InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
If a3 = 1 + 7, 33 = 1 + 7 + b and 43 = 1 + 7 + c, where a, b and c are different positive integers, then the value of a + b + c is1. 582. 683. 774. 79 |
|
Answer» Correct Answer - Option 3 : 77 Given: a3 = 1 + 7 ----(i) 33 = 1 + 7 + b ----(ii) 43 = 1 + 7 + c ----(iii) Calculations: Solving the equation (i) ⇒ a3 = 1 + 7 ⇒ a3 = 8 ⇒ a = 2 Solving the equation (ii) ⇒ 33 = 1 + 7 + b ⇒ 27 = 8 + b ⇒ b = 19 Solving the equation (iii) ⇒ 43 = 1 + 7 + c ⇒ 64 = 8 + c ⇒ c = 56 Using the values of a, b, and c, ⇒ a + b + c = 2 + 19 + 56 ⇒ a + b + c = 77 ∴ The value of a + b + c is 77 |
|
| 152. |
The value of \(\frac{{4.35 \times 4.35 \times 4.35 + 3.25 \times 3.25 \times 3.25}}{{43.5 \times 43.5 + 32.5 \times 32.5 - 43.5 \times 32.5}}\) is:1. 0.762. 0.00763. 7.64. 0.076 |
|
Answer» Correct Answer - Option 4 : 0.076 Formula used: a3 + b3 = (a + b) × (a2 + b2 – a × b) Calculation: [(4.35)3 + (3.25)3]/[(43.5)2 + (32.5)2 – 43.5 × 32.5] ⇒ [(4.35 + 3.25) × {(4.35)2 +(3.25)2 - (4.35 × 3.25)}]/[100 × {(4.35)2 + (3.25)2 – (4.35 × 3.25)}] ⇒ [4.35 + 3.25]/100 ⇒ 7.6/100 ⇒ 0.076 ∴ The answer is 0.076 |
|
| 153. |
If a2 + b2 = 14, and a + b = 4. Find a3 - b31. 14√32. 12√23. 30√34. 21√2 |
|
Answer» Correct Answer - Option 3 : 30√3 Given: a2 + b2 = 14 a + b = 4 Formula Used: (a + b)2 = a2 + b2 + 2ab (a - b)2 = a2 + b2 - 2ab a3 - b3 = (a - b)(a2 + b2 + ab) Calculation: (4)2 = 14 + 2ab ⇒ 16 - 14 = 2ab ⇒ ab = 2/2 = 1 (a - b)2 = 14 - 2 × 1 ⇒ (a - b) = 2√3 a3 - b3 = (2√3)(14 + 1) ⇒ a3 - b3 = 30√3 ∴ The value of a3 - b3 is 30√3. |
|
| 154. |
If x + y = 25 and xy = 35, then (1/x) + (1/y) =?1. \(\sqrt{5\over7}\)2. 7/53. 5/74. \(\sqrt{7\over5}\) |
|
Answer» Correct Answer - Option 3 : 5/7 Given: x + y = 25 and xy = 35 We have to find the value of 1/x + 1/y Calculation: 1/x + 1/y ⇒ (y + x)/xy [Using the given values] ⇒ 25/35 ⇒ 5/7 ∴ Required value of (1/x + 1/y) is (5/7). |
|
| 155. |
The value of \((.98)^3 + (.02)^3 + 3 \times .98 \times .02 - 1\) is |
|
Answer» Correct Answer - Option 1 : 0 Identity used: (a + b)3 = a3 + b3 + 3ab(a + b) Calculation: ⇒ (.98 + .02)3 = (.98)3 + (.02)3 + 3 × .98 × .02(.98 + .02) ⇒ 1 = (.98)3 + (.02)3 + 3 × .98 × .02 ⇒ (.98)3 + (.02)3 + 3 × .98 × .02 - 1 = 0 ∴ Solution is 0. |
|
| 156. |
If a + 3b = 12 and ab = 9, then the value of (a - 3b) is:1. 92. 43. 64. 8 |
|
Answer» Correct Answer - Option 3 : 6 Given: a + 3b = 12 ab = 9 Calculation: ∵ a + 3b = 12 ⇒ a = 12 - 3b ------(1) ∵ ab = 9 Putting the value of 'a' from (1); ⇒ (12 - 3b) × b = 9 ⇒ 12b - 3b2 = 9 ⇒ 4b - b2 = 3 ⇒ b2 - 4b + 3 = 0 ⇒ b2 - b - 3b + 3 = 0 ⇒ b(b - 1) - 3(b - 1) = 0 ⇒ (b - 1) (b - 3) = 0 ∴ b - 1 = 0 ⇒ b = 1 ∴ b - 3 = 0 ⇒ b = 3 ∴ When b = 3 then a = 3 a - 3b = 3 - (3 × 3) = 3 - 9 = (-6) When b = 1 then a = 9 a - 3b = 9 - (3 × 1) = 9 - 3 = 6 |
|
| 157. |
Solve: (x + 2)2 = ?1. x2 + 8x2. x + 4 + 4x23. x + 44. x2 + 4x + 4 |
|
Answer» Correct Answer - Option 4 : x2 + 4x + 4 Formula used: (a + b)2 = a2 + b2 + 2ab Calculation: ⇒ (x + 2)2 = ? ⇒ x2 + 4 + 2 × x × 2 = ? ⇒ x2 + 4 + 4x = ? ∴ The value of ? is x2 + 4x + 4 |
|
| 158. |
56 students are divided into three groups A, B, and C. Group B consists of twice the number of students in group C. Group A has half the number of students than group C. How many students are there in group C?1. 82. 123. 164. 28 |
|
Answer» Correct Answer - Option 3 : 16 Given: Total student in group A, B, and C = 56 B consists of twice the number of students in group C Group A has half the number of students than group C Calculation: Let group C have x candidates B consists of twice the number of students in group C ⇒ B = 2x A has half the number of students than group C ⇒ A = x/2 According to the question: x + 2x + x/2 = 56 ⇒ x = 112/7 = 16 ∴ Number of student in group C = x = 16 students Check: Number of student in group C = x = 16 students B = 2x or B = 16 × 2 = 32 students A = x/2 or A = 16/2 = 8 ∴ Total students = 16 + 32 + 8 = 56 Hence above solution is correct.
|
|
| 159. |
If \({\rm{x}} + \frac{1}{{\rm{x}}} = 5\), then find the value of \(\frac{{{{\left( {{\rm{x}} - {{\rm{x}}^{ - 1}}} \right)}^2}}}{{5{\rm{x}} - {{\rm{x}}^2} + 6}}\)1. 42. 53. 64. 3 |
|
Answer» Correct Answer - Option 4 : 3 Given: \({\rm{x}} + \frac{1}{{\rm{x}}} = 5\) Formula used: \({\rm{a}} - \frac{1}{{\rm{a}}} = {\rm{\;}}\sqrt {{{\left( {{\rm{a}} + \frac{1}{{\rm{a}}}} \right)}^2} - 4}\) Calculation: \({\rm{x}} - \frac{1}{{\rm{x}}} = {\rm{\;}}\sqrt {{{\left( {{\rm{x}} + \frac{1}{{\rm{x}}}} \right)}^2} - 4}\) ⇒ \({\rm{x}} - \frac{1}{{\rm{x}}} = {\rm{\;}}\sqrt {{25} - 4}\) ⇒ \({\rm{x}} - \frac{1}{{\rm{x}}} = {\rm{\;}}\sqrt {{21}}\) \({\rm{x}} + \frac{1}{{\rm{x}}} = 5\) ⇒ x2 + 1 = 5x ⇒ 5x – x2 = 1 \(\frac{{{{\left( {{\rm{x}} - {{\rm{x}}^{ - 1}}} \right)}^2}}}{{5{\rm{x}} - {{\rm{x}}^2} + 6}}\) ⇒ \(\frac{{{{\left( {{\rm{x}} - \frac{1}{{\rm{x}}}} \right)}^2}}}{{5{\rm{x}} - {{\rm{x}}^2} + 6}}\) ⇒ {21/(1 + 6)} ⇒ 21/7 ⇒ 3 ∴ Required value is 3 |
|
| 160. |
If a + b = 19 and ab = 88 find the value of a3 + b3.1. 14832. 13563. 18464. 1843 |
|
Answer» Correct Answer - Option 4 : 1843 Given: a + b = 19 ab = 88 Formula Used: a3 + b3 = (a + b)3 – 3ab(a + b) Calculation: substituting the given values in the formula a3 + b3 = (19)3 – 3 × 88(19) a3 + b3 = 6859 - 5016 = 1843 ∴ The value of a3 + b3 is 1843 |
|
| 161. |
If x2 - 7x = -12, What is the vale of x?1. -3 or -42. 3 or 43. 3 or -44. Cannot be determined |
|
Answer» Correct Answer - Option 2 : 3 or 4 Given: If x2 – 7x = -12, then find the value of x? Calculation: ⇒ x2 – 7x + 12 = 0 ⇒ x2 – 3x – 4x + 12 = 0 ⇒ x( x – 3 ) – 4( x – 3 ) = 0 ⇒ ( x – 3 )( x – 4 ) = 0 ∴ x = 3,4 |
|
| 162. |
यदि `a^(2)+b^(2)=5ab` है तो `(a^(2))/(b^(2))+(b^(2))/(a^(2))` का मान ज्ञात करें।A. 32B. 16C. 23D. -23 |
|
Answer» Correct Answer - C `a^(2)+b^(2)=5ab` `implies (a^(2))/(ab)+(b^(2))/(ab)=5` `implies a/b+b/a=5` Squaring both sides `(a/b)^(2)+(b/a)^(2)+2xx a/bxx b/a=25` `(a^(2))/(b^(2))+(b^(2))/(a^(2))=25-2=23` |
|
| 163. |
A sum of Rs. 8,200 was divided among A, B and C in such a way that A has Rs. 500 more than B, and C has Rs. 300 more than A. How much was A's share (in Rs.)?1. 2,8002. 2,3003. 3,1004. 2,000 |
|
Answer» Correct Answer - Option 1 : 2,800 Given: Total money = Rs. 8,200 A's share = Rs. 500 more than B C's share = Rs. 300 more than A Calculations: Let share of A, B and C are A, B and C respectively. A = 500 + B ⇒ B = A - 500 C = 300 + A ⇒ C = 300 + A A + B + C = 8,200 ⇒ A + A - 500 + 300 + A = 8,200 ⇒ 3A - 200 = 8,200 ⇒ 3A = 8,400 ⇒ A = 2,800 ∴ A's share was Rs. 2,800 |
|
| 164. |
If 3X + Y = 81 and 81X – Y = 3, then find the value of X is?1. 782. 13. 814. 84 |
|
Answer» Correct Answer - Option 2 : 1 Calculation: 3X + Y = 81 ----(i) 81X – Y = 3 ----(ii) Adding equation (i) and (ii) 84X = 84 ⇒ X = 1 ∴ The value of X is 1 |
|
| 165. |
The number of solutions for the pair of linear equations x + y = 0 and 2x + 2y = 0 is ______. |
|
Answer» Correct Answer - Option 4 : Infinite Given : The pair of linear equation x + y = 0 and 2x + 2y = 0 Calculation : x + y = 0 ----(1)equation 2x + 2y =0 ----(2)equation Dividing equation (2) by 2, we get ⇒ x + y = 0 ∴ The two lines represent coincident lines So they have infinitely many solutions. |
|
| 166. |
The quadratic equation \(2\sqrt 2 {x^2} + 4x + \sqrt 2 = 0\), has ______1. real and different2. equal roots3. imaginary roots4. 3 roots |
|
Answer» Correct Answer - Option 2 : equal roots Given: \(2\sqrt 2 {x^2} + 4x + \sqrt 2 = 0\) Formula used : D = b2 - 4ac Calculation: D = 42 - 4 × 2√2 × √2 = 16 - 16 = 0 ⇒ D = 0, means equal roots ∴ The equation has equal roots. |
|
| 167. |
In a garden, there are peacocks and four-footed animals. All these have 98 feet and 35 heads. How many peacocks are there?1. 322. 253. 214. 19 |
|
Answer» Correct Answer - Option 3 : 21 Concept: Peacock has 2 foots Calculation: Number of heads = 35 So, the total number of peacocks and four-footed animals = 35 Let there be X four-footed animals and Y peacock Total number of feet = total foot of four-footed animals + total foot of peacock 4X + 2Y = 98 ----(i) And Total head = X + Y = 35 ----(ii) Multiply equation (ii) by 2 ⇒ 2X + 2Y = 70 ----(iii) (i) - (iii) ⇒ 2X = 28 or X = 14 Put X = 14 in equation (i) 56 + 2Y = 98 ∴ Y = 42/2 = 21 ∴ Number of peacocks = Y = 21 |
|
| 168. |
What is the difference between the place values of two 5 in 1452058?1. 490502. 499503. 04. 51950 |
|
Answer» Correct Answer - Option 2 : 49950 Given: Number = 1452058 Calculation: Place value of first 5 = 5 × 10000 = 50000 Place value of last 5 = 5 × 10 = 50 Difference between the place values = 50000 - 50 = 49950. ∴ The required difference is 49950. |
|
| 169. |
How many real zeros in the polynomial x3 - x2 + 2?1. 32. 03. 14. 2 |
|
Answer» Correct Answer - Option 3 : 1 Given: ⇒ p(x) = x3 - x2 + 2 Calculation:A rational zero theorem tells that if p/q is a zero then p = factor of leading term and q = factor of constant. ⇒ p/q for p(x) = +_1 and +_1/2 So, dividing p(x) with (x + 1) gives p(x) = 0, then (-1) is the only real zero function of given polynomial. ∴ For given polynomial, there is only one real zero. - A root or a zero of a polynomial are the value(s) of X that cause the polynomial to = 0. |
|
| 170. |
The one number is 7 more than the second number and their product is 228 find the greatest numbers of it?1. 162. 173. 184. 19 |
|
Answer» Correct Answer - Option 4 : 19 Given: The product of two numbers is 228 and one number is 7 more than the second number Concept Used: Basic concept of arithmetic Calculation: Let the first number be x then second number will be (x + 7) and their product is 228 ∴ x × (x + 7) = 228 ⇒ x2 + 7x – 228 = 0 ⇒ x2 + 19x – 12x – 228 = 0 ⇒ (x + 19) × (x - 12) = 0 ⇒ x = -19 and 12 So, the greatest number is 19 Hence, option (4) is correct |
|
| 171. |
यदि `x^(2)+y^(2)+1/(x^(2))+1/(y^(2))=4` है तो `x^(2)+y^(2)` का मान क्या होगा?A. 2B. 4C. 8D. 16 |
|
Answer» Correct Answer - A `x^(2)+y^(2)+1/(x^(2))+1/(y^(2))=4` Take `x=y=1` `1+1+1/1+1/1=4` Hence `x^(2)+y^(2)=1+1=2` |
|
| 172. |
यदि `(a-3)^(2)+(b-4)^(2)+(c-9)^(2)=0` है तो `sqrt(a+b+c)` का मान क्या होगा?A. `-4`B. `4`C. `+-4`D. `+-2` |
|
Answer» Correct Answer - C `(a-3)^(2)+(b-4)^(2)+(c-9)^(2)=0` `a-3=0, a=3` `b-4=0, b=4` `c-9=0, c=9` `:. sqrt(a+b+c)=sqrt(3+4+9)` `=sqrt(16)=+-4` |
|
| 173. |
यदि `a^(1//3)=11` है तो `a^(2)-331a` का मान क्या होगा?A. 1331331B. 1331000C. 1334331D. 1330030 |
|
Answer» Correct Answer - B `a^(1//3)=1, a=11^(3)=1331` `a^(2)-331a=a(a-331)` `=13331(1331-331)` `=1331xx1000=1331000` |
|
| 174. |
यदि `2r=h+sqrt(r^(2)+h^(2))` है तो अनुपात `r:h(r!=0)` क्या होगाA. `1:2`B. `2:3`C. `4:3`D. `3:5` |
|
Answer» Correct Answer - C `2r=h+sqrt(r^(2)+h^(2))` `(2r-h)=(sqrt(r^(2)+h^(2)))^(2)` `4r^(2)+h^(2)-4rh=r^(2)+h^(2)` `3r^(2)=4rh` `r/c=4/3` |
|
| 175. |
यदि `x+1/x=sqrt(3)` है तो `x^(18)+x^(12)+x^(6)+1` का मान ज्ञात करें। |
|
Answer» Correct Answer - A `x+1/x=sqrt(3)` take cube on both sides `(x+1/x)^(3)=(sqrt(3))^(3)` `x^(3)+1/(x^(3))+3x xx 1/x(x+1/x)=3sqrt(3)` `implies x^(3)+1/(x^(3))+3(sqrt(3))=3sqrt(3)` `x^(3)+1/(x^(3))=0` `:. x^(6)=-1` `:. x^(18)+x^(12)+x^(6)+1` `=(-1)^(3)+(-1)^(2)+(-1)+1` `=-1+1-1+1=0` |
|
| 176. |
यदि `x^(2)+y^(2)-4x+8=0` है तो `x-y` का मान क्या होगा?A. 4B. -4C. 0D. 8 |
|
Answer» Correct Answer - C `x^(2)+y^(2)-4x-4y+8=0` `x^(2)+4-4x+y^(2)+4-4y=0` `(x-2)^(2)+(y-2)^(2)=0` `x-2=0, y-2=0` `x=2, y=2` `:. x-y=2-2=0` |
|
| 177. |
इसका मान निकालें: `(1-(2xy)/(x^(2)+y^(2)))-:((x^(3)-y^(3))/(x-y)-3xy)` isA. `1/(x^(2)+y^(2))`B. `1/(x^(2)+y^(2))`C. `1/(x-y)`D. `1/(x+y)` |
|
Answer» Correct Answer - B `(ab)(1-(2xy)/(x^(2)+y^(2)))-:((x^(3)-y^(3))/(x-y)-3xy)` `=((x^(2)+y^(2)-2xy)/(x^(2)+y^(2)))-:[(x^(3)-y^(3)-3xy(x-y))/(x-y)]` `=((x-y)^(2))/(x^(2)+y^(2))-:((x-y)^(3))/(x-y)` `=((x-y)^(2))/(x^(2)+y^(2))xx1/((x-y)^(2))=1/(x^(2)+y^(2))` |
|
| 178. |
यदिम `a,b,c` वास्तविक संख्यऐं है और `a^(2)+b^(2)+c^(2)=2(a-b-c)-3` है तो `2a-3b+4c` का मान क्या होगा?A. `-1`B. `0`C. `1`D. `2` |
|
Answer» Correct Answer - C `a^(2)+b^(2)+c^(2)=2(a-b-c)-3` `implies a^(2)+b^(2)+c^(2)=2a-2b-2c-3` `implies a^(2)+b^(2)+c^(2)-2a+2b+2c+1+1+1=0` `implies(a^(2)-2a+1)+(b^(2)+2b+1)+` `(c^(2)+2c+1)=0` `implies (a-1)^(2)+(b+1)^(2)+(c+1)^(2)=0` `a=1` `b=-1` `c=-1` `:. 2a-3b+4c` `=2xx1-3xx(-1)+4xx(-1)` `=2+3-4=1` |
|
| 179. |
यदि `x=1/x=3` है तो `(x^(3)+1/x)/(x^(2)-x+1)` का मान क्या होगा?A. `3/2`B. `5/2`C. `7/2`D. `11/2` |
|
Answer» Correct Answer - C `x+1/x=3` (Given) `(x^(3)+1/x)/(x^(2)-x+1)` (divide by `x`) `((x^(3))/x+1/(x^(2)))/((x^(2))/x-x/x+1/x)=(x^(2)+1/(x^(2)))/(x-1+1/x)` `=(x^(2)+1/(x^(2)))/(x+1/x-1)` `:. x+1/x=3` `:. x^(2)+1/(x^(2))=9-2=7` `:. (x^(2)+1/(x^(2)))/(x+1/x-1)=7/(3-7)=7/2` |
|
| 180. |
यदि `2p+1/p=4` है तो `p^(3)+1/(8p^(3))` का मान ज्ञात करें?A. 4B. 5C. 8D. 15 |
|
Answer» Correct Answer - B `2p+1/p=4` Divide by 2 `(2p)/2+1/(2p)=4/2` `p+1/(2p)=2` Take cube on both sides `implies (p+1/(2p))^(3)=(2)^(3)` `p^(3)+1/(8p^(3))+3xxpx1/(2p)(p+1/(2p))=8` `p^(3)+1/(8p^(3))+3/2xx2=8` `p^(3)+1/(8p^(3))=8-3=5` |
|
| 181. |
यदि `(sqrt(5))^(7)-: (sqrt(5))^(5)=5^(p)` है तो `p` मान ज्ञात करें?A. 5B. 2C. `3/2`D. 1 |
|
Answer» Correct Answer - D `(sqrt(5))^(7)-:(sqrt(5))^(5)=5^(P)` `implies((sqrt(5))^(7))/((sqrt(5))^(5))=5^(P)` `=(sqrt(sqrt(5))^(2)=5^(P)=5^(1)=5^(P)` `P=1` |
|
| 182. |
यदि `x=(sqrt(2)+1)^(1/3)` है तो `(x^(3)-1/(x^(3)))` का मान क्या होगा?A. `0`B. `-sqrt(2)`C. `+2`D. `3sqrt(2)` |
|
Answer» Correct Answer - C `x=(sqrt(2)+1)^(1//3)` Take cube on both sides `impliesx^(3)=sqrt(2)+1` हर का परिमेयकरण `implies1/(x^(3))=1/(sqrt(2)+1)xx(sqrt(2)-1)/(sqrt(2)-1)` `= (sqrt(2)-1)/1` `1/(x^(3))=sqrt(2)-1` `implies x^(3)-1/(x^(3))=sqrt(2)+1-sqrt(2)+1=2` |
|
| 183. |
`x` का न्यूनतम मान ज्ञात करें जो समीकरण `x^(3)-7x^(2)+11x-5ge0` को संतुष्ट करें। |
|
Answer» Correct Answer - C `x^(3)-7x^(2)+11x-5ge0` `x^(3)-5x^(2)-2x^(2)+10x+x-5ge0` `x^(2)(x-5)-2x(x-5)+1(x-5)ge0` `(x-5)(x^(2)-2x+1)ge0` `(x-5)(x-1)^(2)ge0` `(x-5)(x-1)(x-1)ge0` `x=1` & 5 दोनों मान समीकरण को संतुष्ट करते है, लेकिन दोनों का न्यूनतम मान `x=1` |
|
| 184. |
`a` और `b` का मान ज्ञात करें यदि `(x-1)` और `(x+),x^(4)+ax^(3)-3x^(2)+2x+b` के गुणनखंड हैं।A. `2,-1`B. `-2,1`C. `-2,2`D. `1,-1` |
|
Answer» Correct Answer - C If `x-1` & `x+1` are the factors `y` equation the `x-1=0, x=1` `implies` Put `x=1`, we get `1+a-3+2+b=0` ………..i `a+b=0` `implies x+1=0, x=-1` Put `x=-1` we get `1-a-3-2+b=0` `b-a=4`…………..ii after solving i and ii we get `a=-2, b=2` |
|
| 185. |
`x^(4)+64` का सम्पूर्ण गुणनखंड करें?A. `(x^(2)+8)^(2)`B. `(x^(2)+8)(x(2)-8)`C. `(x^(2)-4x+8)(x^(2)-4x-8)`D. `(x^(2)+4x+8)(x^(2)-4x+8)` |
|
Answer» Correct Answer - D `(x^(4)+64)` `=x^(4)+8^(2)+2.x^(2).8-2x^(2).8` `=(x^(2)+8)^(2)(16x^(2))` `=(x^(2)+8)^(2)-(4x)^(2))` `=(x^(2)+8+4x)(x^(2)+8-4x)` |
|
| 186. |
यदि `x,y,z` के तीन गुणनखंड `a^(3)-7a-6` है तो `x+y+z` का मान होगा?A. `3a`B. `3`C. `6`D. `a` |
|
Answer» Correct Answer - A `a^(3)-7a-6` `(a+1)(a^(2)-a-6)` `(a+1)(a+2)(a-3)` Now sum of factors `(a+1)+a+2+a-3=3a` |
|
| 187. |
यदि `x+1/x=2` है तो `(x^(2)+1/(x^(2)))(x^(3)+1/(x^(3)))` का मान ज्ञात करें।A. 20B. 4C. 8D. 16 |
|
Answer» Correct Answer - B `x+1/x=2` `implies ` Put `x=1` `:. 1+1/((1))=2` `2=2` (satisfy) `(x^(2)+1/(x^(2)))(x^(3)+1/(x^(3)))` `=(1+)(1+1)=2xx2=4` |
|
| 188. |
`((243)^(n/5).3^(2n+1))/(9^(n).3^(n-1))` का मान क्या है?A. 1B. 9C. 3D. `3^(n)` |
|
Answer» Correct Answer - B `((243)^(n/5).3^(2n+1))/(9^(n).3^(n-1))=((3^(5))^(n/5).3^(2n+1))/(3^(2n).3^(n-1))` `=(3^(n+2n+1))/(3^(2n+n-1))=(3^(3n+1))/(3^(3n-1))=3^(3n+1-1-3n+1)` `3^(2)=9` |
|
| 189. |
यदि `x+sqrt(5)=5+sqrt(y)` और `x,y` धनात्मक पूर्णांक है तो `(sqrt(x)+y)/(x+sqrt(y))` का मान क्या है?A. 1B. 2C. `sqrt(5)`D. 5 |
|
Answer» Correct Answer - A `x+sqrt(5)=5+sqrt(y)` put `x=5` and `y=5` `5+sqrt(5)=5+sqrt(5)` L.H.S `=` R.H.S `(sqrt(x)+y)/(x+sqrt(y))=(sqrt(5)+5)/(5+sqrt(5))=1` |
|
| 190. |
यदि `[p]` का मतलब अधिकतम धनात्मक पूर्णांक है जो `p` से कम या बराबर है तो `[-1/4]+[4-1/4]+[3]` किसके बराबर है?A. 4B. 5C. 6D. 7 |
|
Answer» Correct Answer - D Given `[p]` mean greatest positive integer less than or `[p]` equal to `p`. `implies[p]=p` `implies[-p]=p` `implies[-1/4]+[4-1/4]+[3]` `=1/4+4-1/4+3=7` |
|
| 191. |
यदि `p-2q=4` है तो `p^(3)-8q^(3)-24pq-64` का मान ज्ञात करें।A. 2B. 0C. 3D. -1 |
|
Answer» Correct Answer - B `p-2q=4` Take cube on both sides `(p-2q)^(3)=(4)^(3)` `p^(3)-8q^(3)-3pxx2q(p-2q)=64` `p^(3)-8q^(3)-6pqxx4=64` `p^(3)-8q^(3)-24pq=64` `p^(3)-8q^(3)-24pq-64=0` |
|
| 192. |
यदि `a=(b^(2))/(b-a)` है तो `a^(3)+b^(3)` का मान ज्ञात करें।A. `6ab`B. `0`C. `1`D. `2` |
|
Answer» Correct Answer - B `a=(b^(2))/(b-a)` `impliesa(b-a)=b^(2)` `ab-a^(2)=b^(2)` `a^(2)+b^(2)-ab=0` `impliesa^(3)+b^(3)=(a+b)(a^(2)+b^(2)-ab)` `:. a^(3)+b^(3)=0` |
|
| 193. |
यदि `(4x)/3+2P=12` है तो `x=6,P` के किस मान के लिए होगा?A. 6B. 4C. 2D. 1 |
|
Answer» Correct Answer - C `(4x)/3+2P=12,x=6` (Given) `(4xx6)/3+2P=12` `2P=12-8` `P=4/2` `P=2` |
|
| 194. |
`(p^(2)-p)/(2p^(3)+p^(2))+(p^(2)-1)/(p^(2)-3p)+(p^(2))/(p+1)` का साधारणीकृत मान क्या है?A. `2p^(2)`B. `1/(2p^(2))`C. `p+3`D. `1/(p+3` |
|
Answer» Correct Answer - B `(p^(2)-p)/(2p^(3)+p^(2))+(p^(2)-1)/(p^(2)+3p)+(p^(2))/(p+1)` In such type of question assume values of `p` `:.` Let `p=1` `:. (1-1)/(2+1)+(1-1)/(1+3)+1/(1+1)` `=0+0+1/2=1/2` Now check options b `1/(2p^(2))=1/2` Hence option b is answer: |
|
| 195. |
यदि `a+b+c+d=1` है तो `(1+a)(1+b)(1+c)(1+d)` का अधिकतम मान क्या होगा?A. 1B. `(1/2)^(3)`C. `(3/4)^(3)`D. `(5/4)^(4)` |
|
Answer» Correct Answer - D `a+b+c+d=1` `(1+a)(1+b)(1+c)(1+d)` `implies` For maximum value `a,b,c,d` `a=b=c=d=1/4` `=(1+1/4)(1+1/4)(1+1/4)(1+1/4)=(5/4)^(4)` |
|
| 196. |
यदि `x+1/x=2` और `x` वास्तविक संख्याऐं है तो `x^(17)+1/(x^(19))` का मान क्या होगा?A. 1B. 0C. 2D. -2 |
|
Answer» Correct Answer - C `x+1/x=2` (assume `x=1`, so `1+1=2`) `x^(17)+1/(x^(19))=(1)^(17)=1/((1)^(19))` `=1+1=2` |
|
| 197. |
यदि `x^(2)+y^(2)+1=2x` है तो `x^(3)+y^(5)` का मान ज्ञात करें।A. 2B. 0C. -1D. 1 |
|
Answer» Correct Answer - D `x^(2)+y^(2)+1=2x` `x^(2)-2x+1+y^(2)=0` `(x-1)^(2)+y^(2)=0` If `A^(2)+B^(2)=0` [As powers are even it can possible only when `A=0` & `B=0`] `:. x-1=0` `x=1` `y=0` `:. x^(3)+y^(5)=1+0=1` |
|
| 198. |
यदि `x(x-3)=-1` है तो `x^(3)(x^(3)-18)` का मान ज्ञात करें।A. -1B. 2C. 1D. 0 |
|
Answer» Correct Answer - A `x(x-3)=-1` `implies (x-3)=(-1)/x` Taking cube on both sides `implies (x-3)^(3)=((-1)/x)^(3)` `implies x^(3)-27-9xx(x-3)=(-1)/(x^(3))` `implies x^(3)-27-9xx-1=(-1)/(x^(3))` `implies x^(3)-27+9=(-1)/(x^(3))` `implies x^(3)-18=(-1)/(x^(3))` `implies x^(3)(x^(3)-18)=-1` |
|
| 199. |
यदि `a=(sqrt(x+2)+sqrt(x-2))/(sqrt(x+2)-sqrt(x-2))` है तो `a^(2)-ax` का मान क्या होगा?A. 2B. 1C. 0D. -1 |
|
Answer» Correct Answer - D According to the question `a=(sqrt(x+2)+sqrt(x-2))/(sqrt(x+2)-sqrt(x-2))` Put `x=2` `a=(sqrt(2+2)+sqrt(2-2))/(sqrt(2+2)-sqrt(2-2))` `a=(sqrt(4))/(sqrt(4))=1` `a^(2)-ax=1^(2)-1xx2=1-2=-1` |
|
| 200. |
यदि `a+b=1`, तो `a^(3)+b^(3)-ab-(a^(2)-b^(2))^(2)` का मान ज्ञात कीजिए। |
|
Answer» Correct Answer - A Let `a=0` `b=1` `implies a^(3)+b^(3)-ab-(a^(2)-b^(2))^(2)` `implies 0+1-0(0-1)^(2)` `implies 1-1=0` |
|