Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

If a3 = 1 + 7, 33 = 1 + 7 + b and 43 = 1 + 7 + c, where a, b and c are different positive integers, then the value of a + b + c is1. 582. 683. 774. 79

Answer» Correct Answer - Option 3 : 77

Given:

a3 = 1 + 7      ----(i)

33 = 1 + 7 + b      ----(ii)

43 = 1 + 7 + c      ----(iii)

Calculations:

Solving the equation (i)

⇒ a3 = 1 + 7

⇒ a3 = 8

⇒ a = 2

Solving the equation (ii)

⇒ 33 = 1 + 7 + b

⇒ 27 = 8 + b

⇒ b = 19

Solving the equation (iii)

⇒ 43 = 1 + 7 + c

⇒ 64 = 8 + c

⇒ c = 56

Using the values of a, b, and c,

⇒ a + b + c = 2 + 19 + 56

⇒ a + b + c = 77

∴ The value of a + b + c is 77

152.

The value of \(\frac{{4.35 \times 4.35 \times 4.35 + 3.25 \times 3.25 \times 3.25}}{{43.5 \times 43.5 + 32.5 \times 32.5 - 43.5 \times 32.5}}\) is:1. 0.762. 0.00763. 7.64. 0.076

Answer» Correct Answer - Option 4 : 0.076

Formula used:

a3 + b3 = (a + b) × (a2 + b2 – a × b)

Calculation:

[(4.35)3 + (3.25)3]/[(43.5)2 + (32.5)2 – 43.5 × 32.5]

⇒ [(4.35 + 3.25) × {(4.35)2 +(3.25)2 - (4.35 × 3.25)}]/[100 × {(4.35)2 + (3.25)2 – (4.35 × 3.25)}]

⇒ [4.35 + 3.25]/100

⇒ 7.6/100

⇒ 0.076

∴ The answer is 0.076 

153.

If a2 + b2 = 14, and a + b = 4. Find a3 - b31. 14√32. 12√23. 30√34. 21√2

Answer» Correct Answer - Option 3 : 30√3

Given:

a2 + b2 = 14

a + b = 4

Formula Used:

(a + b)2 = a2 + b2 + 2ab

(a - b)2 = a2 + b2 - 2ab

a3 - b3 = (a - b)(a2 + b2 + ab)

Calculation:

(4)2 = 14 + 2ab

⇒ 16 - 14 = 2ab

⇒ ab = 2/2 = 1

(a - b)2 = 14 - 2 × 1

⇒ (a - b) = 2√3

a3 - b3 = (2√3)(14 + 1)

⇒ a3 - b3 = 30√3

∴ The value of  a3 - b3 is 30√3.

154.

If x + y = 25 and xy = 35, then (1/x) + (1/y) =?1. \(\sqrt{5\over7}\)2. 7/53. 5/74. \(\sqrt{7\over5}\)

Answer» Correct Answer - Option 3 : 5/7

Given:

x + y = 25 and xy = 35

We have to find the value of 1/x + 1/y

Calculation:

1/x + 1/y

⇒ (y + x)/xy     [Using the given values]

⇒ 25/35

⇒ 5/7

∴ Required value of (1/x + 1/y) is (5/7).

155.

The value of \((.98)^3 + (.02)^3 + 3 \times .98 \times .02 - 1\) is

Answer» Correct Answer - Option 1 : 0

Identity used:

(a + b)3 = a3 + b3 + 3ab(a + b)  

Calculation:

⇒ (.98 + .02)3 = (.98)3 + (.02)3 + 3 × .98 × .02(.98 + .02)

⇒ 1 = (.98)3 + (.02)3 + 3 × .98 × .02 

⇒ (.98)3 + (.02)3 + 3 × .98 × .02 - 1 = 0

∴ Solution is 0.

156.

If a + 3b = 12 and ab = 9, then the value of (a - 3b) is:1. 92. 43. 64. 8

Answer» Correct Answer - Option 3 : 6

Given:

a + 3b = 12

ab = 9

Calculation:

∵ a + 3b = 12

⇒ a = 12 - 3b      ------(1)

∵ ab = 9

Putting the value of 'a' from (1);

⇒ (12 - 3b) × b = 9

⇒ 12b - 3b2 = 9

⇒ 4b - b2 = 3

⇒ b2 - 4b + 3 = 0

⇒ b2 - b - 3b + 3 = 0

⇒ b(b - 1) - 3(b - 1) = 0 

⇒ (b - 1) (b - 3) = 0 

∴ b - 1 = 0

⇒ b = 1

∴ b - 3 = 0

⇒ b = 3

∴ When b = 3 then a = 3

a - 3b = 3 - (3 × 3) = 3 - 9 = (-6)

When b = 1 then a = 9

a - 3b = 9 - (3 × 1) = 9 - 3 = 6

157.

Solve: (x + 2)2 = ?1. x2 + 8x2. x + 4 + 4x23. x + 44. x2 + 4x + 4

Answer» Correct Answer - Option 4 : x2 + 4x + 4

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

⇒ (x + 2)2 = ?

⇒ x2 + 4 + 2 × x × 2 = ?

⇒ x2 + 4 + 4x = ?

∴ The value of ? is x2 + 4x + 4

158.

56 students are divided into three groups A, B, and C. Group B consists of twice the number of students in group C. Group A has half the number of students than group C. How many students are there in group C?1. 82. 123. 164. 28

Answer» Correct Answer - Option 3 : 16

Given:

Total student in group A, B, and C = 56

B consists of twice the number of students in group C

Group A has half the number of students than group C

Calculation:

Let group C have x candidates

B consists of twice the number of students in group C

⇒ B = 2x

A has half the number of students than group C

⇒ A = x/2

According to the question:

x + 2x + x/2 = 56

⇒ x = 112/7 = 16

Number of student in group C = x = 16 students

Check:

Number of student in group C = x = 16 students

B = 2x or B = 16 × 2 = 32 students
A = x/2 or A = 16/2 = 8
∴ Total students = 16 + 32 + 8 = 56
Hence above solution is correct.
159.

If  \({\rm{x}} + \frac{1}{{\rm{x}}} = 5\), then find the value of \(\frac{{{{\left( {{\rm{x}} - {{\rm{x}}^{ - 1}}} \right)}^2}}}{{5{\rm{x}} - {{\rm{x}}^2} + 6}}\)1. 42. 53. 64. 3

Answer» Correct Answer - Option 4 : 3

Given:

\({\rm{x}} + \frac{1}{{\rm{x}}} = 5\)

Formula used:

\({\rm{a}} - \frac{1}{{\rm{a}}} = {\rm{\;}}\sqrt {{{\left( {{\rm{a}} + \frac{1}{{\rm{a}}}} \right)}^2} - 4}\)

Calculation:

\({\rm{x}} - \frac{1}{{\rm{x}}} = {\rm{\;}}\sqrt {{{\left( {{\rm{x}} + \frac{1}{{\rm{x}}}} \right)}^2} - 4}\)

⇒ \({\rm{x}} - \frac{1}{{\rm{x}}} = {\rm{\;}}\sqrt {{25} - 4}\)

⇒ \({\rm{x}} - \frac{1}{{\rm{x}}} = {\rm{\;}}\sqrt {{21}}\)

\({\rm{x}} + \frac{1}{{\rm{x}}} = 5\)

⇒ x2 + 1 = 5x

⇒ 5x – x2 = 1

\(\frac{{{{\left( {{\rm{x}} - {{\rm{x}}^{ - 1}}} \right)}^2}}}{{5{\rm{x}} - {{\rm{x}}^2} + 6}}\)

⇒ \(\frac{{{{\left( {{\rm{x}} - \frac{1}{{\rm{x}}}} \right)}^2}}}{{5{\rm{x}} - {{\rm{x}}^2} + 6}}\)

⇒ {21/(1 + 6)}

⇒ 21/7

⇒ 3

∴ Required value is 3

160.

If a + b = 19 and ab = 88 find the value of a3 + b3.1. 14832. 13563. 18464. 1843

Answer» Correct Answer - Option 4 : 1843

Given:

a + b = 19

ab = 88

Formula Used:

a3 + b3  = (a + b)3 – 3ab(a + b)

Calculation:

substituting the given values in the formula 

a3 + b3  = (19)3 – 3 × 88(19) 

a3 + b= 6859 - 5016 = 1843

∴ The value of a3 + bis 1843

161.

If x2 - 7x = -12, What is the vale of x?1. -3 or -42. 3 or 43. 3 or -44. Cannot be determined

Answer» Correct Answer - Option 2 : 3 or 4

Given:

If x2 – 7x = -12, then find the value of x?

Calculation:

⇒ x2 – 7x + 12 = 0

⇒ x2 – 3x – 4x + 12 = 0

⇒ x( x – 3 ) – 4( x – 3 ) = 0

⇒ ( x – 3 )( x – 4 ) = 0

x = 3,4

162.

यदि `a^(2)+b^(2)=5ab` है तो `(a^(2))/(b^(2))+(b^(2))/(a^(2))` का मान ज्ञात करें।A. 32B. 16C. 23D. -23

Answer» Correct Answer - C
`a^(2)+b^(2)=5ab`
`implies (a^(2))/(ab)+(b^(2))/(ab)=5`
`implies a/b+b/a=5`
Squaring both sides
`(a/b)^(2)+(b/a)^(2)+2xx a/bxx b/a=25`
`(a^(2))/(b^(2))+(b^(2))/(a^(2))=25-2=23`
163.

A sum of Rs. 8,200 was divided among A, B and C in such a way that A has Rs. 500 more than B, and C has Rs. 300 more than A. How much was A's share (in Rs.)?1. 2,8002. 2,3003. 3,1004. 2,000

Answer» Correct Answer - Option 1 : 2,800

Given:

Total money = Rs. 8,200

A's share = Rs. 500 more than B

C's share = Rs. 300 more than A

Calculations:

Let share of A, B and C are A, B and C respectively.

A = 500 + B

⇒ B = A - 500

C = 300 + A

⇒ C = 300 + A

A + B + C = 8,200

⇒ A + A - 500 + 300 + A = 8,200

⇒ 3A - 200 = 8,200

⇒ 3A = 8,400

⇒ A = 2,800

∴ A's share was Rs. 2,800

164.

If 3X + Y = 81 and 81X – Y = 3, then find the value of X is?1. 782. 13. 814. 84

Answer» Correct Answer - Option 2 : 1

Calculation:

3X + Y = 81      ----(i)

81X – Y = 3      ----(ii)

Adding equation (i) and (ii)

84X = 84

⇒ X = 1

∴ The value of X is 1

165.

The number of solutions for the pair of linear equations x + y = 0 and 2x + 2y = 0 is ______.

Answer» Correct Answer - Option 4 : Infinite

Given :

The pair of linear equation x + y = 0 and 2x + 2y = 0

Calculation :

x + y = 0      ----(1)equation

2x + 2y =0      ----(2)equation

Dividing equation (2) by 2, we get

⇒ x + y = 0 

∴ The two lines represent coincident lines So they have infinitely many solutions.

166.

The quadratic equation \(2\sqrt 2 {x^2} + 4x + \sqrt 2 = 0\), has ______1. real and different2. equal roots3. imaginary roots4. 3 roots

Answer» Correct Answer - Option 2 : equal roots

Given:

\(2\sqrt 2 {x^2} + 4x + \sqrt 2 = 0\)

Formula used :

D = b2 - 4ac   

Calculation:

D = 42 - 4 × 2√2 × √2 = 16 - 16 = 0

⇒ D = 0, means equal roots 

The equation has equal roots.

167.

In a garden, there are peacocks and four-footed animals. All these have 98 feet and 35 heads. How many peacocks are there?1. 322. 253. 214. 19

Answer» Correct Answer - Option 3 : 21

Concept:

Peacock has 2 foots

Calculation:

Number of heads = 35

So, the total number of peacocks and four-footed animals = 35

Let there be X four-footed animals and Y peacock

Total number of feet = total foot of four-footed animals + total foot of peacock

4X + 2Y = 98       ----(i)

And Total head = X + Y = 35       ----(ii)

Multiply equation (ii) by 2

⇒ 2X + 2Y = 70      ----(iii)

(i) - (iii)

⇒ 2X = 28 or X = 14

Put X = 14 in equation (i)

56 + 2Y = 98

∴ Y = 42/2 = 21

∴ Number of peacocks = Y = 21

168.

What is the difference between the place values of two 5 in 1452058?1. 490502. 499503. 04. 51950

Answer» Correct Answer - Option 2 : 49950

Given:

Number = 1452058

Calculation:

Place value of first 5 = 5 × 10000 = 50000

Place value of last 5 = 5 × 10 = 50

Difference between the place values = 50000 - 50 = 49950.

∴ The required difference is 49950.

169.

How many real zeros in the polynomial x3 - x2 + 2?1. 32. 03. 14. 2

Answer» Correct Answer - Option 3 : 1

Given:

⇒ p(x) = x3 - x2 + 2

Calculation:

A rational zero theorem tells that if p/q is a zero then p = factor of leading term and q = factor of constant.

⇒ p/q for p(x) = +_1 and +_1/2

So, dividing p(x) with (x + 1) gives p(x) = 0, then (-1) is the only real zero function of given polynomial.

∴ For given polynomial, there is only one real zero.

  - A root or a zero of a polynomial are the value(s) of X that cause the polynomial to = 0.

170.

The one number is 7 more than the second number and their product is 228 find the greatest numbers of it?1. 162. 173. 184. 19

Answer» Correct Answer - Option 4 : 19

Given:

The product of two numbers is 228 and one number is 7 more than the second number

Concept Used:

Basic concept of arithmetic

Calculation:

Let the first number be x then second number will be (x + 7) and their product is 228

∴ x × (x + 7) = 228

⇒ x2 + 7x – 228 = 0

⇒ x2 + 19x – 12x – 228 = 0

⇒ (x + 19) × (x - 12) = 0

⇒ x = -19 and 12

So, the greatest number is 19

Hence, option (4) is correct

171.

यदि `x^(2)+y^(2)+1/(x^(2))+1/(y^(2))=4` है तो `x^(2)+y^(2)` का मान क्या होगा?A. 2B. 4C. 8D. 16

Answer» Correct Answer - A
`x^(2)+y^(2)+1/(x^(2))+1/(y^(2))=4`
Take `x=y=1`
`1+1+1/1+1/1=4`
Hence
`x^(2)+y^(2)=1+1=2`
172.

यदि `(a-3)^(2)+(b-4)^(2)+(c-9)^(2)=0` है तो `sqrt(a+b+c)` का मान क्या होगा?A. `-4`B. `4`C. `+-4`D. `+-2`

Answer» Correct Answer - C
`(a-3)^(2)+(b-4)^(2)+(c-9)^(2)=0`
`a-3=0, a=3`
`b-4=0, b=4`
`c-9=0, c=9`
`:. sqrt(a+b+c)=sqrt(3+4+9)`
`=sqrt(16)=+-4`
173.

यदि `a^(1//3)=11` है तो `a^(2)-331a` का मान क्या होगा?A. 1331331B. 1331000C. 1334331D. 1330030

Answer» Correct Answer - B
`a^(1//3)=1, a=11^(3)=1331`
`a^(2)-331a=a(a-331)`
`=13331(1331-331)`
`=1331xx1000=1331000`
174.

यदि `2r=h+sqrt(r^(2)+h^(2))` है तो अनुपात `r:h(r!=0)` क्या होगाA. `1:2`B. `2:3`C. `4:3`D. `3:5`

Answer» Correct Answer - C
`2r=h+sqrt(r^(2)+h^(2))`
`(2r-h)=(sqrt(r^(2)+h^(2)))^(2)`
`4r^(2)+h^(2)-4rh=r^(2)+h^(2)`
`3r^(2)=4rh`
`r/c=4/3`
175.

यदि `x+1/x=sqrt(3)` है तो `x^(18)+x^(12)+x^(6)+1` का मान ज्ञात करें।

Answer» Correct Answer - A
`x+1/x=sqrt(3)` take cube on both sides
`(x+1/x)^(3)=(sqrt(3))^(3)`
`x^(3)+1/(x^(3))+3x xx 1/x(x+1/x)=3sqrt(3)`
`implies x^(3)+1/(x^(3))+3(sqrt(3))=3sqrt(3)`
`x^(3)+1/(x^(3))=0`
`:. x^(6)=-1`
`:. x^(18)+x^(12)+x^(6)+1`
`=(-1)^(3)+(-1)^(2)+(-1)+1`
`=-1+1-1+1=0`
176.

यदि `x^(2)+y^(2)-4x+8=0` है तो `x-y` का मान क्या होगा?A. 4B. -4C. 0D. 8

Answer» Correct Answer - C
`x^(2)+y^(2)-4x-4y+8=0`
`x^(2)+4-4x+y^(2)+4-4y=0`
`(x-2)^(2)+(y-2)^(2)=0`
`x-2=0, y-2=0`
`x=2, y=2`
`:. x-y=2-2=0`
177.

इसका मान निकालें: `(1-(2xy)/(x^(2)+y^(2)))-:((x^(3)-y^(3))/(x-y)-3xy)` isA. `1/(x^(2)+y^(2))`B. `1/(x^(2)+y^(2))`C. `1/(x-y)`D. `1/(x+y)`

Answer» Correct Answer - B
`(ab)(1-(2xy)/(x^(2)+y^(2)))-:((x^(3)-y^(3))/(x-y)-3xy)`
`=((x^(2)+y^(2)-2xy)/(x^(2)+y^(2)))-:[(x^(3)-y^(3)-3xy(x-y))/(x-y)]`
`=((x-y)^(2))/(x^(2)+y^(2))-:((x-y)^(3))/(x-y)`
`=((x-y)^(2))/(x^(2)+y^(2))xx1/((x-y)^(2))=1/(x^(2)+y^(2))`
178.

यदिम `a,b,c` वास्तविक संख्यऐं है और `a^(2)+b^(2)+c^(2)=2(a-b-c)-3` है तो `2a-3b+4c` का मान क्या होगा?A. `-1`B. `0`C. `1`D. `2`

Answer» Correct Answer - C
`a^(2)+b^(2)+c^(2)=2(a-b-c)-3`
`implies a^(2)+b^(2)+c^(2)=2a-2b-2c-3`
`implies a^(2)+b^(2)+c^(2)-2a+2b+2c+1+1+1=0`
`implies(a^(2)-2a+1)+(b^(2)+2b+1)+`
`(c^(2)+2c+1)=0`
`implies (a-1)^(2)+(b+1)^(2)+(c+1)^(2)=0`
`a=1`
`b=-1`
`c=-1`
`:. 2a-3b+4c`
`=2xx1-3xx(-1)+4xx(-1)`
`=2+3-4=1`
179.

यदि `x=1/x=3` है तो `(x^(3)+1/x)/(x^(2)-x+1)` का मान क्या होगा?A. `3/2`B. `5/2`C. `7/2`D. `11/2`

Answer» Correct Answer - C
`x+1/x=3` (Given)
`(x^(3)+1/x)/(x^(2)-x+1)` (divide by `x`)
`((x^(3))/x+1/(x^(2)))/((x^(2))/x-x/x+1/x)=(x^(2)+1/(x^(2)))/(x-1+1/x)`
`=(x^(2)+1/(x^(2)))/(x+1/x-1)`
`:. x+1/x=3`
`:. x^(2)+1/(x^(2))=9-2=7`
`:. (x^(2)+1/(x^(2)))/(x+1/x-1)=7/(3-7)=7/2`
180.

यदि `2p+1/p=4` है तो `p^(3)+1/(8p^(3))` का मान ज्ञात करें?A. 4B. 5C. 8D. 15

Answer» Correct Answer - B
`2p+1/p=4`
Divide by 2
`(2p)/2+1/(2p)=4/2`
`p+1/(2p)=2`
Take cube on both sides
`implies (p+1/(2p))^(3)=(2)^(3)`
`p^(3)+1/(8p^(3))+3xxpx1/(2p)(p+1/(2p))=8`
`p^(3)+1/(8p^(3))+3/2xx2=8`
`p^(3)+1/(8p^(3))=8-3=5`
181.

यदि `(sqrt(5))^(7)-: (sqrt(5))^(5)=5^(p)` है तो `p` मान ज्ञात करें?A. 5B. 2C. `3/2`D. 1

Answer» Correct Answer - D
`(sqrt(5))^(7)-:(sqrt(5))^(5)=5^(P)`
`implies((sqrt(5))^(7))/((sqrt(5))^(5))=5^(P)`
`=(sqrt(sqrt(5))^(2)=5^(P)=5^(1)=5^(P)`
`P=1`
182.

यदि `x=(sqrt(2)+1)^(1/3)` है तो `(x^(3)-1/(x^(3)))` का मान क्या होगा?A. `0`B. `-sqrt(2)`C. `+2`D. `3sqrt(2)`

Answer» Correct Answer - C
`x=(sqrt(2)+1)^(1//3)`
Take cube on both sides
`impliesx^(3)=sqrt(2)+1`
हर का प‌रिमेयकरण
`implies1/(x^(3))=1/(sqrt(2)+1)xx(sqrt(2)-1)/(sqrt(2)-1)`
`= (sqrt(2)-1)/1`
`1/(x^(3))=sqrt(2)-1`
`implies x^(3)-1/(x^(3))=sqrt(2)+1-sqrt(2)+1=2`
183.

`x` का न्यूनतम मान ज्ञात करें जो समीकरण `x^(3)-7x^(2)+11x-5ge0` को संतुष्ट करें।

Answer» Correct Answer - C
`x^(3)-7x^(2)+11x-5ge0`
`x^(3)-5x^(2)-2x^(2)+10x+x-5ge0`
`x^(2)(x-5)-2x(x-5)+1(x-5)ge0`
`(x-5)(x^(2)-2x+1)ge0`
`(x-5)(x-1)^(2)ge0`
`(x-5)(x-1)(x-1)ge0`
`x=1` & 5 दोनों मान समीकरण को संतुष्ट करते है, लेकिन दोनों का न्यूनतम मान
`x=1`
184.

`a` और `b` का मान ज्ञात करें यदि `(x-1)` और `(x+),x^(4)+ax^(3)-3x^(2)+2x+b` के गुणनखंड हैं।A. `2,-1`B. `-2,1`C. `-2,2`D. `1,-1`

Answer» Correct Answer - C
If `x-1` & `x+1` are the factors `y` equation the
`x-1=0, x=1`
`implies` Put `x=1`, we get
`1+a-3+2+b=0` ………..i
`a+b=0`
`implies x+1=0, x=-1`
Put `x=-1` we get
`1-a-3-2+b=0`
`b-a=4`…………..ii
after solving i and ii we get
`a=-2, b=2`
185.

`x^(4)+64` का सम्पूर्ण गुणनखंड करें?A. `(x^(2)+8)^(2)`B. `(x^(2)+8)(x(2)-8)`C. `(x^(2)-4x+8)(x^(2)-4x-8)`D. `(x^(2)+4x+8)(x^(2)-4x+8)`

Answer» Correct Answer - D
`(x^(4)+64)`
`=x^(4)+8^(2)+2.x^(2).8-2x^(2).8`
`=(x^(2)+8)^(2)(16x^(2))`
`=(x^(2)+8)^(2)-(4x)^(2))`
`=(x^(2)+8+4x)(x^(2)+8-4x)`
186.

यदि `x,y,z` के तीन गुणनखंड `a^(3)-7a-6` है तो `x+y+z` का मान होगा?A. `3a`B. `3`C. `6`D. `a`

Answer» Correct Answer - A
`a^(3)-7a-6`
`(a+1)(a^(2)-a-6)`
`(a+1)(a+2)(a-3)`
Now sum of factors
`(a+1)+a+2+a-3=3a`
187.

यदि `x+1/x=2` है तो `(x^(2)+1/(x^(2)))(x^(3)+1/(x^(3)))` का मान ज्ञात करें।A. 20B. 4C. 8D. 16

Answer» Correct Answer - B
`x+1/x=2`
`implies ` Put `x=1`
`:. 1+1/((1))=2`
`2=2` (satisfy)
`(x^(2)+1/(x^(2)))(x^(3)+1/(x^(3)))`
`=(1+)(1+1)=2xx2=4`
188.

`((243)^(n/5).3^(2n+1))/(9^(n).3^(n-1))` का मान क्‍या है?A. 1B. 9C. 3D. `3^(n)`

Answer» Correct Answer - B
`((243)^(n/5).3^(2n+1))/(9^(n).3^(n-1))=((3^(5))^(n/5).3^(2n+1))/(3^(2n).3^(n-1))`
`=(3^(n+2n+1))/(3^(2n+n-1))=(3^(3n+1))/(3^(3n-1))=3^(3n+1-1-3n+1)`
`3^(2)=9`
189.

यदि `x+sqrt(5)=5+sqrt(y)` और `x,y` धनात्मक पूर्णांक है तो `(sqrt(x)+y)/(x+sqrt(y))` का मान क्या है?A. 1B. 2C. `sqrt(5)`D. 5

Answer» Correct Answer - A
`x+sqrt(5)=5+sqrt(y)`
put `x=5` and `y=5`
`5+sqrt(5)=5+sqrt(5)`
L.H.S `=` R.H.S
`(sqrt(x)+y)/(x+sqrt(y))=(sqrt(5)+5)/(5+sqrt(5))=1`
190.

यदि `[p]` का मतलब अधिकतम धनात्मक पूर्णांक है जो `p` से कम या बराबर है तो `[-1/4]+[4-1/4]+[3]` किसके बराबर है?A. 4B. 5C. 6D. 7

Answer» Correct Answer - D
Given `[p]` mean greatest positive integer less than or `[p]` equal to `p`.
`implies[p]=p`
`implies[-p]=p`
`implies[-1/4]+[4-1/4]+[3]`
`=1/4+4-1/4+3=7`
191.

यदि `p-2q=4` है तो `p^(3)-8q^(3)-24pq-64` का मान ज्ञात करें।A. 2B. 0C. 3D. -1

Answer» Correct Answer - B
`p-2q=4`
Take cube on both sides
`(p-2q)^(3)=(4)^(3)`
`p^(3)-8q^(3)-3pxx2q(p-2q)=64`
`p^(3)-8q^(3)-6pqxx4=64`
`p^(3)-8q^(3)-24pq=64`
`p^(3)-8q^(3)-24pq-64=0`
192.

यदि `a=(b^(2))/(b-a)` है तो `a^(3)+b^(3)` का मान ज्ञात करें।A. `6ab`B. `0`C. `1`D. `2`

Answer» Correct Answer - B
`a=(b^(2))/(b-a)`
`impliesa(b-a)=b^(2)`
`ab-a^(2)=b^(2)`
`a^(2)+b^(2)-ab=0`
`impliesa^(3)+b^(3)=(a+b)(a^(2)+b^(2)-ab)`
`:. a^(3)+b^(3)=0`
193.

यदि `(4x)/3+2P=12` है तो `x=6,P` के किस मान के लिए होगा?A. 6B. 4C. 2D. 1

Answer» Correct Answer - C
`(4x)/3+2P=12,x=6` (Given)
`(4xx6)/3+2P=12`
`2P=12-8`
`P=4/2`
`P=2`
194.

`(p^(2)-p)/(2p^(3)+p^(2))+(p^(2)-1)/(p^(2)-3p)+(p^(2))/(p+1)` का साधारणीकृत मान क्‍या है?A. `2p^(2)`B. `1/(2p^(2))`C. `p+3`D. `1/(p+3`

Answer» Correct Answer - B
`(p^(2)-p)/(2p^(3)+p^(2))+(p^(2)-1)/(p^(2)+3p)+(p^(2))/(p+1)`
In such type of question assume values of `p`
`:.` Let `p=1`
`:. (1-1)/(2+1)+(1-1)/(1+3)+1/(1+1)`
`=0+0+1/2=1/2`
Now check options b
`1/(2p^(2))=1/2`
Hence option b is answer:
195.

यदि `a+b+c+d=1` है तो `(1+a)(1+b)(1+c)(1+d)` का अधिकतम मान क्या होगा?A. 1B. `(1/2)^(3)`C. `(3/4)^(3)`D. `(5/4)^(4)`

Answer» Correct Answer - D
`a+b+c+d=1`
`(1+a)(1+b)(1+c)(1+d)`
`implies` For maximum value `a,b,c,d`
`a=b=c=d=1/4`
`=(1+1/4)(1+1/4)(1+1/4)(1+1/4)=(5/4)^(4)`
196.

यदि `x+1/x=2` और `x` वास्तविक संख्याऐं है तो `x^(17)+1/(x^(19))` का मान क्या होगा?A. 1B. 0C. 2D. -2

Answer» Correct Answer - C
`x+1/x=2`
(assume `x=1`, so `1+1=2`)
`x^(17)+1/(x^(19))=(1)^(17)=1/((1)^(19))`
`=1+1=2`
197.

यदि `x^(2)+y^(2)+1=2x` है तो `x^(3)+y^(5)` का मान ज्ञात करें।A. 2B. 0C. -1D. 1

Answer» Correct Answer - D
`x^(2)+y^(2)+1=2x`
`x^(2)-2x+1+y^(2)=0`
`(x-1)^(2)+y^(2)=0`
If `A^(2)+B^(2)=0`
[As powers are even it can possible only when `A=0` & `B=0`]
`:. x-1=0`
`x=1`
`y=0`
`:. x^(3)+y^(5)=1+0=1`
198.

यदि `x(x-3)=-1` है तो `x^(3)(x^(3)-18)` का मान ज्ञात करें।A. -1B. 2C. 1D. 0

Answer» Correct Answer - A
`x(x-3)=-1`
`implies (x-3)=(-1)/x`
Taking cube on both sides
`implies (x-3)^(3)=((-1)/x)^(3)`
`implies x^(3)-27-9xx(x-3)=(-1)/(x^(3))`
`implies x^(3)-27-9xx-1=(-1)/(x^(3))`
`implies x^(3)-27+9=(-1)/(x^(3))`
`implies x^(3)-18=(-1)/(x^(3))`
`implies x^(3)(x^(3)-18)=-1`
199.

यदि `a=(sqrt(x+2)+sqrt(x-2))/(sqrt(x+2)-sqrt(x-2))` है तो `a^(2)-ax` का मान क्या होगा?A. 2B. 1C. 0D. -1

Answer» Correct Answer - D
According to the question
`a=(sqrt(x+2)+sqrt(x-2))/(sqrt(x+2)-sqrt(x-2))`
Put `x=2`
`a=(sqrt(2+2)+sqrt(2-2))/(sqrt(2+2)-sqrt(2-2))`
`a=(sqrt(4))/(sqrt(4))=1`
`a^(2)-ax=1^(2)-1xx2=1-2=-1`
200.

यदि `a+b=1`, तो `a^(3)+b^(3)-ab-(a^(2)-b^(2))^(2)` का मान ज्ञात कीजिए।

Answer» Correct Answer - A
Let `a=0`
`b=1`
`implies a^(3)+b^(3)-ab-(a^(2)-b^(2))^(2)`
`implies 0+1-0(0-1)^(2)`
`implies 1-1=0`