `[x]=-2rArr-2lexlt1` `[x]=-1 rArr-1lexlt0` `[x]=0 rArr0lexlt1`. Hence `[x]=-2,-1,0rArr -2 lexlt1`. Hence `D_(f)=[-2,1)cup[2,3)`. |
|
118. |
let `f:R->R` be given by `f(x)=[x]^2+[x+1]-3,` where `[x]` denotes the greatest integer less than or equal to `x.` Then, `f(x)` isA. many-one and ontoB. many-one and intoC. one-one and intoD. one-one and onto |
Answer» Correct Answer - B We have `f(x)=[x]^(2)+[x+1]-3` `Rightarrow f(x)=[x]^(2)+[x]+1-3 [therefore [x+n]=[x]+n, "where n "in Z]` `Rightarrow f(x)=[x]^(2)+[x]-2` `Rightarrow f(x)=([x]+2) ([x]-1)` Clearly, f(x)=0 for all `x in [1,2] uu [-2, -1]` So, f is a many-one function. Also, f(x) assumes only integral values. `therefore "Range of f" ne R`. Hence, f(x) is a many-one into function. |
|
119. |
If `f: Rvec(-1,1)`is defined by `f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x)`equals`sqrt((|x|)/(1-|x|))`(b) `-sgn(x)sqrt((|x|)/(1-|x|))``-sqrt(x/(1-x))`(d) none of theseA. `sqrt((x)/(1-|x|))`B. `-"sign"(x)sqrt((|x|)/(1-|x|))`C. `sqrt((x)/(1-x))`D. None of these |
Answer» Correct Answer - B Clearly, `f:R to (-1,1)` given by f(x)=`(-x|x|)/(1+x^(2))` is a bijection. Now, `fof^(-1)(x)=x` `Rightarrow f(f^(-1)(x))=x` `Rightarrow (f^(-1)(x)|f^(-1)(x)|)/(1+(f^(-1)(x))^(2))=x` `Rightarrow (-(f^(-1)(x)^(2))|)/(1+(f^(-1)(x))^(2))=x, if f^(-1)(x) ge 0` and `(f^(-1)(x))^(2)/(1+(f^(-1)(x))^(2))=x,"if",f^(-1)(x) lt 0` `Rightarrow f^(-1)(x)={{:(,sqrt((x)/(1+x)),"if"xle 0),(,-sqrt((x)/(1-x)),"if"x gt 0):}` `Rightarrow f^(-1)(x)={{:(,sqrt((|x|)/(1-|x|)),"if"x le 0),(,-sqrt((|x|)/(1-|x|)),"if"x gt 0):}` `Rightarrow f^(-1)(x)=-sgn(x) sqrt((|x|)/(1-|x|))` |
|
120. |
Let A = {x ∈R : x ≠ 0, -4 ≤ x ≤ 4} and f : A → R be defined by f(x) = |x|/x for x ∈ A. Then A isA. {1, -1} B. {x : 0 ≤ x ≤ 4} C. {1} D. {x : -4 ≤ x ≤ 0} |
Answer» Option : (A) Given, f(x) = |x|/x When -4≤x<0, f(x) = \(-\frac{x}{x}\) = -1 When 0<x≤4, f(x) = \(\frac{x}{x}\) = 1 R(f) = {-1, 1} |
|
121. |
Find f(x), if g(x) = x2 + x – 2 and (gof) (x) = 4x2 – 10x + 4 |
Answer» g(x) = x2 + x – 2 (gof) (x) = 4x2 – 10x + 4 = (2x – 3)2 + (2x – 3) – 2 = g(2x – 3) = g(f(x)) ∴ f(x) = 2x – 3 (gof) (x) = 4x2 – 10x + 4 = (-2x + 2)2 + (-2x + 2) – 2 = g(-2x + 2) = g(f(x)) ∴ f(x) = -2x + 2 |
|
122. |
Find the range of the following functions.f(x) = 1 + 2x + 4x |
Answer» f(x) = 1 + 2x + 4x Since, 2x > 0, 4x > 0 ∴ f(x) > 1 ∴ Range of f = (1, ∞) |
|
123. |
Find (fog) (x) and (gof) (x) :f(x) = ex , g(x) = log x |
Answer» f(x) = ex , g(x) = log x (fog) (x) = f(g(x)) = f(log x) = elog x = x |
|
124. |
Let `f:A to A and g:A to A` be two functions such that fog(x)=gof (x)=x for all `x in A` Statement-1:`{x in A: f(x)=g(x)}={x in A: f(x)=x}={x in A: g(x)=x}` Statement-2: `f:A to A` is bijection.A. 1B. 2C. 3D. 4 |
Answer» Correct Answer - A We have, `fog(x)=gof(x)=x"for all "x in A` `Rightarrow` f is invertible such that `g=f^(-1)` `Rightarrow` f is a bijection `Rightarrow [x in A: f(x)=g(x)]=[x in A: f(x)=x]={x in A: g(x)=x]` |
|
125. |
Statement-1: If `f:R to R and g:R to R ` be two functions such that `f(x)=x^(2) and g(x)=x^(3)`, then fog (x)=gof (x). Statement-2: The composition of functions is commulative.A. 1B. 2C. 3D. 4 |
Answer» Correct Answer - C We have `fog(x)=f(g(x))=f(x^(3))^(2)=x^(6)` `and gof(x)=g(f(x))=g(x^(2))=(x^(2))^(3)=x^(6)` `therefore fog(x)=gof(x)` So, statement-1 is true. If f(x`=x^(2) and g(x)=sin x` Then, `fog(x)=sin^(2)x and gof (x)=sin x^(2)` `therefore fog(x) ne gof (x)`. So, the composition of functions is not commutative. Hence, statement-2 is false. |
|
126. |
Find the domain of (i) f(x) = ln (x – 5)(ii) f(x) = log10 (x – 5x + 6) |
Answer» (i) f(x) = ln (x – 5) f is defined, when x – 5 > 0 ∴ x > 5 ∴ Domain of f = (5, ∞) (ii) f(x) = log10 (x2 – 5x + 6) x2 – 5x + 6 = (x – 2) (x – 3) f is defined, when (x – 2) (x – 3) > 0 ∴ x < 2 or x > 3 Solution of (x – a) (x – b) > 0 is x < a or x > b where a < b ∴ Domain of f = (-∞, 2) ∪ (3, ∞) |
|
127. |
Consider `f: Rvec[-5,oo)`given by `f(x)=9x^2+6x-5`. Show that `f`isinvertible with `f^(-1)(y)=((sqrt(y+6)-1)/3)dot` |
Answer» Correct Answer - `f^(-1) (y)= (sqrt(y+6)-1)/(3)` `y=(3x+1)^(2)-6 rArr x =(sqrt(y+6)-1)/(3) rArr f^(-1) (y)= (sqrt(y+6)-1)/(3)` |
|
128. |
If `fa n dg`are two functions defined on `N ,`such that `f(n)-{2n-1ifni se v e n2n+2ifni sod d`and `g(n)=f(n)+f(n+1)dot`Then range of `g`is`{m in N : m=`multiple of 4`}``{`set of even natural numbers`}``{m in N : m=4k+3,k`is a naturalnumber`{m in N : m=`multiple of 3 ormultiple of 4`}`A. { m `in` N : m = multiple of 4}B. { set of even natural numbers}C. {m `in` N : m = 4k + 3, k is a natural number}D. {m `in` N : m = multiple of 3 or multiple of 4} |
Answer» Correct Answer - C `g(n)=f(n)+f(n+1)` If n is even, `n+1` is odd. `therefore" "g(n)=2n-12(n+1)+2=4n+3` If n is odd, `n+1` is even. `therefore" "g(n)=2n+2+2(n+1)-1=4n+3.` |
|
129. |
Let R be the set of all real numbers let `f: R to R : f(x) = sin x ` and `g : R to R : g (x) =x^(2) .` Prove that g o f `ne ` f o g |
Answer» Let x be an arbitrary real number . Then (g o g ) (x) = g { f(x) } =g (sin x) `=(sin x)^(2)` (f o g) (x) = f { g (x) } =` f (x^(2)) =sin x^(2)` Clearly `(sin x)^(2) ne sin x^(2)` Hence g o g `ne ` g o f |
|
130. |
Which of the following statements are incorrect?If `f(x)`and `g(x)`are one-one then`f(x)+g(x)`is also one-oneIf `f(x)`and `g(x)`are one-one then`f(x)dotg(x)`is also one-oneIf `f(x)`is odd then it is necessarily one-one?`Ia n dI Ion l y`b. `I Ia n dI I Ion l y`c. `I I Ia n dIon l y`d. `I ,I Ia n dI I I`A. I and II onlyB. II and III onlyC. III and I onlyD. I, II and III |
Answer» Correct Answer - D I. `f(x)=x and g(x)=-x or f(x) = x and g(x)=-x^(3)` II. `f(x)=x and g(x)=x^(3)` III. F(x) = sin x which is odd but not one-one or `f(x)=x^(2) sin x` which is odd but many one |
|
131. |
If `g(x)=(4cos^4x-2cos2x-1/2cos4x-x^7)^(1/7)` then the value of `g(g(100))` is equal toA. `-1`B. `0`C. 1D. 100 |
Answer» Correct Answer - D We have `4cos^(4)x-2cos2x-(1)/(2)cos4x-x^(7)` `=4cos^(4)x-2(2cos^(2)x-1)-(1)/(2)(2cos^(2)2x-1)-x^(7)` `=4cos^(4)x-4cos^(2)x+2-(2cos^(2)x-1)^(2)+(1)/(2)-x^(7)` `=((3)/(2)-x^(7))` `rArr" "g(x)=((3)/(2)-x^(7))^((1)/(17))` `rArr" "f(g(x))((3)/(2)-(g(x))^(7))^((1)/(7))=((3)/(2)-((3)/(2)-x^(7)))^((1)/(7))=x` Hence `g(g(100))=100` |
|
132. |
If domain of `f(x)` is [1, 3], then the domain of `f(log_(2)(x^(2)+3x-2))` isA. `[-5,-4]uu[1,2]`B. `[-13,-2]uu[(3)/(5),5]`C. `[4,1]uu[2,7]`D. `[-3,2]` |
Answer» Correct Answer - A `1lelog_(e)(x^(2)+3x-2)le3` `rArr" "2le(x^(2)+3x-2)le8` `rArr" "-5lex le-4 and 1 le x le2` |
|
133. |
If `f(x)=x^2+x+3/4`and `g(x)=x^2+a x+1`be two real functions, then the range of `a`for which `g(f(x))=0`has no real solution is`(-oo,-2)`b. `(-2,2)`c. `(-2,oo)`d. `(2,oo)`A. `(-oo,-2)`B. `(-2,2)`C. `(-2,oo)`D. `(2,oo)` |
Answer» Correct Answer - C `f(x)=x^(2)+x+(3)/(4)=(x+(1)/(2))^(2)+(1)/(2)ge(1)/(2)` `g(f(x))=f(x)^(2)+af(x)+1` for g(f(x))=0, `a=-(f(x)+(1)/(f(x)))le-2` `therefore` If `a gt -2, g(f(x))=0` has no solutions |
|
134. |
Find gof and fog, if `f : R ->R`and `g : R ->R`are given by `f(x) = cos x`and `g(x)=3x^2`. Show that `gof!=fog`. |
Answer» Let x be an arbitrary real number . Then `(g o f) (x) =g {f (x)} =g (cos x) =3 (cos x)^(2) =3 cos ^(2) x.` `(f o g) (x) =f {g (x)}= f(3x^(2)) ` Taking x=0 , we have (g o f) (0) `=3 cos^(2) 0 =(3 xx 1) =3` `(f o g) (0) =cos (3 xx 0) =cos 0=1` `:. (g o f) (0) ne (f o g) (0)` Hence g o f` ne ` f og |
|
135. |
If the functions `f`and `g`are given by `f={(1, 2), (3, 5), (4, 1)}`and `g={(2, 3), (5, 1), (1, 3)}`, find range of `f`and `g`. Also, write down `fog`and `gof`as sets of orderedpairs. |
Answer» Here range `(f) ={1,2,5) " and dom " (g) ={1,2,5}` Clearly range `(f ) sube " dom " (g)` `:. (g o f)` is defined and dom `( g o f) = " dom " (f ) = {1,3,4}` Now `(g o f) (1) = g { f (1) } =g (2) =3:` `(g o f) (4) =g { f (4) } +g (1) =3` Hence (g o f) `= {(1,3),(3 ,1) (4,3)}` Again range (g) `={1,3}` and dom (f ) ={1,3,4} Clearly rangle (g) ` sube` dom (f ) `:. ` (f o g ) is defined and dom (f o g) = dom (g) = {1,2,5} Now (f o g) (1) `= f {g (1)} =f (3) =5,` ` (f o g) (2) = f { g (2)} =f (3) =5,` `(f o g) (5) =f { g (5) } =f (1) =2` Hence (f o g) ={(1,5) ,(2,5) ,(5,2)} |
|
136. |
Let `f:X->Y` be a function. Define a relation `R` in `X` given by `R={(a,b):f(a)=f(b)}.` Examine whether `R` is an equivalence relation or not. |
Answer» Here R satisfies the following properties : (i) Reflexivity Let `a in X.` Then `f(a) =f(a) rArr (a, a) in R` `:.` R is reflexive . (ii) Symmetry Let `(a,b ) in R` Then `(a,b) in R rArr f(a) =f(b) rArr f(b) =f(a) rArr (b,a) in R` `:.` R is symmetric. (iii) Transitivity Let `(a,b) in R " and " (b,c) in R .` Then `(a,b) in R , (b,c) in R` `rArr f(a) =f(b) " and " f(b) =f( c)` `rArr f(a) =f(c )` `rArr (a,c) in R` `:.` R is transitive. Hence R is an equivalence relation . |
|
137. |
Let `f(x0=|x-1|dot`Then`f(x^2)=(f(x))^2`(b) `f(x+y)=f(x)+f(y)``f(|x|)-|f(x)|`(d) none of theseA. `f(x^(2))={f(x)}^(2)`B. `f(x+y)=f(x)+f(y)`C. `f(|x|)=|f(x)|`D. None of the above |
Answer» Correct Answer - D Given, `f(x)=|x-1|` ` therefore f(x^(2))=|x^(2)-1|` `and {f(x)}^(2)=(x-1)^(2)` `rArr f(x^(2)) ne (f(x))^(2)`, hence (a) is false. Also, `f(x+y)=|x+y-1|` ` and f(x)=|x-1|`, `f(y)=|y-1|` `rArr f(x+y) ne f(x) +f(y),` hence (b) is false. `f(|x|)=||x|-1|` ` and |f(x) |=||x-1||=|x-1|` ` therefore f(|x|) ne |f(x)|,` hence (c) is false. |
|
138. |
If `f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)]` has the valueA. -1B. `(1)/(2)`C. -2D. None of these |
Answer» Correct Answer - D Given, `f(x)=cos(logx)` ` therefore f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)]` `=cos(logx)*cos(log y)-(1)/(2) [cos(logx-log y)+cos(logx+log y)]` `=cos(logx)*cos(log y)-(1)/(2)[(2 cos(logx)*cos(logy)]` `=cos (logx)*cos(logy)-cos(logx)*cos(logy)=0` |
|
139. |
The total number of onto functions from the set {1,2,3,4) to the set (3,4,7) isA. 18B. 36C. 64D. none of these |
Answer» Correct Answer - B If A and B are two sets consisting of m and n elements respectively such that `1 le n le m`, then number of onto functions from A to B is: `underset(r=1)overset(n)sum(-1)^(n-r) .^(n)C_(r) r^(m)` Here, m=4 and n=3 So, total number of onto functions. `underset(r=1)overset(3)sum(-1)^(3-r) .^(3)C_(r) r^(4)` `^(3)C_(1)-^(3)C_(2)xx2^(4)+^(3)C_(3)xx3^(4)=3-48+81=36` |
|
140. |
`f(x)=log_(x^(2)) 25 and g(x)=log_(x)5.` Then f(x)=g(x) holds for x belonging toA. RB. `{x:0 lt x lt oo, xne 1}`C. `phi`D. None of these |
Answer» Correct Answer - B We have `f(x)=log_(x^(2)) 25=log_(x^(2)) 5^(2)=(2)/(2)log_(x)5=log_(x)5=g(x)` for all x in their common domain. Now, `D_(1)="Domain of f"=R-{0,-1,1}` `and D_(2)="Domain of g"={x:x gt 0, x ne 1}` `therefore D_(1) nn D_(2)={x:x gt 0, x ne 1}` `"Thus", f(x)=g(x)"for all" x in {x:x gt 0, xne1}` |
|
141. |
`f:R to R" given by "f(x)=x+sqrtx^(2)`,isA. injectiveB. surjectiveC. bijectiveD. none of these |
Answer» Correct Answer - D We have `f(x)=x+sqrtx^(2)=x|x|={(,2x,xge0),(,x-x=0,xle0):}}` Clearly f is many-one into functions: |
|
142. |
If `g(f(x))=|sinx|` and `f(g(x))=(sin(sqrtx))^2` thenA. `f(x)=sin^(2)x, g(x)=sqrt(x)`B. `f(x)=sinx, g(x)=|x|`C. `f(x)=x^(2), g(x)=sin sqrt(x)`D. f and g cannot be determined |
Answer» Correct Answer - A Let `f(x)=sin^(2)x and g(x)=sqrt(x)` Now, `fog(x)=f[g(x)] = f(sqrt(x))=sin^(2) sqrt(x)` ` and gof(x)=g[f(x)]=g(sin^(2)x)=sqrt(sin^(2)x)=|sinx|` Again, let `f(x)=sinx, g(x) =|x|` `fog(x)=f[g(x)]=f(|x|)` `=sin|x| ne (sin sqrt (x))^(2)` When ` f(x) = x^(2), g(x)=sin sqrt(x)` `fog(x) = f[g(x)]=f(sin sqrt(x))=(sin sqrt(x))^(2)` `and (gof) (x) = g[f(x)]=g(x^(2))=sin sqrt(x^(2))` `=sin|x| ne |sinx|` |
|
143. |
If `g(f(x))=|sinx|` and `f(g(x))=(sin(sqrtx))^2` thenA. `f(x)=sin^(2)x, g(x)=sqrtx`B. `f(x)=sinx, g(x)=|x|`C. `f(x)=x^(2),g(x)=sinsqrtx`D. f and g cannot be determined |
Answer» Correct Answer - A We have, `f(g(x))=(sin sqrtx)^(2)and,g(f(x))=|sinx|=sqrt(sin^(2)x)` `Rightarrow g(x)=sqrtx and f(x)=(sin x)^(2)` |
|
144. |
The inverse of the function `f:R to {x in R: x lt 1}"given by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)),` isA. `(1)/(2)"log" (1+x)/(1-x)`B. `(1)/(2)"log" (2+x)/(2-x)`C. `(1)/(2)"log" (1-x)/(1+x)`D. None of these |
Answer» Correct Answer - A Clearly, f is a bijection and hence invertible. Let `f(x)=y "Clearly, "y lt 1` `"fof"^(-1)(x)=x" for all "xlt 1` `Rightarrow f(f^(-1)(x))=x` `(e^(f^(-1)(x))-e^(-f^(-1)(x)))/(e^(f^(-1)(x))+e^(-f^(-1)(x)))=(x)/(1)Rightarrow(2e^(f^(-1))(x))/(-2e^(-f^(-1))(x))=(x+1)/(x-1)` `e^(2f^(-1)(x))=(1+x)/(1-x) Rightarrow f^(-1)(x)=(1)/(2)"log"((1+x)/(1-x))` `"Hence", f^(-1):{x in R: x lt 1} to R` is given by `f^(-1)(x)=(1)/(2)"log"((1+x)/(1-x))` |
|
145. |
Let `A=(x in R: x ge 1)`. The inverse of the function of `f:A to A` given by `f(x)=2^(x^((x-1))`. IsA. `((1)/(2))^(x^((x-1)))`B. `(1)/(2){1+sqrt(1+4log_(2)x)}`C. `(1)/(2){1-sqrt(1+4log_(2)x)}`D. None of these |
Answer» Correct Answer - B It can be easily verified that `f:A to A` is a bijection. `"Let"f(x)=y"Then"` `f(x)=y` `Rightarrow 2^(x^((x-1)))=y``Rightarrow x(x-1)=log_(2)y` `Rightarrow x^(2)-x-log_(2) y=0` `x=(1pmsqrt(1+4log_(2)y))/(2)` `Rightarrow x=(1)/(2) [1+sqrt(1+4log_(2)y)]" "[therefore x lt 1]` `Rightarrow f^(-1)(y)=(1)/(2){1+sqrt(1+4log_(2)y)}` `Rightarrow f^(-1)(y)=(1)/(2){1+sqrt(1+4log_(2)y)}` x`f^(-1)(x)=(1)/(2) {1+sqrt(1+4log_(2) x)}` |
|
146. |
Let `f(x)=(1)/(1-x)."Then (fp (fof)) (x)"`A. x for all ` xin R`B. x for all `x in R-[1]`C. x for all `x imn R-[0,1]`D. None of these |
Answer» Correct Answer - C We have, `f(x)=(1)/(1-x)` Clearly, f(x) is defined for all `x ne 1`. For any `x(ne 1)` we have `"fof" (x)=f(f (x))=f((1)/(1-x))=(1)/((1-(1)/(1-x)))=(x-1)/(x)` It is evident from the defination of `f of (x)` is defined for all `x ne 0,1`. `[fo (fof)](x)=f(fof(x))=f((x-1)/(x))=(1)/((1-(x-1)/(x)))=x` `"Hence", [fo(fof)(x)=x" for all " x in R[(0,1)]` |
|
147. |
if `f(x)=(a-x^n)^(1/n),` where `a > 0 and n` is a positive integer, then `f(f(x))=`(i) `x^3`(ii) `x^2`(iii) `x`(iv) `-x` |
Answer» Correct Answer - 1 Given, `f(x)=(a-x^(n))^(1//n)` `rArr f[f(x)]=[a-{(a-x^(n))^(1//n)}^(n)]^(1//n)=(x^(n))^(1//n)=x` ` therefore f[f(x)]=x` Hence, given statement is true. |
|
148. |
Let `A={x inR: x >=1/2} and B={x in R: x>=3/4}.` If `f:A->B` is defined as `f(x)=x^2-x=1,` then the solution set of the equation `f(x)=f^-1(x)` isA. {1}B. {2}C. {1//2}D. None of these |
Answer» Correct Answer - A Clearly, `f:A to B` is a bijection. This fact can also be observed from the graph of f(x) as it represents an arc of the parabola `y=x^(2)-x+1` lying on the right side of the vertex `(1//2, 3//4)` We know that the curves `y=f(x) and y=f^(-1)(x)` are mirror images of each other in the line mirror y=x. This means that the two curves interest at points lying on the line y=x. `therefore f(x)=f^(-1)(x)` `therefore f(x)=x Rightarrow x^(2)-x+1 Rightarrow (x-1)^(2)=0 Rightarrow x=1` |
|
149. |
Let the function `f:R -(-b) to r-(-1)` is defined by `(x+a)/(x+b)=(y+a)/(y+b)`, thenA. f is one-one but not ontoB. f is onto but not one-oneC. f is both one-one and ontoD. None of these |
Answer» Correct Answer - C `Rightarrow (x+a)/(x+b)=(y+a)/(y+b) Rightarrow 1+(a-b)/(x+b)=1+(a-b)/(a+b) Rightarrow x=y` So, if one-one Let `y in R` such that f(x)=y. Then. `f(x)=y Rightarrow (x+a)/(x+b)=y Rightarrow x=(a-by)/(y-1)` `"Clearly", x in R -(-b)"for all "y in R -(-1).So, Hence, f is both one-one and onto. |
|
150. |
Let `f(x)=(alphax)/((x+1)),x!=-1.`The for what value of `alpha`is `f(f(x))=x ?``sqrt(2)`(b) `-sqrt(2)`(c) `1`(d) `-1`A. `sqrt2`B. `-sqrt2`C. 1D. `-1` |
Answer» Correct Answer - D We have `f(f(x))=x " " "for all "x ne -1` `Rightarrow f((alpha x)/(x+1))=x "for all "xne -1` `Rightarrow (alpha((alpha x)/(x+1)))/((alpha x)/(x+1)+1)=x" for all"xne-1` `Rightarrow (alpha^(2)x)/(alphax+x+1)=x"for all"x ne-1` `Rightarrow alpha^(2)x=(alpha+1)x^(2)+x"for all "x ne-1` `Rightarrow (alpha+1)x^(2)+(1-alpha^(2))x=0"for all "xne-1` `Rightarrow alpha+1=0 and 1-alpha^(2)=0` `Rightarrow alpha=-1` |
|