Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

120801.

Find the values of the unknown angles x and y in the following figures :

Answer»

(i) In a triangle, exterior angle and adjacent internal angle make a linear pair.

x + 110° = 180°
⇒ x = 180° – 110° = 70°

In a triangle, sum of all angles is 180°.

∴ x + y + 60° = 180°
⇒ 70° + y + 60° = 180°
⇒ y + 130° = 180°
⇒ y = 180° – 130° = 50°
∴ x = 70°, y = 50°

(ii) In a triangle, exterior angle and adjacent internal angle make a linear pair.

x = 45° + 30° = 75°

∵ In a triangle, sum of all angles is 180°.

∴ y + 45° + 30° = 180°
⇒ y + 75° = 180°
∴ y = 180° – 75° = 105°
∴ x = 75°,y= 105°

(iii) In a triangle, exterior angle and adjacent internal angle make a linear pair.

∴ y + 80° = 180°
⇒ y = 180° – 80° = 100°

In a triangle, sum of all angles is 180°

∴ x + x + y = 180°
⇒ 2x + 100° = 180°
⇒ 2x = 180° – 100°
⇒ 2x = 80°
∴ x = 80°/2 = 40°
∴ x = 40°, y = 100°

(iv) Here x = 70° (vertically opposite angle)

∵ Sum of three angles of a triangle = 180°

∴ x + y + 40° = 180°
⇒ 70° + y + 40° = 180°
⇒ 110° + y = 180°
∴ y = 180° – 110° = 70°
∴ x = 70°,y = 70°

120802.

Find the unknown angle x for the following figures

Answer»

In any triangle exterior angle is always equal to the sum of two interior angles.

(i) x = 80° + 50° = 130°

(ii) x + 35° = 110°
⇒ x = 110° – 35° = 75°

(iii) x = 30° + 35° = 65°

(iv) x + 70° = 120°

⇒ x = 120° – 70° = 50°

(v) x + 35° = 65°

⇒ 65° – 35° = 30°

(vi) x = 55° + 40° = 95°

120803.

In right △ABC, the lengths of the legs are given. Find the length of the hypotenusea = 3 cm, b = 4 cm

Answer»

According to the Pythagoras theorem, we have

(Hypotenuse)2 = (Base)2 + (Height)2

Let c be hypotenuse and a and b be other two legs of right angled triangle

Then we have

c2 = a2 + b2

c2 = 32 + 42

c= 9 + 16 = 25

c = 5 cm

120804.

Which of the following can be the sides of a right triangle ?In the case of right-angled triangles, identify the right angles.(i) 2.5 cm, 6.5 cm, 6 cm(ii) 2 cm, 2 cm, 5 cm(iii) 1.5 cm, 2 cm, 2.5 cms

Answer»

(i) The greatest side is hypotenuse = 6.5 cm

(2.5)2 + (6)2 = (6.5)2

(According to pythagoras property)

6.25 + 36 = 42.25

42.25 = 42.25

∴ This is a right angled triangle. The given length can be the sides of a right angled triangle. The right angle between the lengths of 2.5 cm and 6 cm.

(ii) The greatest side is 5 cm

(2)2 + (2)2 = (5)2 (According to pythagoras property)

4 + 4 ≠ 25

∴ It is not the lengths of right angled triangle.

(iii) The greatest side is 2.5 cms.

According to pythagoras property

(2.5)2 = (1.5)2 + (2)2

6.25 = 2.25 + 4

6.25 = 6.25

It is a right angled trianges, the given lengths are sides of the right angled triangles.

∴ The right angle between the lengths of 1.5 cms and 2 cms.

120805.

Find the value of the unknown x in the following diagrams :

Answer»

(i) ∠A + ∠B + ∠C = 180°

x° + 50° + 60° = 180° 

(By Angle sum property of a triangle)

∠x + 110° = 180°

∠x = 180° – 110°

∠x = 70°

(ii) ∠P + ∠Q + ∠R = 180°

90° + 30° + ∠x = 180° 

(By Angle sum property of a triangle)

120° + ∠x = 180°

∠x = 180° – 120° = 60°

(iii) ∠X + ∠Y + ∠Z = 180°

30° + 110° + ∠x = 180° 

(By Angle sum property of a triangle)

140° + ∠x = 180°

∴ ∠x = 180° – 140° = 40°

(iv) 50° + x + x = 180°

50° + 2x = 180°

(By Angle sum property of a triangle)

2x = 180° – 50° = 130°

x = \(\frac{180^o}{2}\)

∴ ∠x = 60°

(v) x + x + x = 180°

(By Angle sum property of a triangle)

3x = 180°

x = \(\frac{180^o}{2}\)

∴ x = 60°

(vi) x + 2x + 90° = 180° 

(ByAngle sum property of a triangle)

3x = 180°

x = \(\frac{180^o}{3} = 60^o\)

120806.

The two legs of a right triangle are equal and the square of the hypotenuse is 50. Find the length of each leg. 

Answer»

According to the Pythagoras theorem, we have

(Hypotenuse)2 = (Base)2 + (Height)2

Given that the two legs of a right triangle are equal and the square of the hypotenuse, which is 50

Let the length of each leg of the given triangle be x units.

Using the Pythagoras theorem, we get

x+ x= (Hypotenuse)2

x+ x= 50

2x= 50

x2 = 25

x = 5

Hence, the length of each leg is 5 units.

120807.

In Fig., P is the point on the side BC. Complete each of the following statements using symbol ‘=’,’ > ‘or ‘< ‘so as to make it true:(i) AP… AB+ BP(ii) AP… AC + PC(iii) AP…. ½ (AB + AC + BC)

Answer»

(i) In △APB, AP < AB + BP because the sum of any two sides of a triangle is greater than the third side.

(ii) In △APC, AP < AC + PC because the sum of any two sides of a triangle is greater than the third side.

(iii) AP < ½ (AB + AC + BC)

In △ABP and △ACP, we can write as

AP < AB + BP… (i) (Because the sum of any two sides of a triangle is greater than the third side)

AP < AC + PC … (ii) (Because the sum of any two sides of a triangle is greater than the third side)

On adding (i) and (ii), we have:

AP + AP < AB + BP + AC + PC

2AP < AB + AC + BC (BC = BP + PC)

AP < (AB – AC + BC)

120808.

Find the value of the unknown exterior angle x in the following diagrams :

Answer» (i) ∠x = 50° + 70° = 120°

(∵ The exterior angle of the triangle is equal to the sum of its two interior opposite angles.)

(ii) ∠x = 45° + 65° = 110

(∵ The exterior angle of the triangle is equal to the sum of its two interior opposite angles.)

(iii) ∠x = 30° + 40° = 70°

(∵ The exterior angle of the triangle is equal to the sum of its two interior opposite angles.)

(iv) ∠x = 60° + 60° = 120°

(∵ The exterior angle of the triangle is equal to the sum of its two interior opposite angles.)

(v) ∠x = 50° + 50° = 100°

(∵ The exterior angle of a triangle is equal to the sum of its two interior opposite angles.)
120809.

Verity that the following numbers represent Pythagorean triplet:(i) 12, 35, 37(ii) 7, 24, 25(iii) 27, 36, 45(iv) 15, 36, 39

Answer»

(i) The condition for Pythagorean triplet is the square of the largest side is equal to the sum of the squares of the other two sides.

372 =1369

122 + 352 = 144 + 1225 = 1369

122 + 352 = 372

Yes, they represent a Pythagorean triplet.

(ii) The condition for Pythagorean triplet is the square of the largest side is equal to the sum of the squares of the other two sides.

25= 625

72 + 24= 49 + 576 = 625

72 + 242 = 252

Yes, they represent a Pythagorean triplet.

(iii) The condition for Pythagorean triplet is the square of the largest side is equal to the sum of the squares of the other two sides.

45= 2025

272 + 362 = 729 + 1296 = 2025

272 + 362 = 452

Yes, they represent a Pythagorean triplet.

(iv) The condition for Pythagorean triplet is the square of the largest side is equal to the sum of the squares of the other two sides.

392 = 1521

15+ 362 = 225 + 1296 = 1521

152 + 362 = 392

Yes, they represent a Pythagorean triplet.

120810.

In Fig, AD and CF are respectively perpendiculars to sides BC and AB of △ABC. If ∠FCD = 50°, find ∠BAD.

Answer»

We know that the sum of all angles of a triangle is 180°

Therefore, for the given △FCB, we have

∠FCB + ∠CBF + ∠BFC = 180°

50° + ∠CBF + 90° = 180°

∠CBF = 180° – 50° – 90° = 40°

Using the above steps for △ABD, we can say that:

∠ABD + ∠BDA + ∠BAD = 180°

∠BAD = 180° – 90° – 40° = 50°

120811.

P is a point in the interior of △ABC as shown in Fig.. State which of the following statements are true (T) or false (F):(i) AP + PB &lt; AB(ii) AP + PC &gt; AC(iii) BP + PC = BC

Answer»

(i) False

Explanation:

We know that the sum of any two sides of a triangle is greater than the third side, it is not true for the given triangle.

(ii) True

Explanation:

We know that the sum of any two sides of a triangle is greater than the third side, it is true for the given triangle.

(iii) False

Explanation:

We know that the sum of any two sides of a triangle is greater than the third side, it is not true for the given triangle.

120812.

Is it possible to have a triangle, in which(i) Two of the angles are right?(ii) Two of the angles are obtuse?(iii) Two of the angles are acute?(iv) Each angle is less than 60°?(v) Each angle is greater than 60°?(vi) Each angle is equal to 60°?

Answer»

(i) No, because if there are two right angles in a triangle, then the third angle of the triangle must be zero, which is not possible.

(ii) No, because as we know that the sum of all three angles of a triangle is always 180°. If there are two obtuse angles, then their sum will be more than 180°, which is not possible in case of a triangle.

(iii) Yes, in right triangles and acute triangles, it is possible to have two acute angles.

(iv) No, because if each angle is less than 60°, then the sum of all three angles will be less than 180°, which is not possible in case of a triangle.

120813.

In ΔABC, side BC has produced to D. If ∠ACD = 132° and ∠A = 54°, then ∠B =?(a) 48o (b) 78o (c) 68o (d) 58o

Answer»

(b) 78o

Because,

Consider the ΔABC,

We know that the exterior angle of a triangle is equal to the sum of its interior opposite angles.

∴ ∠ABC + ∠BAC = ∠ACD

= ∠ABC + 54o = 132o

= ∠ABC = 132o – 54o

= ∠ABC = 78o

120814.

O is a point in the exterior of △ABC. What symbol ‘&gt;’,’&lt;’ or ‘=’ will you see to complete the statement OA+OB….AB? Write two other similar statements and show that OA + OB + OC &gt; ½ (AB + BC +CA)

Answer»

We know that the sum of any two sides of a triangle is always greater than the third side, in △OAB, we have,

OA + OB > AB ….. (i)

OB + OC > BC …… (ii)

OA + OC > CA ….. (iii)

On adding equations (i), (ii) and (iii) we get:

OA + OB + OB + OC + OA + OC > AB + BC + CA

2(OA + OB + OC) > AB + BC + CA

OA + OB + OC > (AB + BC + CA)/2

Or

OA + OB + OC > ½ (AB + BC +CA)

Hence the proof.

120815.

In a ΔABC, if ∠A = 72° and ∠B = 63°, find ∠C.

Answer»

We know that the sum of the angles of a triangle is 180o.

∴ ∠A + ∠B + ∠C = 180o

= 72o+ 63o+ ∠C = 180o

= 135o + ∠C = 180o

= ∠C = 180o– 1350

= ∠C = 45o

Hence, the measures of ∠C is 45o.

120816.

In Fig., AC perpendicular to CE and C ∠A: ∠B: ∠C= 3: 2: 1. Find the value of ∠ECD.

Answer»

In the given triangle, the angles are in the ratio 3: 2: 1.

Let the angles of the triangle be 3x, 2x and x.

We know that sum of angles in a triangle is 180°

3x + 2x + x = 180°

6x = 180°

x = 30°

Also, ∠ACB + ∠ACE + ∠ECD = 180°

x + 90° + ∠ECD = 180° (∠ACE = 90°)

We know that x = 30°

Therefore

∠ECD = 60°

120817.

State Pythagoras theorem and its converse.

Answer»

The Pythagoras Theorem:

In a right triangle, the square of the hypotenuse is always equal to the sum of the squares of the other two sides.

Converse of the Pythagoras Theorem:

If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle, with the angle opposite to the first side as right angle.

120818.

Assertion (A) : The number of atoms of each element before and after reaction must be the same. Reason (R) : Law of conservation of mass is followed by every chemical reaction. A) Both ‘A’ and ‘R’ are correct and ‘A’ is supported by ‘R’. B) Both ‘A’ and ‘R’ are correct, but ‘A’ is not supported by ‘R’. C) ‘A’ is correct, but ‘R’ is incorrect. D) ‘A’ is incorrect, but ‘R’ is correct.

Answer»

A) Both ‘A’ and ‘R’ are correct and ‘A’ is supported by ‘R’.

120819.

In △ABC, ∠A = 100°, ∠B = 30°, ∠C = 50°. Name the smallest and the largest sides of the triangle.

Answer»

We know that the smallest side is always opposite to the smallest angle, which in this case is 30°, it is AC.

Also, because the largest side is always opposite to the largest angle, which in this case is 100°, it is BC.

120820.

A pipe is 3 m wide and 1.2 m deep. The water is flowing with a speed of 20 km/h. How much area will it irrigate in 20 min if 16 cm of water level is desired.

Answer»

Speed of the water = 20 km/h = 20000 meter/60 min

\(\therefore\) Length of water covered in 20 min

= speed x time

\(\frac{20000}{60}\times20=\frac{20000}3\) meter

Radius of base of the pipe is r = 3/2 meter

\(\therefore\) Volume of water flow = Area of cross section x Length of water flow

\(=\pi\times(3/2)^2\times\frac{20000}3\) = 15000 π m3

Standing under depth = 16 cm = \(\frac{16}{100}\) m

\(\therefore\) Irrigation area = \(\frac{Volume\,of\,water\,flow}{Standing\,water\,depth}\)

\(=\cfrac{15000\pi}{\frac{16}{100}}\)\(=\cfrac{15000\times3.14}{\frac{4}{25}}\) 

 = 294375 m2

= 29.43 hactares

120821.

Explain the Doppler effect in measurement of plasma temperature. 

Answer»

i. In thermonuclear fusion experiments, scientists come across extremely hot gases or plasma where the temperature is of the order of millions of degree celsius.

ii. At such high temperatures, molecules of glowing gas are moving away and towards the observer with high speeds.

iii. Due to Doppler effect, the wavelength λ of a particular spectral line is apparently changed.

iv. One edge of the line now corresponds to an apparently increased wavelength λ due to molecules moving directly towards the observer and the other edge to an apparently decreased wavelength λ2 due to molecules moving directly away from the observer.

v. The line is thus observed to be broadened. The breadth of the line can be measured by using a diffraction grating.

vi. Since ‘λ’ and ‘c’ are known, the velocity ‘v’ can be calculated using the formula, v = \(\sqrt{\cfrac{3RT}M}\), where ‘R’ is the molar gas constant, ‘T’ is absolute temperature and M is the mass of one mole.

Note: Doppler effect in light is symmetric, i.e., it depends only on the relative velocity of the source and the observer. The difference occurs because light does not require a medium for propagation and the speed of light is same for any observer whether the observer and/or the source is moving.

120822.

Explain the applications of Doppler effect of light in astronomical physics. 

Answer»

i. Doppler effect of light is used to determine the radial velocities of distant galaxies.

ii. It is used to measure the speed of rotation of the sun.

a. The east and west edges of the sun are photographed. Each contains absorption lines due to elements such as iron vaporised in the sun and also some absorption lines due to oxygen in the earth’s atmosphere.

b. When the two photographs are put together so that the oxygen lines coincide, the iron lines in the two photographs are displaced relative to each other.

c. In one case, the edge of the sun approaches the earth and in the other, the opposite edge recedes from the earth. Measurements show a rotational speed of nearly 2 km/s.

120823.

If the shift of wavelength of light emitted by a star is towards violet, then this shows that star is(A) stationary.(B) moving towards earth.(C) moving away from earth.(D) information is incomplete.

Answer»

Correct option is (B) moving towards earth

120824.

एक प्रत्यावर्ती धारा परिपथ में विभवान्तर का वंर्ग-माध्य-मूल मान 220 V है। विभव का शिखर मान क्या है?

Answer»

विभव का शिखर मान V0 = Vrms √2 = 200√2 वोल्ट.

120825.

किसी प्रत्यावर्ती धारा का वर्ग-माध्य-मूल मान 8 ऐम्पियर है। इसका शिखर मान ज्ञात कीजिए। 

Answer»

धारा का शिखर मान i0 = irms √2 = 8√2 ऐम्पियर

120826.

एक ऐमीटर का प्रत्यावर्ती परिपथ में पाठ्यांक 4 ऐम्पियर है। परिपथ में धारा का शिखर मान है-(i) 4 ऐम्पियर (ii) 8 ऐम्पियर (iii) 4√2 ऐम्पियर (iv) 2√2 ऐम्पियर

Answer»

(iii) 4√2 ऐम्पियर

120827.

q आवेश का एक आवेशित कण, vector v वेग से चलता हुआ एकसमान चुम्बकीय क्षेत्र B में, क्षेत्र की दिशा से 30° का कोण बनाता हुआ प्रवेश करता है। आवेश पर लगने वाले बल का परिमाण क्या होगा? 

Answer»

F = qvB sin θ = qvB sin 30°

F = qvB/2  [∵ sin 30° = 1/2]

120828.

धनात्मक z-दिशा में 3000 G की एक एकसमान चुम्बकीय क्षेत्र लगाया गया है। एक आयताकार लूप जिसकी भुजाएँ 10 cm एवं 5 cm और जिसमें 12 A धारा प्रवाहित हो रही है, इस क्षेत्र में रखा है। चित्र में दिखायी गई लूप की विभिन्न स्थितियों में इस पर लगने वाला बल-युग्म आघूर्ण क्या है? हर स्थिति में बल क्या है? स्थायी सन्तुलन वाली स्थिति कौन-सी है?

Answer»

दिया है, B = 3000 G = 0.3 T, a = 0.1 m, b = 0.05 m, i = 12 A 

कुंडली का क्षेत्रफल A = ab = 0.1 m x 0.05 m = 5 x 10-3 m (a), (b), (c), (d) प्रत्येक दशा में कुंडली के तल पर अभिलम्ब, चुम्बकीय क्षेत्र के लम्बवत् है; अतः प्रत्येक दशा में बल-युग्म का आघूर्ण τ = iAB sin 90° = 12 x 5 x 10-3 x 0.3 = 1.8 x 10-2 N-m 

प्रत्येक दशा में बल शून्य है, क्योंकि एकसमान चुम्बकीय क्षेत्र में रखे धारालूप पर बल-युग्म कार्य करता है परन्तु बल नहीं। 

(a) τ = 1.8 x 10-2 N-m ऋण y-अक्ष की दिशा में तथा बल शून्य है। 

(b) τ = 1.8 x 10-2 N-m ऋण y-अक्ष की दिशा में तथा बल शून्य है। 

(c) τ = 1.8 x 10-2 N-m ऋण x-अक्ष की दिशा में तथा बल शून्य है। 

(d) τ = 1.8 x 10-2 N-m तथा बल शून्य है। 

(e) तथा (f) दोनों स्थितियों में कुंडली के तल पर अभिलम्ब चुम्बकीय क्षेत्र के अनुदिश है; अत: t = iAB sin 0° = 0 

अत: इन दोनों दशाओं में बल-आघूर्ण व बल दोनों शून्य हैं। यह स्थितियाँ सन्तुलन की स्थायी अवस्था में दर्शाती हैं।

120829.

एक वर्गाकार कुंडली जिसकी प्रत्येक भुजा 10 cm है, में 20 फेरे हैं और उसमें 12 A विद्युत धारा प्रवाहित हो रही है। कुंडली ऊर्ध्वाधरतः लटकी हुई है और इसके तल पर खींचा गया अभिलम्ब 0.80 T के एकसमान चुम्बकीय क्षेत्र की दिशा से 30° का एक कोण बनाता है। कुंडली पर लगने वाले बल-युग्म आघूर्ण का परिमाण क्या है?

Answer»

बल-युग्म के आघूर्ण का परिमाण τ = NIAB sin θ 

यहाँ फेरों की संख्या N = 20; वर्गाकार कुण्डली के तल को क्षेत्रफल 

A = भुजा2 = (0.10 मी)2 = 0.01 मी 

कुण्डली में धारा I = 12 A; चुम्बकीय क्षेत्र B = 0.80 T तथा θ = 30° 

τ = 20 x 12 x 0.01 x 0.80 x sin 30° न्यूटन मीटर

= 240 x 0.008 x 1/(2) न्यूटन मीटर

= 0.960 न्यूटन मीटर।

120830.

एक 3.0 cm लम्बा तार जिसमें 10 A विद्युत धारा प्रवाहित हो रही है, एक परिनालिका के भीतर उसके अक्ष के लम्बवत् रखा है। परिनालिका के भीतर चुम्बकीय क्षेत्र का मानं 0.27 T है। तार पर लगने वाला चुम्बकीय बल क्या है? 

Answer»

परिनालिका के अन्दर उसकी अक्ष पर चुम्बकीय क्षेत्र B = 0.27 T (जिसकी दिशा अक्ष के अनुदिश ही होती है)। धारावाही तार अक्ष के लम्बवत् है, 

अतः θ = 90°; तार की लम्बाई L = 3.0 सेमी = 3.0 x 10-2 मी; तार में धारा I = 10 A; अतः तार पर लगने वाला चुम्बकीय बल 

F = ILB sin θ न्यूटन 

= 10 x (3.0 x 10-2) (0.27) x sin 90° न्यूटन 

= 81 x 10-2 x 1 न्यूटन 

= 8.1 x 10-2 न्यूटन

120831.

+3.2 x 10-19 कूलॉम तथा -3.2 x 10-19 कूलॉम के दो बिन्दु आवेश एक-दूसरे से 2.4 x 10-10 मीटर की दूरी पर रखे हैं। यह द्विध्रुव 4 x 105 वोल्ट/मीटर तीव्रता के समांगी वैद्युत-क्षेत्र में स्थित है। ज्ञात कीजिए। (i) वैद्युत-द्विध्रुव आघूर्ण, (ii) द्विध्रुव को साम्यावस्था से 180° घुमाने में आवश्यक कार्य तथा (iii) साम्यावस्था में वैद्युत-द्विध्रुव की स्थितिज ऊर्जा। 

Answer»

(i) p. = q x 2l = 3.2 x 10-19 कूलॉम x 2.4 x 10-10 मीटर = 7.68 x 10-29 कूलॉम-मीटर 

(ii) वैद्युत-द्विध्रुव को साम्यावस्था अर्थात् वैद्युत-क्षेत्र E की दिशा से θ कोण घुमाने में आवश्यक कार्य W = pE (1 – cos θ) यहाँ θ = 180° एवं p = 7.68 x 10-29 कूलॉम-मीटर 

E = 4.0 x 105 वोल्ट/मीटर। 

W = (7.68 x 10-29) x (4.0 x 105) x (1 – cos 180°) 

= (7.68 x 10-29) x (4.0 x 105) x 2 (∵ cos 180° = – 1) 

= 6.144 x 10-28 जूल 

(iii) वैद्युत-क्षेत्र E में द्विध्रुव को साम्यावस्था से से कोण पर रखे होने पर इसकी स्थितिज ऊर्जा U = – pE cos θ 

जहाँ θ = द्विध्रुव की अक्ष तथा इसकी साम्यावस्था अर्थात् वैद्युत-क्षेत्र की दिशा के बीच स्थित कोण साम्यावस्था में θ = 0°, 

अत: U0 = – pE (cos 0° = 1) 

यहाँ p = 7.68 x 10-29 कूलॉम-मीटर 

E = 4.0 x 105 वोल्ट/मीटर 

U0 = – (7.68 x 10-29) x (4.0 x 105) जूल = -3.072 x 10-23 जूल

120832.

Analogy1. kicking a ball: contact force :: falling of leaf: ________?2. Distance : metre :: speed : _______ ?3. circulatory motion :: a spinning top :: oscillatory motion : _______ ?

Answer»

1. Non contact force.

2. metre/second.

3. Swinging of a pendulum.

120833.

Fill in the blanks. 1. A bike moving on a straight road is an example of _______ motion. 2. Gravitational force is a _______ force. 3. Motion of a potter’s wheel is an example of _______ motion.4. When an object covers equal distances in equal interval of time, it is said to be in _______ motion

Answer»

1. Linear

2. Non Contact Force 

3. rotatory 

4. uniform

120834.

Match the following :1. a. Circular motion2. b. oscillatory motion3. c. linear motion4. d. rotatory motion5. e. linear and rotatory motion

Answer»

1. c 

2. d 

3. b 

4. a 

5. e

120835.

In Fig., a = 40°. The value of b is (a) 20° (b) 24° (c) 36° (d) 120°

Answer»

(a) 20o

Given, a = 40o

Then, 2a = 2 × 40 = 80o

From the figure, angel formed on the straight line are equal to 180o,

Then, 5b + 2a = 180o

5b + 80o = 180o

5b= 180o – 80o

5b = 100o

b = 100/5

b = 20o

120836.

Oscillatory motion among the following is a. Rotation of the earth about its axis b. Revolution of the moon about the earth c. To and fro movement of a vibrating string d. All of these.

Answer»

c. To and fro movement of a vibrating string

120837.

In the given figure, it is given that AB = AC; ∠BAC = 36°; ∠ADB = 45° and ∠AEC = 40°. Find ∠DAB

Answer»

Given that AB = AC; ∠BAC = 36°, 

∠ADB = 45°, ∠AEC = 40°

From the figure 

∠ABD + ∠ABC = 180° 

∠ABD = 180° – 72° = 1086 

In ΔABD 

∠DAB + ∠ABD + ∠D = 180° 

∠DAB + 108° + 45° = 180° 

∠DAB = 180° – 153° = 27°

120838.

Fill in the blanks. 1. ______ are push or pull by an animate or inanimate agency. 2. Application of force in an object results in motion from a state of ______ 3. Fast oscillations are referred to as _____4. Motion repeated in equal intervals of time is called _______ 5. ________ are automatic machines. 6. The term Robots comes from a czech word _______ 7. _______ is die study of robots in science.

Answer»

1. Forces 

2. rest

3. vibrations

4. periodic motion 

5. Robots 

6. robota 

7. Robotics

120839.

Identify the Periodic motion among the following : (a) a horse running in a race(b) revolution of the moon around the earth (c) a coconut falling from a tree (d) paper flight moving

Answer»

(b) revolution of the moon around the earth

120840.

Rotation of the earth is a periodic motion. Justify.

Answer»

Rotation of the earth is a periodic motion because it takes equal interval of time for all rotations.

120841.

List out the types of motion on the basis of speed.

Answer»

There are two types: 

1. Uniform motion, 

2. Non-uniform motion.

120842.

What is the path of the housefly buzzing around the room? (a) Periodic motion (b) Non- Periodic motion (c) circular motion (d) None of the above

Answer»

(b) Non- Periodic motion

120843.

What is motion? Classify different types of motion with examples.

Answer»

Motion :

Change of position of an object with respect to time is known as motion.

1. Based on Path : 1. Linear motion. – Ex.: Parade of the soldiers. 

2. Curvilinear motion. – Ex.: Paper flight moving. 

3. Circular motion.Ex.: Swirling stone tied to the rope. 

4. Rotatory motion.Ex.: Rotating top. 

5. Oscillatory motion.Ex.: Clock pendulum. 

6. Zigzag (irregular) motion. Ex.: Motion of a bee.

2. Based on Duration : 

1. Periodic motion. Ex.: Motion of a bob of simple Pendulum.

2. Non periodic motion.Ex.: Swaying of the branches of a tree.

3. Based on Speed: 

1. Uniform motion.Ex.: Elour hand of a clock. 

2. Non – uniform motion. – Ex.: Motion of a train, as it leaves a station.

120844.

Name different types of motion based on the path.

Answer»

1. Linear motion; 

2. Curvilinear; 

3. Circular motion; 

4. Rotatory motion; 

5. Oscillatory motion 

6. Irregular motion.

120845.

The value of the angle, in radian subtended at the centre of the circle of radius 100 metres by an arc of length 25π metres is:(A) π/4(B) π/3(C) π/6(D) 3π/4

Answer»

Answer is (A) π/4

120846.

Classify the following motions based on duration and speed. (a) Coconut falls to the ground (b) A cart pulled by a bullock (c) Train journey (d) A bouncing ball (e) Revolution of Moon around the earth

Answer»

(a) Non-periodic Motion 

(b) Non-periodic Motion 

(c) Non-uniform Motion

(d) Periodic Motion 

(e) Uniform Motion

120847.

Find the angle in radians subtended at the centre of a circle of radius 5 cm by an arc of the circle whose length is 12 cm.

Answer»

We know that:

θ (radian) = \(\frac { arc\; length }{ radius }\)

We have, radius = 5 cm

and arc length = 12 cm

θ = \(\frac { 12 }{ 5 }\)

120848.

In the given figure, O is the centre of the circle. Then (∠BAD + ∠BCD) is equal to:(A) 2π radian(B) π/2 radian(C) π/4 radian(D) π radian

Answer»

Answer is (D) π radian

120849.

For which value of x, matrix \(\begin{bmatrix}1&amp;-2&amp;3\\[0.3em]1&amp;2&amp;1\\[0.3em]x&amp;2&amp;-3\end{bmatrix}\) is singular ?

Answer»

Then   \(\begin{bmatrix}1&-2&3\\[0.3em]1&2&1\\[0.3em]x&2&-3\end{bmatrix}\) = 0

⇒ 1 (- 6 – 2) + 2 (-3 – x) + 3(2 – 2x) = 0

⇒ -8 – 6 – 2x + 6 – 6x = 0

⇒ -8 = 8

⇒ x = 8/-8 = -1

Hence, x = -1

120850.

What is Down’s syndrome? Give its symptoms and cause. Why is it that the chances of having a child with Down’s syndrome increases if the age of the mother exceeds forty years?

Answer»

Down’s syndrome is a human genetic disorder caused due to trisomy of chromosome no. 21. Such individuals are aneuploid and have 47 chromosomes (2n + 1). The symptoms include mental retardation, growth abnormalities, constantly open mouth, dwarfness etc. The reason for the disorder is the non-disjunction (failure to separate) of homologous chromosome of pair 21 during meiotic division in the ovum. The chances of having a child with Down’s syndrome increase with the age of the mother (+40) because ova are present in females. Since their birth and therefore older cells are more prone to chromosomal non-disjunction because of various physico-chemical exposures during the mother’s life-time.