Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

9101.

Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be :f(x) = x3 (x – 1)2

Answer»

We have, 

f(x) = x3(x – 1)2 

Differentiate w.r.t x, we get, 

f ‘(x) = 3x2(x – 1)2 + 2x3(x – 1) 

= (x – 1)(3x2(x – 1) + 2x3

= (x – 1)(3x3 – 3x2 + 2x3

= (x – 1)(5x3 – 3x2

= x2 (x – 1)(5x – 3)

 For all maxima and minima, 

f ’(x) = 0 = x2(x – 1)(5x – 3) = 0

= x = 0, 1,\(\frac{3}{5}\)

At x = \(\frac{3}{5}\) 

f ’(x) changes from –ve to + ve

Since, 

x = \(\frac{3}{5}\) is a point of Minima

At x = 1 

f ‘(x) changes from –ve to + ve 

Since, 

x = 1 is point of maxima.

9102.

Find the points of local maxima or local minima, if any, of the functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: f(x) = 1/(x2 + 2)

Answer»

Given as f(x) = 1/(x2 + 2)

Differentiate the above with respect to x

f'(x) = -2x/(x2 + 2)2

For the local minima and local maxima, f'(x) = 0

-2x/(x2 + 2)2 = 0 

So, x = 0, now for the values close to x = 0 and to the left of 0, f'(x) > 0

Also for the values x = 0 and to the right of 0, f’(x) < 0

So, by first derivative test, x = 0 is a point of local maxima and local minima value of f (x) is 1/2.

9103.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively, (a, b &gt; 0)(A) A = \(\frac{a+b}2\)(B) G = \(\sqrt{ab}\) (C) H = \(\frac{2ab}{a+b}\) (D) A = GH 

Answer»

Correct option is (D) A = GH

9104.

Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be : g(x) = x3 – 3x

Answer»

We have, 

g (x) = x3 – 3x 

Differentiate w.r.t x then we get, 

g’ (x) = 3x2 – 3 

Now, 

g‘(x) =0 = 3x2 = 3 

⇒ x = ±1 

Again, differentiate g’(x) = 3x2 – 3 

g’’(x)= 6x 

g’’(1) = 6 > 0 

g’’( – 1) = – 6 > 0 

By second derivative test, x = 1 is a point of local minima and local minimum value of g at 

x =1 is g(1) = 13 – 3 

= 1 – 3 = – 2 

However, 

x = – 1 is a point of local maxima and local maxima value of g at 

x = – 1 is g( – 1) = ( – 1)3 – 3( – 1) 

= – 1 + 3 = 2 

Hence, 

The value of Minima is – 2 and Maxima is 2.

9105.

Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be : f(x) = (x – 5)4

Answer»

f(x) = (x – 5)4 

Differentiate w.r.t x 

f ’(x) = 4(x – 5)3 for local maxima and minima 

f ‘(x) = 0 

= 4(x – 5)3 = 0 

= x – 5 = 0 

x = 5 

f ‘(x) changes from –ve to + ve as passes through 5. 

So, 

x = 5 is the point of local minima 

Thus, local minima value is f(5) = 0

9106.

Find the points of local maxima or local minima and corresponding local maximum and local minimum values of the functions. Also, find the points of inflection, if any: f(x) = xex

Answer»

Given as f(x) = xex

f'(x) = ex + x ex = ex(x + 1)

f”(x) = ex(x + 1) + ex

= ex(x + 2)

For the maxima and minima,

f'(x) = 0

ex(x + 1) = 0

x = – 1

f’’ (– 1) = e – 1 = 1/e > 0

x = – 1 is point of local minima

Thus, local min = f (– 1) = – 1/e

9107.

If sun of first n terms of an A.P. is 2n2 + 7n, write its nth term

Answer»

Given,

Sn = 2n2 + 7n

We know that,

an = Sn − Sn-1

∴ an = 2n2 + 7n − {2(n − 1)2 + 7(n − 1)}

= 2n2 + 7n − {2(n2 − 2n + 1) + 7n − 7}

= 2n2 + 7n − {2n2 − 4n + 2 + 7n − 7}

= 4n + 5

9108.

If x = a + \(\frac{a}{r}\) + \(\frac{a}{r^2}\) + ⋯ + ∞, y = b − \(\frac{b}{r}\) + \(\frac{b}{r^2}\) − ⋯ + ∞ and z = c + \(\frac{c}{r^2}\) + \(\frac{c}{r^4}\) + ⋯ + ∞ \(\frac{x.y}{z}\) = \(\frac{ab}{c}\)

Answer»

Given series,

x = a + \(\frac{a}{r}\) + \(\frac{a}{r^2}\) + ⋯ + ∞ is in G.P with common ratio \(\frac{1}{r}\).

and series y = b − \(\frac{b}{r}\) + \(\frac{b}{r^2}\) − ⋯ + ∞ is in G.P with common ratio − \(\frac{1}{r}\).

and series z = c + \(\frac{c}{r^2}\) + \(\frac{c}{r^4}\) + ⋯ + ∞ is in G.P with common ratio − \(\frac{1}{r^2}\)

Sum of infinite terms of series

x = a + \(\frac{a}{r}\) + \(\frac{a}{r^2}\) + ⋯ + ∞ is x = \(\frac{a}{1-\frac{1}{r}}\)

Sum of infinite term of series

y = b − \(\frac{b}{r}\) + \(\frac{b}{r^2}\) − ⋯ + ∞ is y = \(\frac{b}{1-\big(\frac{1}{r}\big)}\) = \(\frac{b}{1+\frac{1}{r}}\)

Sum of infinite terms of series

z = c + \(\frac{c}{r^2}\) + \(\frac{c}{r^4}\) + ⋯ + ∞ is z = \(\frac{c}{1-\frac{1}{r^2}}\)

Now, LHS = \(\frac{xy}{z}\)

= \(\frac{\bigg\{\frac{a}{1 − \frac{1}{ r}} \bigg\} \bigg\{\frac{b}{1 + \frac{1}{ r}}\bigg\}}{\frac{c}{1-\frac{1}{r^2}}}\)

= \(\frac{\frac{ab}{\big(1-\frac{1}{r^2}\big)}}{\frac{c}{\big(1-\frac{1}{r^2}\big)}}\)

= \(\frac{ab}{c}\) = R.H.S

9109.

If the product of 3 consecutive terms of G.P. is 27, find the middle term.

Answer»

Let three terms of G.P. \(\frac{a}{r}\), a, ar

Given \(\frac{a}{r}\). a. ar = 27

⇒ a3 = 27 = (3)3

⇒ a = 3

middle term = 3

9110.

Find the 20th term of the series 2 x 4 + 4 x 6 + 6 x 8 +……….. + n terms.

Answer»

We have Tn = a + (n – 1)d 

20th term of series 

= [20th term of 2,4, 6….] x [20th term of 4, 6, 8….. ] 

= [2 + (20 -1)2] x [4+ (20-1)2

= (2+ 38)(4 + 38) 

= (40)(42) = 1680

9111.

If p, q, r are in G.P, and the equations\(p^2 + 2qx + r = 0\) and \(dx^2 + 2ex + f = 0\) have a common ront, then show that \(\frac{d}{p},\) \(\frac{e}{q},\) \(\frac{f}{r}\) are in A.P.

Answer»

It is given that p,q,r are in G.P.

∴ q2 + pr

Now, px2 + 2qx + r = 0

⇒ px2 + 2\(\sqrt{prx}\) + r = 0

\((\sqrt{px} +\sqrt{r})^2\) = 0

\((\sqrt{px} +\sqrt{r})\) = 0

⇒ x = \(-\sqrt{\frac{r}{p}}\)

It is given that the equations px2, + 2px + r = 0 and dx2 + 2ex + f − 0 have a common root and the equation px2, + 2qx + r = 0 has equal roots equal to −\(\sqrt{\frac{r}{p}}\)

∴ −\(\sqrt{\frac{r}{p}}\) is a root of the equation dx2 + 2ex + f = 0

\(d\frac{r}{p} − 2e\sqrt{\frac{r}{p}} + f\) = 0

\(\frac{d}{p} − 2e\sqrt{\frac{1}{pe}} + \frac{f}{r}\)             [Dividing though out by r]

\(\frac{d}{p} − \frac{2e}{q} +\frac{f}{r}\) = 0              [∴ q2 = pr]

⇒ 2\(\frac{e}{q}\) = \(\frac{d}{p}\) + \(\frac{f}{r}\)

\(\frac{d}{p}\), \(\frac{e}{q}\), \(\frac{f}{r}\) are in A. P

Hence proved

9112.

Show that if the positive number a, b, c are in A.P. Show that the numbers\(\frac{1}{\sqrt{b}+\sqrt{c}}\), \(\frac{1}{\sqrt{c}+\sqrt{a}}\), \(\frac{1}{\sqrt{a}+\sqrt{b}}\) will be in A.P.

Answer»

\(\frac{1}{\sqrt{b}+\sqrt{c}} \), \(\frac{1}{\sqrt{c}+\sqrt{a}} \), \(\frac{1}{\sqrt{a}+\sqrt{b}} \) will be in A. P.

If \(\frac{1}{\sqrt{c}+\sqrt{a}} \)\(\frac{1}{\sqrt{b}+\sqrt{c}} \) = \(\frac{1}{\sqrt{a}+\sqrt{b}} \)\(\frac{1}{\sqrt{c}+\sqrt{a}} \)

i.e if \(\frac{\sqrt{b}-\sqrt{a}}{(\sqrt{c}+\sqrt{a})(\sqrt{b}+\sqrt{c})} \) = \(\frac{\sqrt{c}-\sqrt{b}}{(\sqrt{a}+\sqrt{b})(\sqrt{c}+\sqrt{a})} \)

i.e if \(\frac{\sqrt{b}-\sqrt{a}}{(\sqrt{b}+\sqrt{c})} \) = \(\frac{\sqrt{c}-\sqrt{b}}{\sqrt{a}+\sqrt{b}} \)

i.e if b − a = c + b

i.e if 2b = a + c

i.e if a, b, c are in A.P.

Thus, a, b, c are in A.P. ⇒ \(\frac{1}{\sqrt{b}+\sqrt{c}} \), \(\frac{1}{\sqrt{c}+\sqrt{a}} \), \(\frac{1}{\sqrt{a}+\sqrt{b}} \) are in A. P.

9113.

What is the sum of all two-digit numbers which leave remainder 5 when they are divided by 7?

Answer»

The two digit natural numbers which leave a remainder 5, when divided by 7 are 12, 19, 26 ...., 89, 96. 

∴ 12, 19, 26, ...., 89, 96 is an A.P. whose first term a = 12 and common difference d = 7. 

Let the last or nth term be Tn

Then, Tn = a + (n – 1) d, where n is the number of terms in A.P. 

⇒ 96 = 12 + (n – 1) 7

⇒ 84 = (n – 1) 7 ⇒ n – 1 = 12 ⇒ n = 13

∴ Required Sum = \(\frac{n}{2}\) (a + l) = \(\frac{13}{2}\)(12 + 96) 

\(\frac{13}{2}\) × 108 

=13 × 54 = 702.

9114.

The sum of an infinite G.P. is 57 and the sum of the cubes of its term is 9747, find the G.P.

Answer»

Let the first term of C.P. be ′a′ and the common ratio be ′r′ where −1 < r < 1

The G.P. is a, ar, ar2

Therefore the sum of the infinite terms of the G.P. is \(\frac{a}{1−r}\) = 57 … (i)

If taking the cube of each terms the new G.P. is a3, a3r3, a3r6 , …

Therefore the sum of their cube is \(\frac{a^3}{1−r^3}\) = 9747 … (ii)

Taking the cube of the (i)

\(\frac{a^3}{1−r^3}\) = (57)3 ⇒ a3 = (57)3 (1 − r)3 … (iii)

Substituting the value of ′a′ in terms of r in (ii)

\(\frac{(57)^3 (1 − r)^3}{1 − r^3}\) = 9747

\(\frac{(1 − r)^3}{(1 − r)(1 − r^2 + r)}\) = \(\frac{9747}{ (57)^3}\)

\(\frac{(1 − r)^2}{(1 + r^2 + r)}\) = \(\frac{1}{19}\)

\(\frac{1 + r^2 − 2r}{1 + r^2 + r}\) = \(\frac{1}{19}\)

19(1 + r2 − 2r) = 1 + r2 + r

18 r2 − 39r + 18 = 0

6 r2 − 13r + 6 = 0

6 r2 − 9r − 4r + 6 = 0

(2r − 3)(3r − 2) = 0

Therefore, r =\(\frac{3}{2}\) or r = \(\frac{2}{3}\) since r < 1.

∴ r = \(\frac{2}{3}\)

Substitute in eq. (i),

\(\frac{a}{1 − \frac{2}{3}}\) = 57

⇒ 3a = 57

⇒ a = \(\frac{57}{3}\) = 19

Thus, the first term of the GP. is 19 and the common ratio is \(\frac{2}{3}\).

The G.P. is 19, \(\frac {38}{3}\), \(\frac {76}{6}\) and so on.

9115.

If log3 2, log3 (2x – 5), and log3 (2x – 7/2) are in A.P., the value of x is(a) 0 (b) \(\frac{1}{3}\)(c) 2 (d) 3

Answer»

Answer : (d) 3

log2, log3 (2x – 5) and log3 (2x\(\frac{7}{2}\)) are in A.P

⇒ 2 log3 (2x – 5) = log3 2 + log3 (2x – 7/2) (∵ a, b, c in A.P ⇒ 2b = a + c)

⇒ log3 (2x – 5)2 = log3[2(2x – 7/2)] (∵ a log b = log ba and log a + log b = log ab)

⇒ (2x – 5)2 = 2x+1 – 7

Let 2x = y. Then, 

(y – 5)2 = 2y – 7 

⇒ y2 – 10y + 25 = 2y – 7 

⇒ y2 – 12y + 32 = 0 

⇒ (y – 8) (y – 4) = 0 

⇒ y = 8 or 4 

⇒ 2x = 8 or 2x = 4 

2x = 8 

x = 3 (∵ 2x = 4 shall make the term log3(2x – 5) negative which is not possible)

9116.

If 4 + \(\frac{4+d}{5}\) + \(\frac{4+2d}{5^2}\) + .......∞ = 10, then d is equal to (a) 5 (b) 8 (c) 10 (d) 16

Answer»

(d) 16

Let 

S = 4 + \(\frac{4+d}{5}\) + \(\frac{4+2d}{5^2}\) + \(\frac{4+3d}{5^3}\)+ ........∞

∴ \(\frac{1}{5}\)S = \(\frac{4}{5}\) + \(\frac{4+d}{5^2}\) + \(\frac{4+2d}{5^3}\)+ ........∞

⇒ S - \(\frac{1}{5}\)S = 4 + \(\frac{d}{5}\)\(\bigg[1+\frac{1}{5}+\frac{1}{5^2+}.......\infty\bigg]\)

⇒ \(\frac{4}{5}\)S = 4 + \(\frac{d}{5}\)\(\frac{1}{1-\frac{1}{5}}\) ⇒ \(\frac{4}{5}\)S = 4 + \(\frac{d}{5}\) x \(\frac{5}{4}\)

⇒ \(\frac{4}{5}\)S = 4 + \(\frac{d}{4}\) ⇒ S = 5 + \(\frac{5d}{16}\)

Given S = 10

∴ 5 + \(\frac{5d}{16}\) = 10 ⇒ \(\frac{5d}{16}\) = 5 ⇒ d = 16.

9117.

If a, b, c are in A.P., show that \(\frac{1}{\sqrt{b} +\sqrt{c}}\), \(\frac{1}{\sqrt{c} +\sqrt{a}}\), \(\frac{1}{\sqrt{a} +\sqrt{b}}\) are in A.P.

Answer»

Given 

a, b, c are in A.P. ⇒ 2b = a + c

Now ,

  \(\frac{1}{\sqrt{b} +\sqrt{c}}\)\(\frac{1}{\sqrt{c} +\sqrt{a}}\)\(\frac{1}{\sqrt{a} +\sqrt{b}}\) are in A.P., if 

\(\frac{1}{\sqrt{c} +\sqrt{a}}\)\(\frac{1}{\sqrt{b} +\sqrt{c}}\) = \(\frac{1}{\sqrt{a} +\sqrt{b}}\)\(\frac{1}{\sqrt{c} +\sqrt{a}}\) 

⇒ \(\frac{2}{\sqrt{c} +\sqrt{a}}\) = \(\frac{1}{\sqrt{b} +\sqrt{c}}\)\(\frac{1}{\sqrt{a} +\sqrt{b}}\)

⇒ \(\frac{2}{\sqrt{c} +\sqrt{a}}\) = \(\frac{\sqrt{a} + \sqrt{b} + \sqrt{b} + \sqrt{c}}{(\sqrt{b} + \sqrt{c}) (\sqrt{a} + \sqrt{b})}\)

⇒ 2(√b + √c)(√a +√b) = (√c +√a)(√a +2√b +√c)

⇒ 2(√ab + b + √ac + √bc) = (√ac + 2√bc + c + a + 2√ba + √ac)

⇒ 2√ab +2b +2√ac +2√bc = 2√ac + 2√bc + c + a + 2√ba

⇒ 2b = a + c, which is true as a, b, c are in A.P.

⇒  \(\frac{1}{\sqrt{b} +\sqrt{c}}\)\(\frac{1}{\sqrt{c} +\sqrt{a}}\)\(\frac{1}{\sqrt{a} +\sqrt{b}}\) are in A.P

9118.

a1, a2, a3, a4, a5 are the first five terms of an A.P. such that a1 + a3 + a5 = –12 and a1.a2.a3 = 8. Find the first term and common difference.

Answer»

Let a1 = a3 – 2d, a2 = a3 – d, a3 = a3, a4 = a3 + d, a5 = a3 + 2d 

Then a1 + a3 + a5 = –12, (given

⇒ a3 – 2d + a3 + a3 + 2d = –12 

⇒ 3a3 = –12

⇒ a3 = – 4 

Also, a1 . a2 . a3 = 8 (given) 

⇒ a1 . a2 = –2 (∵ a3 = – 4) 

⇒ (a3 – 2d) (a3 – d) = –2 

⇒ (– 4 – 2d) (– 4 – d) = – 2 

⇒ (2 + d) (4 + d) = 1 

⇒ d2 + 6d + 9 = 0  ⇒ (d + 3)2 = 0 ⇒ d = – 3 

∴ a1 = a3 – 2d = – 4 –2 (–3) = 2.

9119.

If \(\frac{b+c-a}{a}\), \(\frac{c+a-b}{b}\), \(\frac{a+b-c}{c}\) are in A.P., prove that \(\frac{1}{a}\), \(\frac{1}{b}\), \(\frac{1}{c}\) are also in A.P.

Answer»

 \(\frac{b+c-a}{a}\)\(\frac{c+a-b}{b}\)\(\frac{a+b-c}{c}\)  are in A.P.

⇒ \(\frac{b+c-a}{a}\)+ 2, \(\frac{c+a-b}{b}\)+ 2, \(\frac{a+b-c}{c}\)+ 2 are in A.P. (Adding 2 to each term of A.P.)

⇒   \(\frac{b+c+a}{a}\)\(\frac{c+a+b}{b}\)\(\frac{a+b+c}{c}\)  are in A.P.

⇒  \(\frac{1}{a}\)\(\frac{1}{b}\),\(\frac{1}{c}\) are in A.P. (Dividing each term by a + b + c)

9120.

If a is A.M. of b and c and the two geometric means are G1 and G2, then prove that \(G^3_1\) + \(G^2_3\) = 2abc

Answer»

It is given that a is the A.M. ot b and c.

∴ a = \(\frac{b + c}{2}\) ⇒ b + c = 2a … (i)

Since G1 and G2 are two geometric means between b and c. Therefore, b, G1, G2 c is a G.P.

with common ratio r = \(\big(\frac{c}{b}\big)^\frac{1}{3}\)

∴ G1 = br = b\(\big(\frac{c}{b}\big)^\frac{1}{3}\)\(C^\frac{1}{3}b^\frac{1}{3}\) and

G2 = br2 = b\(\big(\frac{c}{b}\big)^\frac{2}{3}\) = \(b^\frac{1}{3}b^\frac{2}{3}\)

\(G_1^3\) = b2c and ⇒ \(G_2^3\) = bc2

\(G_1^3\) + \(G_2^3\) = b2c  bc2\(G_1^3\) + \(G_2^3\) = bc(b + c)

⇒ \(G_1^3\) + \(G_2^3\)  = 2abc

[using (i)]

Hence proved

9121.

Write the nth term of the series \(\frac{3}{7.11^2}\) + \(\frac{5}{8.12^2}\) + \(\frac{7}{9.13^2}\) + .....

Answer»

N term of 3, 5, 7,… is                 2n + 1

nth term of 7, 8, 9,… is               6 + n

nth term of 112 , 122 , 132, … is          (10 + n)2

nth term of the given series\(\frac{2n\,+\,1}{(6+n)(10+n)^2}\)

9122.

If a, b and c be the positive numbers, then prove that a2+b2+c2 is greater than ab + bc + ca.

Answer»

We know that, A.M.> G.M.

\(\frac{a\,+\,b}{2}\) > \(\sqrt{{a^2b^2}}\)

\(\frac{a^2\,+\,b^2}{2}\) > ab … (i)

Similarly \(\frac{b^2\,+\,c^2}{2}\) > \(\sqrt{{b^2c^2}}\)

\(\frac{b^2\,+\,c^2}{2}\) > bc ... (ii)

and \(\frac{c^2\,+\,a^2}{2}\) > \(\sqrt{{c^2a^2}}\)

\(\frac{c^2\,+\,a^2}{2}\) > ca  …. (iii)

On adding eqs. (i), and (iii) we get

\(\frac{a^2\,+\,b^2}{2}\) + \(\frac{b^2\,+\,c^2}{2}\) + \(\frac{c^2\,+\,a^2}{2}\) > ab + bc + ca

⇒ a2 + b2 + c2 > ab + bc + ca

Hence proved

9123.

If a, b, c are in G.P, then show that a2 + b2, ab + bc, b2 + c2 are also in G.P.

Answer»

Given that, a, b, c are in G.P

⇒ b2 = ac

⇒ b2 − ac = 0

⇒ (b2 − ac)2 = 0

⇒ b4 + a2c2 − 2b2ac = 0

⇒ a2b2 + b2c2 + 2b2ac = a2b2 + b2c2 + a2c2 + b4

(Adding a2b2 + b2c2 both sides)

⇒ (ab + bc)2 = (a+ b2)(b+ c2)

⇒ a+ b2, ab + bc, b+ c2 are in G.P.

Hence Proved

9124.

log2, log(2n − 1) and log (2n + 3) are in A.P. Show that n = \(\frac{log5}{log2}\)

Answer»

Given, log2, log(2n − 1) and log (2n + 3) are in A.P.

∴ log(2n + 3) − log(2n − 1) = log(2n − 1) - log2

⇒ log \(\big(\frac{2^n+3}{2^n−1}\big)\) = log \(\big(\frac{2^n-1}{2}\big)\)

Taking antilog, we get

\(\frac{2^n+3}{2^n−1}\) = \(\frac{2^n-1}{2}\)

⇒ 2n − 4.2n − 5 = 0

⇒ y2 − 4y − 5 = 0 where y = 2n

⇒ y − 5 and y = −1 (reject)

Hence, 2n = 5

or n log2 = log5 or n = \(\frac{log5}{log2}\)

9125.

If a, b, c are in A.P show that following are also in A.P.(i) \(\frac{1}{bc}\), \(\frac{1}{ca}\), \(\frac{1}{ab}\)(ii) b + c, c + a, a + b

Answer»

(i) Given a, b, c are in A.P

⇒ \(\frac{1}{bc}, \frac{1}{ca}, \frac{1}{ab}\) are also in A.P.

[On dividing each term by a, b, c]

⇒ \(\frac{1}{bc}, \frac{1}{ca}, \frac{1}{ab}\) are also in A.P.

(ii) b + c, c + a, a + b will be in A.P.

If (c + a) − (b + c) = (a + b) − (c + a)

i.e if a − b = b − c

i.e if 2b = a + c

i.e if a, b, c are in A.P

Thus, a, b, c are in A.P ⇒ b + c, c + a, a + b are in A.P.

since a, b, c are in A.P

we can write (a+c)=2b

Now 1/bc+1/ab=(a+c)/abc=2b/abc=2/ac

Hence 1/ab, 1/bc and 1/ca are in AP

Now (b+c)+(a+b)=2b+(c+a)=(c+a)+(c+a)=2(c+a)

So b+c,c+a and a+b are in AP
9126.

Find three different solutions of equations : 13x – 12y = 25

Answer»

Given equation is 13x – 12y = 25

Choice of  value of x Or ySimplification for y or xSolution
x = 013(0) – 12y = 25
⇒ y = - 25/12
(0, -25/12)
y = 013x – 12(0) = 25
⇒ y = 25/13
(25/13,0)
x = 113(1) – 12y = 25
⇒ -12y = 25 – 13
Y = 12/-12 = -1
(1,-1)
9127.

Find three different solutions of equations : x + y = 0

Answer»

Given equation is x + y = 0

Choice of  value of x Or ySimplification for y or xSolution
x = 00 + y = 0
⇒ y = 0
(0,0)
x = 11 + y = 0
⇒ y = -1
(1,-1)
y = 1x + 1 = 0
 ⇒ x = -1
(-1, 1)
9128.

Find three different solutions of equations : y = 6x

Answer»

Given equation is y = 6x ⇒ 6x – y = 0

Choice of  value of x Or ySimplification for y or xSolution
x = 06(0) – y = 0
⇒ y = 0
(0,0)
y = 06x – 0 = 0
⇒ x = 0
(0,0)
x = 16(1) – y = 0
⇒ y = 6
(1,6)
Y = 16x – 1 = 0
⇒ 6x = 1
⇒ x = 1/6
(1/6, 1)

9129.

Find three different solutions of equations : 10x + 11y = 21

Answer»

Given equation is 10x + 11y = 21

Choice of  value of x Or ySimplification for y or xSolution
x = 010(0) + 11y = 21
⇒ y = 21/11
(0,21/11)
y = 010x +11(0) = 21
⇒ x = 21/10
(21/11, 0)
x = 110(1) + 11y = 21
⇒ 11y = 21 – 10
⇒ y = 11/11 = 1
(1,1)
9130.

90% and 97% pure acid solutions are mixed to obtain 21 litres of 95% pure acid solution. Find the quantity of each type of acid to be mixed to form the mixture.

Answer»

Let x litres and y litres be respectively the amount of 90% and 97% pure acid solutions. 

As per the given condition 

0.90x + 0.97y = 21 × 0.95 

⇒ 0.90x + 0.97y = 21 × 0.95 ……….(i) 

And 

x + y = 21 

From (ii), substitute y = 21 – x in (i) to get 

0.90x + 0.97(21 – x) = 21 × 0.95 

⇒ 0.90x + 0.97× 21 – 0.97x = 21 × 0.95

⇒ 0.07x = 0.97× 21 – 21 × 0.95 

⇒ x = 21 ×0.02/0.07 = 6 

Now, putting x = 6 in (ii), we have 

6 + y = 21 ⇒ y = 15 

Hence, the request quantities are 6 litres and 15 litres.

9131.

What are the various purposes for which the forest trees are cut?

Answer»

Trees are cut down for many reasons.

Trees are cut to make space to build new houses and to clear land to grow crops for human consumption, grass for animals like domestic and milch animals so they can produce dairy foods. The trees are also cut down for production of paper and making of furniture. Sometimes trees are cut to make roads and buildings.

9132.

Which gas in the atmosphere is used by the trees and plants in photosynthesis?

Answer»

Carbon dioxide Carbon dioxide is absorbed during photosynthesis by plants.

9133.

Reforestation means a) Planting trees b) restocking of the destroyed forests by planting new trees. c) Cutting trees d) Burning trees

Answer»

b) restocking of the destroyed forests by planting new trees

9134.

To make two tonne of paper, how many trees are needed?

Answer»

17 fully grown trees are required to make tonnes of paper.

9135.

If x-a is a factor of x3 - 3x2a + 2a2x+b, then the value of b isA. 0 B. 2 C. 1 D. 3

Answer»

Let f (x) = x3 - 3x2a + 2a2x + b 

Since, x - a is a factor of f(x) 

So, 

f (a) = 0 

a3- 3 a2 (a) + 2a2 (a) + b = 0 

a3 - 3a3 + 2a3 + b= 0 

b = 0

9136.

If (3x-1)7 =a7x7+a6x6+a5x5+….a1x+a0, then a7+a6+a5+….+a1+a0= A. 0 B. 1 C. 128 D. 64

Answer»

We have, 

(3x – 1)7 = a7x7 + a6x6 + a5x5+….a1x + a

Putting x = 1, we get 

(3 x 1 – 1)7 = a7 + a6 + a5 + a4 + a3 + a2 + a1 + a

(2)7 = a7 + a6 + a5 + a4 + a3 + a2 + a1 + a0 

a7+a6+a5+….+a1+a0 = 128

9137.

 What is lens?

Answer»

A lens is portion of transparent refracting medium having at least one of its two surfaces spherical. One of the surfaces may also be plane.

9138.

If x2 + x + 1 is a factor of the polynomial 3x2 + 8x2 + 8x + 3 + 5k, then the value of k isA. 0 B. 2/5 C. 5/2 D. -1

Answer»

Let, p (x) = 3x3 + 8 (x)2 + 8x + 3 + 5k 

g (x) = x2 + x + 1 

Given g (x) is a factor of p (x) so remainder will be 0 

Remainder= -2 + 5k 

Therefore, 

- 2 + 5k = 0 

k = 2/5

9139.

If the temperature of a uniform rod is slightly increased by Δt, its moment of inertia I about a perpendicular bisector increases by(a) zero (b) αIΔt (c) 2αIΔt (d) 3αlΔt.

Answer»

The correct answer is (c) 

 (c) 2αIΔ

9140.

 Define ‘power of a lens’. 

Answer»

The power of a lens is the reciprocal of its focal length in metre. It may also be defined as the power of convergence or divergence of a lens. If f is the focal length of a lens in metre and P is the power of the lens. Then:

P = 1/f(in metre).

9141.

From the nature of the refracted rays, shown in diagram [(i) and (ii)] interpret the nature of the lens represented by the dotted line.

Answer»

(i) Since the incident parallel rays are diverging after refraction, the lens represented by the dotted line must be a concave lens. 

(ii) Since the rays, starting from the object point ‘O’, are being made to converge to another point ‘I’, the lens used must be a convex lens.

9142.

Convert the given temperature :185°C =_______°F

Answer»

c = (F – 32) × \(\frac{5}{9}\)

= (185 -32) × \(\frac{5}{9}\)

= 153 × \(\frac{5}{9}\)

185F° = 85°C

9143.

Convert the given temperature:0 K =_______°F

Answer»

C = k – 273 

= 0 – 273 

0 K  = – 273°C

9144.

Convert the given temperature :68°F =_______°F

Answer»

F =\(\frac {9c}{5}\) + 32

\(\frac{9 \times 45}{8}\)

= 81 +32

45°c = 113°F

9145.

Two identical rectangular strips, one of copper and the other of steel, are rivetted together to form a bimetallic strip (αcopper &gt; αsteel). On heating, this strip will(a) remain straight(b) bend with copper on convex side(c) bend with steel on convex side(d) get twisted.

Answer»

(b) bend with copper on convex side

9146.

What is the difference between a double convex and a bi-convex lens?

Answer»

In both cases the two surfaces are convex towards air. In case of double convex lens the two surfaces may have any values for the two radii of curvature of the two surfaces while in bi-convex lens the radii of curvature of the two surfaces, has the same value. Thus, every bi-convex lens is a double convex lens about every double convex may not be bi-convex. 

9147.

Convert the given temperature : – 30°C = _______°F

Answer»

K = C + 273 

= – 30 + 273

9148.

In which of the following pairs of temperature scales, the size of a degree is identical ?(a) mercury scale and ideal gas scale(b) Celsius scale and mercury scale(c) Celsius scale and ideal gas scale(d) ideal gas scale and absolute scale.

Answer»

The correct answer is: (c), (d)

(c) Celsius scale and ideal gas scale 
(d) ideal gas scale and absolute scale.

9149.

A body A is placed on a railway platform and an identical body B in a moving train. Which of the following energies of B are greater than those of A as seen from the ground ? (a) kinetic (b) total (c) mechanical (d) internal.

Answer»

The correct answer is (a), (b), (c)

(a) kinetic 

(b) total 

(c) mechanical

9150.

A spinning wheel A is brought in contact with another wheel E initially at rest. Because of the friction at contact, the second wheel also starts spinning. Which of the following energies of the wheel B increase ? (a) kinetic (b) total (c) mechanical (d) internal.

Answer»

The correct answer is all 

(a) kinetic 

(b) total 

(c) mechanical 

(d) internal.