Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

यदि `2^(x+4)-2^(x+2)=3` हो तो `x` का मान ज्ञात कीजिए?

Answer» Correct Answer - D
`2^(x+4)-2^(x+2)=3`
`2^(x).2^(4)-2^(x).2^(2)=3`
`2^(x)(2^(4)-2^(2))=3`
`2^(x)(16-4)=3`
`2^(x)=3/12=1/4`
`2^(x)=2^(-2)`
`x=-2`
252.

यदि `x+y+z=6` और `xy+yz+zx=10` तो `x^(3)+y^(3)+z^(3)-3xyz` का मान क्या होगा?A. 36B. 40C. 42D. 48

Answer» Correct Answer - A
Given
`implies x+y+z=6`
`implies xy+yz+zx=10`
To find `x^(3)+y^(3)+z^(3)-3xyz=?`
`implies` Using formula.
`implies (x+y+z)^(2)=x^(2)+y^(2)+z^(2)+2`
`(xy+yz+zx)`
`implies 6^(2)=x^(2)+y^(2)+z^(2)+xx10`
`implies 36=x^(2)+y^(2)+z^(2)+20`
`implies x^(2)+y^(2)+z^(2)=16`
`implies x^(2)+y^(2)+z^(2)-3xyz=`
`(x+y+z)[x^(2)+y^(2)+z^(2)-xy-yz-zx]`
`=6[16-(xy)+yz+zx)]`
`=6[16-10]=6xx6=36`
253.

यदि `x^(2)=y+z,y^(2)=z+x,z^(2)=x+y` है तो `1/(x+1)+1/(y+1)+1/(z+1)` का मान क्या होगा?A. -1B. 1C. 2D. 41

Answer» Correct Answer - B
`x^(2)=y+z`
`y^(2)=z+x`
`z^(2)=x+y`
`implies x^(2)+x=x+y+z`
Adding `x` on both sides
`x(x+1)=x+y+z`
`1/((x+1))=x/(x+y+z)`
Similarly
`1/(y+1)=y/(x+y+z)` and `1/(z+1)`
`=z/(x+y+z)`
`:. 1/(x+1)+1/(y+1)+1/(1+z)`
`=x/(x+y+z)+y/(x+y+z)+z/(x+y+z)`
`=(x+y+z)/(x+y+z)=1`
254.

निम्नलिखित प्रत्येक व्यंजक के गुणनखण्ड कीजिए: `4sqrt(3)x^(2)+5x-2sqrt(3)`A. `4x+sqrt(3)`B. `4x+3`C. `4x-3`D. `4x-sqrt(3)`

Answer» Correct Answer - D
`4sqrt(3)x^(2)+5x-2sqrt(3)=0`
`4sqrt(3)x^(2)+8x-3x-2sqrt(3)=0`
`4x(sqrt(3)x+2)-sqrt(3)(sqrt(3)x+2)=0`
`(4x-sqrt(3))(sqrt(3)x+2)=0`
255.

यदि `0.13xxp^(2)=13` है तो `p` किसके बराबर है?A. `10`B. `0.01`C. `0.1`D. `100`

Answer» Correct Answer - A
`0.13xxp^(2)=13`
`p^(2)=13/0.13=13/12xx100`
`p=10`
256.

The value of x for which the expressions 19 - 5x and 19x + 5 become equal is1. 7/242. 7/123. 11/124. 11/24

Answer» Correct Answer - Option 2 : 7/12

Given:

Two expressions 19 – 5x and 19x + 5

Concept Used:

We have to equate both the given expressions.

Calculation:

19 – 5x = 19x + 5

⇒ 24x = 14

⇒ x = 14/24 = 7/12

∴ The Value of x for which both expressions become equal is 7/12

257.

If the sum of two numbers is 25 and one of those numbers is sum of 7 and half times that of the second number. Find the difference between, twice the larger number and twice the smaller number.1. 52. 103. 44. 2

Answer» Correct Answer - Option 4 : 2

Given

Sum of two numbers is 25

Calculation

Let the one number be x

And the second number be y

According to question

x + y = 25

⇒ x = 25 - y    ---- (1)

x = (1/2)y + 7     ---- (2)

From (1) and (2)

⇒ 25 - y = (1/2)y + 7

⇒ 25 - 7 = (1/2)y + y

⇒ 18 = 3y/2

⇒ y = (18 × 2)/3

⇒ y = 12

⇒ x = 25 - 12

⇒ x = 13

Now, required difference = 2(larger number) - 2(smaller number)

⇒ 2(13) - 2(12)

⇒ 26 - 24 = 2

∴ The required difference is 2.

258.

In the expansion of (2x + y )3 - (2x - y)3, the coefficient of x2y is:1. 242. 183. 124. 16

Answer» Correct Answer - Option 1 : 24

Formula:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a - b)3 = a3 - 3a2b + 3ab2 - b3

Calculation:

(2x + y)3 = 8x3 + 12x2y + 6xy2 + y3

(2x - y) = 8x3 - 12x2y + 6xy2 - y3

( 2x + y )- ( 2x - y)3 = 8x3 + 12x2y + 6xy2 + y3 - 8x3 + 12x2y - 6xy2 + y3

( 2x + y )- ( 2x - y)3 = 24x2y + 2y3

∴ The coefficient of x2y is 24.

 

259.

In the following question, two equations numbered I and II are given. You have to solve both the equations and give answer:I. 11x2 + 18x + 7 = 0II. 3y2 + 2y - 1 = 01. x > y2. x ≥ y3.  x < y4.  x ≤ y5. x = y or the relation cannot be determined

Answer» Correct Answer - Option 5 : x = y or the relation cannot be determined

i.  11x2 + 18x + 7 = 0

⇒ 11x2 + 11x + 7x + 7 = 0

⇒ 11x(x + 1) + 7(x + 1) = 0

⇒ (x + 1)(11x + 7) = 0

⇒ x = -1, -7/11

 

ii. 3y2 + 2y - 1 = 0

⇒ 3y+ 3y - y - 1 = 0

⇒ 3y(y + 1) - 1(y + 1) = 0

⇒ (y + 1) (3y - 1) = 0

⇒ y = -1, 1/3

 

Value of X

 Value of Y

Relation

-7/11

-1

x > y

-1

1/3

x < y

-7/11

1/3

x < y

-1

-1

x = y

 

Hence, the relation cannot be determined​.

260.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. 3X2 – 42X + 135 = 0II. 2Y2 – 42Y + 220 = 01. X > Y2. X < Y3. X  ≥  Y4. X ≤  Y5. X = Y or the relationship between X and Y cannot be established.

Answer» Correct Answer - Option 2 : X < Y

Calculation:

I. 3X2 – 42X + 135 = 0

⇒ X2 – 14X + 45 = 0      ----(∵ divide by 3 )

⇒ X2 – 9X – 5X + 45 = 0

⇒ X(X – 9) – 5(X – 9) = 0

⇒ (X – 5) (X – 9) = 0

∴ The value of X is 5, 9.

II. 2Y2 – 42y + 220 = 0

⇒ Y2 – 11Y – 10Y + 110 = 0      ----(∵ taking 2 as common)

⇒ Y(Y – 11) – 10Y(Y – 11) = 0

⇒ (Y – 10) (Y – 11) = 0

∴ The value of Y is 10, 11.

Value of X

Value of Y

Relation

5

10

X < Y

5

11

X < Y

9

10

X < Y

9

11

X < Y

 

∴ X < Y.

261.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer. I. 2X2 – 18X + 40 = 0II. 2Y2 – 15Y + 28 = 01. X > Y 2. X < Y3. X ≥ Y4. X ≤ Y5. X = Y or the relationship between X and Y cannot be established.

Answer» Correct Answer - Option 3 : X ≥ Y

I. 2X2 – 18X + 40 = 0

⇒ X2 – 4X – 5X + 20 = 0 (∵ taking 2 as common)

⇒ (X – 4) (X – 5)

⇒ X = 4, 5

II. 2Y2 – 15Y + 28 = 0

⇒ 2Y2 – 7Y – 8Y + 28 = 0

⇒ Y(2Y – 7) – 4(2Y – 7) = 0

⇒ (Y – 4) (2Y – 7) = 0

⇒ Y = 4, 7/2

Value of X

Value of Y

Relation

4

4

X = Y

5

4

X > Y

4

7/2

X > Y

5

7/2

X > Y

 

∴ X ≥ Y

262.

Cost price of 4 apples and 4 oranges is 76 rupees, and cost price of 6 apples and 2 oranges is 78 rupees, then find out the difference between the price of an apple and an orange.1. 12. 23. 34. 4

Answer» Correct Answer - Option 1 : 1

Given :

Cost price of 4 apples and 4 oranges = 76 rupees 

Cost price of 6 apples and 2 oranges = 78 rupees 

Calculations :

Let the cost price of apple = A 

Let the cost price of orange = O

According to the question 

4A + 4O = 76       ....(1)

6A + 2O = 78       ....(2)

multiply equ (1) with 3 and equ (2) with 2 and solving, we get 

A = 10 and O = 9 

Now 

A - O = 10 - 9 = 1 

Diffrence of cost price of an Apple and an orange is 1 rupees

 

 

263.

If x : y = 2 : 3 then the value of \(\frac{3x + 2y}{9x + 5y}\) will be:1. \(\frac{4}{11}\)2. \(\frac{11}{2}\)3. \(\frac{1}{2}\)4. \(\frac{5}{14}\)

Answer» Correct Answer - Option 1 : \(\frac{4}{11}\)

Given:

x : y = 2 : 3

Calculation:

As, x : y = 2 : 3

Then, x = 2k and  y = 3k

⇒ Put this ratio in this equation  \(\frac{3x + 2y}{9x + 5y}\)

⇒ \(\frac{3(2k) + 2(3k)}{9(2k) + 5(3k)}\)

⇒ 12/33 = 4/11

∴ The value of the given expression is 4/11
264.

If \({x^2} - 3\sqrt 2 x + 1 = 0\), then the value of \({x^3} + \frac{1}{{{x^3}}}\) is:1. \(45\sqrt 2 \)2. \(54\sqrt 2 \)3. \(24\sqrt 6 \)4. \(36\sqrt 6\)

Answer» Correct Answer - Option 1 : \(45\sqrt 2 \)

Given:

\({x^2} - 3√ 2 x + 1 = 0\)

Formula used:

(a + b)3 = a3 + b3 + 3ab(a + b)

Calculation:

\({x^2} - 3√ 2 x + 1 = 0\)

⇒ x(x – 3√2 + 1/x) = 0

⇒ (x – 3√2 + 1/x) = 0

⇒ x + 1/x = 3√2      ----(1)

Cubing on both side

⇒ (x + 1/x)3 = (3√2)3

(a + b)3 = a3 + b3 + 3ab(a + b)

⇒ x3 + 1/x3 + 3(x + 1/x) = 54√2

⇒ x3 + 1/x3 + 3 × 3√2  = 54√2  (from equation 1)

⇒ x3 + 1/x3 = 54√2 – 9√2

⇒ x3 + 1/x3 = 45√2

∴ The value of x3 + 1/x3 is 45√2

265.

There are 110 participants in an event. If the number of female is 7/15 times the number of male, then the number of male is: 1. 752. 403. 804. 35

Answer» Correct Answer - Option 1 : 75

Given:

The total number of participants = 110

The number of females who participated = 7/15 times of the number of males

Calculations:

Let the number of males be 'x'

The total number of female = (7/15) × x

The total number of participants  = x + 7x/15

⇒ 22x/15 = 110

⇒ 22x/15 = 110

⇒ x = 110 × 15/22

⇒ x = 75

∴ The total number of male participated in event is 75

266.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answerI. 14x3 = 378II. 27y2 = 2431. x > y2. x ≤ y3. x = y or the relationship cannot be established.4. x ≥ y5. x < y

Answer» Correct Answer - Option 4 : x ≥ y

I. 14x3 = 378

⇒ x3 = 27

⇒ x = 3

II. 27y2 = 243

⇒ y2 = 9

⇒ y = +3 or -3

Comparison between x and y (via Tabulation):

Value of x

Relation

Value of y

3

=

3

3

>

-3

∴ x ≥ y

267.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.l. x2 – 43x – 188 = 0II. y2 + 21y – 196 = 01. x &gt; y2. x ≤ y3. x = y or relation between x and y can not be determined.4. x ≥ y5. x &lt; y 

Answer» Correct Answer - Option 3 : x = y or relation between x and y can not be determined.

Calculation:

l. x2 – 43x – 188 = 0

⇒ x2 – (47 – 4)x – 188 = 0

⇒ x2 – 47x + 4x -188 = 0

⇒ x(x – 47) + 4(x – 47) = 0

⇒ (x – 47) (x + 4) = 0

x = 47, -4

 

II. y2 + 21y – 196 = 0

⇒ y2 + (28 – 7)y – 196 = 0

⇒ y2 + 28y – 7y – 196 = 0

⇒ y(y + 28) – 7(y + 28) = 0

⇒ (y + 28) (y – 7) = 0

y = -28, 7

Comparison between x and y (via Tabulation):

Value of x

Value of y

Relation 

47

-28

x > y

47

7

x > y

-4

-28

x > y

-4

7

x < y

 

∴ Relation between x and y can not be determined.

268.

`(1+1/x)(1+1/(x+1))(1+1/(x+2))(1+1/(x+3))` का मान क्या है?A. `1+1/(x+4)`B. `x+4`C. `1/x`D. `(x+4)/x`

Answer» Correct Answer - D
`(1+1/x)(1+1/(x+1))(1+(x+2))`
`(1+1/(x+3))`
Taking L.C.M of each term.
`implies ((x+1)/x)((x+1+1)/(x+1))((x+2+1)/(x+2))`
`((x+3+1)/(x+3))`
`implies 1/x xx (x+4)implies(x+4)/x`
269.

An NGO named AKASH distributed some books among the children of an orphanage. If the total number of children are increased by 5, then each children will get 2 book less. If total number of children are decreased by 10, then each children will get 10 books more. Find the total number of books distributed in the orphanage.1. 2002. 1503. 2504. 100

Answer» Correct Answer - Option 1 : 200

Given:

If the total number of children are increased by 5, then each children will get 2 book less.

If total number of children are decreased by 10, then each children will get 10 books more.

Calculation:

Let the total number of children be x and each children get books be y

Total books = x × y

According to question

If children = x + 5, and books per child = y – 2

Then (x + 5) × (y – 2) = x × y

⇒ x × y – 2x + 5y – 10 = x × y

⇒ 2x – 5y = -10      ---- (1)

If children = x – 10, and books per child = y + 10

Then (x – 10) × (y + 10) = x × y

⇒ x × y + 10x – 10y – 100 = x × y

⇒ 10x – 10y = 100

⇒ x – y = 10      ---- (2)

Subtracting eq. (1) from 5 × eq. (2)

⇒ 5 × (x – y) – (2x – 5y) = 5 × 10 – (-10)

⇒ 5x – 5y – 2x + 5y = 50 + 10

⇒ 3x = 60

⇒ x = 20

Put the value of x in eq. (2)

⇒ 20 – y = 10

⇒ y = 10

Total book = x × y

⇒ 20 × 10

⇒ 200

The total number of books distributed in the orphanage is 200.

270.

Find the two roots of equation, √3x2 – 8x + 5√3 = 0.1. 3, -5√32. √3, 5√33. √3, 5/√34. -√3, 5/√3

Answer» Correct Answer - Option 3 : √3, 5/√3

Given:

√3x2 – 8x + 5√3 = 0  

Concept used:

By using factorization method (Middle term split)

Calculation:

√3x2 – 8x + 5√3 = 0  

⇒ √3x2 – 5x – 3x + 5√3 = 0

⇒ x(√3x – 5) – √3(√3x – 5) = 0

⇒ (√3x – 5)(x – √3) = 0

⇒ (√3x – 5) = 0 or (x – √3) = 0

⇒ x = 5/√3 or x = √3

The two roots of equation is √3 and 5/√3.

271.

The sum of one‐half, one‐third and one‐fourth of a number exceeds the number by 12. The number is:‐ 1. 1442. 1543. 904. 174

Answer» Correct Answer - Option 1 : 144

Let the number be x

The sum of one‐half, one‐third, and one‐fourth of that number = x/2 + x/3 + x/4

Given that it exceeds that number by 12

⇒ x/2 + x/3 + x/4 - x = 12

⇒ (6x + 4x + 3x - 12x)/12 = 12

⇒ x/12 = 12

⇒ x = 144

∴ The number is 144

272.

Find the value of (a + 2b)2 - (a - 2b)2  1. 8ab2. 10ab3. 6ab4. 4ab

Answer» Correct Answer - Option 1 : 8ab

Given:

(a + 2b)2 - (a - 2b)2

Concept used:

(a + b)2 = a2 + 2ab + b2

Calculation:

⇒ (a2 + 4ab + 4b2) - (a2 - 4ab + 4b2)

⇒ a2 + 4ab + 4b2 - a2 + 4ab - 4b2

⇒ 4ab + 4ab

∴ 8ab.

273.

Find the value of x for given equation 3x2 + 5x - 2 = 01. -3 and -22. 3 and -1/23. 2 and -34. -2 and 1/3

Answer» Correct Answer - Option 4 : -2 and 1/3

Given:

3x2 + 5x - 2 = 0

Concept used:

Factorisation 

Calculation:

⇒ 3x2 + 5x - 2

⇒ 3x2 + 6x - x - 2

⇒ 3x(x + 2) -1(x + 2)

⇒ (3x - 1)(x + 2)

⇒ 3x - 1 = 0 so x = 1/3

⇒ x + 2 = 0 so x = -2

∴ x = -2 and 1/3

274.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 = 49II. y2 – 16y + 63 = 01. x > y2. x ≤ y3. No relation in x and y or x = y4. x ≥ y5. x < y

Answer» Correct Answer - Option 2 : x ≤ y

Calculations:

From I,

x2 = 49

⇒ x = –7, 7 

From II,

y2 – 16y + 63 = 0

⇒ y2 – 9y – 7y + 63 = 0

⇒ y(y – 9) – 7(y – 9) = 0

⇒ (y – 9)(y – 7) = 0

Taking,

⇒ y – 9 = 0 or y – 7 = 0

⇒ y = 9 or y = 7

Comparison between x and y (via Tabulation):

X

y

Relation

–7

9

x < y

–7

7

x < y

7

9

x < y

7

7

x = y

 

x ≤ y.

275.

In the given questions, two equations numbered l and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 + 7x + 12 = 0II. y2 + 8y + 16 = 01. x > y2. x ≤ y3. No relation in x and y or x = y4. x ≥ y5. x < y

Answer» Correct Answer - Option 4 : x ≥ y

Calculations:

From I,

x2 + 7x + 12 = 0

⇒ x2 + 4x + 3x + 12 = 0

⇒ x(x + 4) + 3(x + 4) = 0

⇒ (x + 4)(x + 3) = 0

Taking,

⇒ x + 4 = 0 or x + 3 = 0

⇒ x = –4 or x = –3

From II,

y2 + 8y + 16 = 0

⇒ y2 + 4y  + 4y + 16 = 0

⇒ y(y + 4) + 4(y + 4) = 0

⇒ (y + 4)(y + 4) = 0

Taking,

⇒ y + 4 = 0 or y + 4 = 0

⇒ y = –4 or y = –4

Comparison between x and y (via Tabulation):

x

y

Relation

–4

–4

x = y

–4

–4

x = y

–3

–4

x > y

–3

–4

x > y

 

x ≥ y.

276.

Find the value of x if 3x + 2 = 23.1. 72. 23. 64. 5

Answer» Correct Answer - Option 1 : 7

Calculation:

According to the question,

3x + 2 = 23

⇒ 3x = 23 – 2

⇒ 3x = 21

⇒ x = 7

∴ The value of x is 7

277.

If one of the roots of equation x2 + mx + n = 0 is the square of the other, then which of the following condition will be true? 1. m3 + n2 + n = -3mn2. m3 + n2 + n = 3mn3. n3 + m2 + m = 3mn4. n3 + m2 + m = -3mn

Answer» Correct Answer - Option 2 : m3 + n2 + n = 3mn

Given:

One of the roots of equation x2 + mx + n = 0 is the square of the other.

Formula Used:

If ax2 + bx + c = 0, then

Sum of the roots = -(b/a)

Product of the roots = (c/a)

(a + b)3 = a3 + b3 + 3 × a × b × (a + b)

Calculation:

Let α and α2 be the roots of equation x2 + mx + n = 0

Product of the roots = (c/a)

⇒ α × α2 = n

⇒ α3 = n

⇒ α = (n)1/3      ---- (1)

Sum of the roots = -(b/a)

⇒ α + α2 = -m

⇒ α + α2 = -m      ---- (2)

Put the value of eq. (1) in the eq. (2)

⇒ (n)1/3 + (n)2/3 = -m

On cubing both the sides,

⇒ n + n2 + 3 × n1/3 × n2/3 × (n1/3 + n2/3) = (-m)3

⇒ n + n2 + 3 × n × (-m) = -m3

⇒ n + n2 + m3 = 3mn

∴ The condition n + n2 + m3 = 3mn will be true.
278.

Find the minimum value of x2 – 13x + 36.1. -25/42. -16/53. 25/44. 16/5

Answer» Correct Answer - Option 1 : -25/4

Given:

The polynomial is x2 – 13x + 36

Formula Used:

If polynomial ax2 + bx + c, then

Min/Max value of polynomial = c – b2/4a

Calculation:

For polynomial x2 – 13x + 36

a = 1, b = -13, and c = 36

Minimum value of the polynomial = c – b2/4a

⇒ 36 – (-13)2/4 × 1

⇒ (36 × 4 – 169)/4

⇒ (144 – 169)/4

⇒ -25/4

The minimum value of x2 – 13x + 36 is -25/4.

279.

The last digit of the number (986)986 is:1. 62. 23. 44. 8

Answer» Correct Answer - Option 1 : 6

Concept Used:

The last digit obtained for any power of a number ending with digit 6 is always 6

i.e. (6)1 = 6

(6)2 = 6

(6)3 = 6 and so on...

Calculation:

⇒ last digit of the number (986)986  = 6  

∴ Required last digit = 6          

280.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.l. 24x2 + 38x + 15 = 0ll. 54y2 + 123y + 65 = 01. x > y2. x < y3. x ≥ y 4. x ≤ y5. x = y or relation between x and y can not be determined.

Answer» Correct Answer - Option 3 : x ≥ y 

Calculation:

l. 24x2 + 38x + 15 = 0

⇒ 24x2 + 18x + 20x + 15 = 0

⇒ 6x(4x + 3) + 5(4x + 3) = 0

⇒ (6x + 5) (4x + 3) = 0

x = -5/6, -3/4

ll. 54y2 + 123y + 65 = 0

⇒ 54y2 + 78y + 45y + 65 = 0

⇒ 6y(9y + 13) + 5(9y + 13) = 0

⇒ (6y + 5) (9y + 13) = 0

y = -5/6, -13/9

Comparison between x and y (via Tabulation):

Value of x

Value of y

Relation

-5/6

-5/6

x = y

-5/6

-13/9

x > y

-3/4

-5/6

x > y

-3/4

-13/9

x > y

 

∴ The result will be x ≥ y.

281.

यदि `5^(sqrt(x))+12^(sqrt(x))=13^(sqrt(x))` है तो `x` किसके बराबर है?A. `25/4`B. `4`C. `9`D. `16`

Answer» Correct Answer - B
`5^(sqrt(x))+12^(sqrt(x))=13^(sqrt(x))`
By option put `x=4`
`implies5^(sqrt(4))+12^(sqrt(4))=13^(sqrt(4))`
`implies 5^(2)+12^(2)=13^(2)`
`implies 169=169`
hence `x=4`
282.

यदि `ox` एक इस प्रकार का संबंध दर्शाता है कि `aoxb=2a` है जबकि `agtb,a+b` है जहां `altba^(2)` है जबकि `a=b` है, तो `[((5ox7)+(4ox4))/(3(ox5)-(15ox1)-3)]` किसके बराबर है?A. `1/3`B. `14/23`C. `2/3`D. `14/13`

Answer» Correct Answer - C
given `aoxb=2a`
where `agtb`
`a ox b=a+b`
where `altb`
`a ox b=a^(2)`
where `a=b`
`=((5+7)+(4)^(2))/(3(5)^(2)-(2xx15)-3)`
`=(12+16)/(75-30-3)=28/42=2/36`
283.

यदि `(125)^(x)=3125` है तो `x` का मान ज्ञात करें?A. `1/5`B. `3/5`C. `5/3`D. `5/7`

Answer» Correct Answer - C
`(125)^(x)=3125`
`(5^(3))=5^(5)`
`5^(3x)=5^(5)`
`:. 3x=5`
`x=5/3`
284.

If \(a + b = \frac 7 3\) and \(a^2 + b^2 = \frac {31} 9,\) find 27 (a3 + b3).1. 1542. 1563. 1524. 164

Answer» Correct Answer - Option 1 : 154

Given:

a + b = 7/3

a2 + b2 = 31/9

Formula used:

(a + b)2 = a2 + b2 + 2ab

a3 + b3 = (a + b)( a2 + b2 – ab)

Calculation:

According to the question,

⇒ a + b = 7/3

Squaring both sides,

⇒ (a + b)2 = (7/3)2

⇒ a2 + b2 + 2ab = 49/9

⇒ 31/9 + 2ab = 49/9

⇒ 2ab = 49/9 – 31/9

⇒ 2ab = 18/9

⇒ 2ab = 2

⇒ ab = 1

According to the formula,

⇒ a3 + b3 = (a + b)( a2 + b2 – ab)

Multiply 27 on both sides,

⇒ 27(a3 + b3) = 27(a + b)( a2 + b2 – ab)

⇒ 27(a3 + b3) = 27(7/3)( 31/9 – 1)

⇒ 27(a3 + b3) = 27(7/3)( 22/9)

⇒ 27(a3 + b3) = 22 × 7

⇒ 27(a3 + b3) = 154

The value of 27(a3 + b3) is 154.

285.

Solve: (x + 2)3 – (x + 6)21. x3 + 5x2 – 282. x3 - 5x2 – 283. x3 + 5x2  + 284. 2x3 + 5x2 – 28

Answer» Correct Answer - Option 1 : x3 + 5x2 – 28

Formula Used:

(a + b)3 = a3 + b+ 3a2b + 3ab2

(a + b)2 = a2 + 2ab + b2

Calculation:

(x + 2)3 = x3 + (2)3 + 3(x)2(2) + 3(x)(2)2

(x + 6)2 = (x)2 + 2(x)(6) + (6)2

According to question 

(x + 2)3 – (x + 6)2

⇒ x3 + 8 + 6x2 + 12x – (x2 + 12x + 36)

⇒ x3 + 8 + 6x2 + 12x – x2 - 12x – 36

∴ x3 + 5x2 – 28

The correct option is 1 i.e. x3 + 5x2 – 28 

286.

If a2 - 2a = 1, then what is the value of \({a^3} - \frac{1}{{{a^3}}}\)?1. 142. 183. 214. 24

Answer» Correct Answer - Option 1 : 14

Given:

a2 - 2a = 1

Formula Used:

(a - b)3 = a3 - b3 - 3a2b + 3ab2 = a3 - b3 - 3(ab)(a - b)

If (a - 1/a) = p

Then, (a3 - 1/a3) = p3 + 3p

Calculation:

a2 - 2a = 1

Divide by 'a'

⇒ a - 2 = 1/a

⇒ a - 1/a = 2

Now,

if (a - 1/a) = 2

∴ Then, (a3 - 1/a3) = (2)3 + 3(2) = 14

287.

In class VIII of an upper primary school at the beginning of the year, for every 2 boys, there were 3 girls. From the same class 5 girls left the school and 3 boys joined the class. As a result, boys and girls became equal in number. What was the total strength of the same class at the beginning of the year?1. 362. 403. 454. 52

Answer» Correct Answer - Option 2 : 40

Given:

Girls ∶ Boys = 3 ∶ 2

Calculation:

Let assume that number of girls be 3x

And, boys are be 2x

According to the question: 

⇒ (3x - 5) = (2x + 3)

⇒ x = 8

Total strength of the class in the beginning of the year = 2x + 3x = 5x

Total strength of the class in the beginning of the year = 5x = 5 × 8 = 40

∴ The total strength of the class at the beginning of the year was 40

The correct option is 2 i.e. 40

288.

Solve: \(\frac{{10 \times 10 \times 10 + 9 \times 9 \times 9}}{{10 \times 10 - 10 \times 9 + 9 \times 9}}\)1. 282. 93. 14. 19

Answer» Correct Answer - Option 4 : 19

Given:

\(\frac{{10 × 10 × 10 + 9 × 9 × 9}}{{10 × 10 - 10 × 9 + 9 × 9}}\)

Concept used:

(a3 + b3) = (a + b) × (a2 – ab + b2)

Calculations:

a = 10

b = 9 

⇒ (103 + 93) = (10 + 9) × (102 – 10 × 9 + 92)

Putting the values,

⇒ [(10 + 9) × (102 – 10 × 9 + 92)]/(102 – 10 × 9 + 92)

⇒ 10 + 9

⇒ 19

∴ The result of the given equation is 19

289.

If P and Q are the roots of f(x) = x2 - 14x + 45, then find the value of (1/P +1/Q)1. 45/142. 14/453. 41/544. 54/41

Answer» Correct Answer - Option 2 : 14/45

GIVEN:

 f(x) = x2 - 14x + 45

FORMULA USED:

Sum of roots = (-b/a) and Product of roots = c/a for f(x) = ax2 + bx + c 

CALCULATION:

f(x) = x2 - 14x + 45

⇒ a = 1, b = -14, c = 45

⇒ Sum of roots(P + Q) = (-b/a)

⇒ 14

⇒ Product of roots (PQ) = c/a

⇒ 45

⇒ (1/P + 1/Q) = (P + Q)/PQ

⇒ 14/45

∴  (1/P + 1/Q) = 14/45

290.

The traveling incurs two expenses one is constant and other is depends upon number of travelers. When there are 30 travelers, total expenses is Rs. 46000. When there are 12 travelers, then expenses is Rs. 19000. Find the expenses for 5 travelers.1. Rs. 85002. Rs. 60003. Rs. 70004. Rs. 90005. Rs. 6500

Answer» Correct Answer - Option 1 : Rs. 8500

Given:

Let constant expenses and other expenses for each traveler be Rs. a and Rs. b respectively.

Calculation:

⇒ 46000 = a + 30 × b

⇒ 19000 = a + 12 × b

Solving,

⇒ b = 1500 and a = Rs. 1000

∴ Required expenses = 1000 + 5 × 1500 = Rs. 8500

291.

Find the unit digit of a product 356 ×  7693.1. 62. 43. 84. 2

Answer» Correct Answer - Option 1 : 6

Given:

356 ×  7693

Calculations:

356

3= 1    

31 = 3    

3= 9    

3 = 27 

34 = 81

For every 4 powers the unit digit is same 

Here, power of 3 is 56 

56 ÷ 4 = 14 

So the unit digit  = 1 for  356

 7693.

6= 1 

61 =  6

61 =   36

For every power of 6 the unit digit is 6

6 × 1 = 6

∴ The unit digit of a product 356 ×  7693 is 6

292.

If 4 + 2x > 3(x – 1) and x + 3(x – 2) > x + 9; then ‘x’ can take which of the following values?1. (-7.5)2. 6.53. 7.34. (-6)

Answer» Correct Answer - Option 2 : 6.5

Given:

4 + 2x > 3(x – 1)

x + 3(x – 2) > x + 9

Concept:

Using inequality, find the range of x from both the equations and choose the appropriate option.

Calculation:

∵ 4 + 2x > 3(x – 1)

⇒ 4 + 2x > 3x – 3

⇒ 4 + 3 > 3x – 2x

⇒ x < 7     ----(1)

∵ x + 3(x – 2) > x + 9

⇒ x + 3x – 6 > x + 9

⇒ 4x – 6 > x + 9

⇒ 4x – x > 9 + 6

⇒ 3x > 15

⇒ x > 15/3

⇒ x > 5      ----(2)

From (1) and (2);

5 < x < 7

∴ From the options, x can take the value of 6.5.

293.

What should be added to 7(3x – 5y) to obtain 2(8x – 9y)?1. 17y – 5x2. 5x – 17y3. 17x – 5y4. 17x + 5y

Answer» Correct Answer - Option 1 : 17y – 5x

Given:

Given equation = 7(3x – 5y) = 21x – 35y

Final equation = 2(8x – 9y) = 16x – 18y

Concept:

Subtract the given equation from the final equation to get the desired answer.

Calculation:

Let the desired equation be ‘a’.

∴ 21x – 35y + a = 16x – 18y

⇒ a = 16x – 18y – 21x + 35y

⇒ a = 17y – 5x

294.

If the product of two numbers is 20 and sum of their squares is 41, then find the ratio of the sum and the difference of the two numbers?1. 9 ∶ 12. 1 ∶ 93. 9 ∶ 54. 4 ∶ 5

Answer» Correct Answer - Option 1 : 9 ∶ 1

Given:

Let the numbers be ‘x’ and ‘y’

∴ x × y = 20

x2 + y2 = 41

Formula used:

(x – y)2 = x2 + y2 – 2xy

(x + y)2 = x2 + y2 + 2xy

Calculation:

∵ (x – y)2 = x2 + y2 – 2xy

⇒ (x – y)2 = 41 – (2 × 20)

⇒ (x – y)2 = 41 – 40

⇒ (x – y)2 = 1

⇒ x – y = 1      ----(1)

∵ (x + y)2 = x2 + y2 + 2xy

⇒ (x + y)2 = 41 + (2 × 20)

⇒ (x + y)2 = 41 + 40

⇒ (x + y)2 = 81

⇒ x + y = √81 = 9      ----(2)

∴ (x + y) ∶ (x – y) = 9 ∶ 1

295.

If [5x + 1/(3x)] = (-10/3); find the value of [(3x)3 + 1/(5x)3]?1. -4.42. -4.83. -44. -4.2

Answer» Correct Answer - Option 1 : -4.4

Given:

[5x + 1/(3x)] = (-10/3)

Calculation:

∵ [5x + 1/(3x)] = (-10/3)

Multiplying both side with 3/5;

⇒ 3/5 × [5x + 1/(3x)] = 3/5 × (-10/3)

⇒ [(3/5) × (5x)] + [(3/5) × (1/3x)] = (-2)

⇒3x + (1/5x) = (-2)

Cube both side;

⇒ (3x)3 + (1/5x)3 + 3 × (3x) × (1/5x) × [3x + (1/5x)] = (-8)

⇒ (3x)3 + (1/5x)3 + [9/5 × (-2)] = (-8)

⇒ (3x)3 + (1/5x)3 – (18/5) = (-8)

⇒ (3x)3 + (1/5x)3 = (-8) + (18/5)

⇒ (3x)3 + (1/5x)3 = [(-40) + 18]/5

⇒ (3x)3 + (1/5x)3 = (-22)/5

⇒ (3x)3 + (1/5x)3 = (-4.4)
296.

The graphs of the equations 3x - 20y - 2 = 0 and 11x - 5y + 61 = 0 intersect at P(a, b). What is the value of (a2 + b2 - ab)/(a2 - b2 + ab)?1. \(\frac{41}{31}\)2. \(\frac{31}{41}\)3. \(\frac{37}{35}\)4. \(\frac{5}{7}\)

Answer» Correct Answer - Option 2 : \(\frac{31}{41}\)

GIVEN:

3x - 20y - 2 = 0 and 11x - 5y + 61 = 0

CALCULATION:

3x - 20y - 2 = 0 .......(1)

⇒ (11x - 5y + 61 = 0) × 4  ......(2)

On subtracting  these two equation

⇒ 41x = - 246

⇒ x = - 6

putting the value of x = - 6 in any of the two equation, we will get 

⇒ y = -1

both the equations intersect each other at point P(a,b) = P(x. y)

⇒ a = -6 and b = -1

⇒ (a2 + b2 - ab)/(a2 - b2 + ab) = (36 + 1 - 6)/(36 - 1 + 6)

⇒ 31/41

∴  (a2 + b2 - ab)/(a2 - b2 + ab)  = 31/41

297.

यदि `(x=1/x): (x-1/x)=5:3` हो तो `x` का मान है ?A. `+-1`B. `+-2`C. `+-3`D. `0`

Answer» Correct Answer - B
`(x+1/x)/(x-1/x)=5/3`
By C & D
`(x+1/x+x-1/x)/(x+1/x-x+1/x)=(5+3)/(5-3)`
`(2x)/(2/x)=8/2=4`
`x^(2)=4`
`x=+-2`
298.

यदि `x+y=sqrt(3)` और `x-y=sqrt(2)` हो तो `8xy(x^(2)+y^(2))` का मान बताइये?A. 6B. `sqrt(6)`C. 5D. `sqrt(5)`

Answer» Correct Answer - C
`x+y=sqrt(3)`……………….i
`x=y=sqrt(2)`………….ii
From eq i and ii
`x=(sqrt(3)+sqrt(2))/2,y=(sqrt(3)-sqrt(2))/2`
So
`8xy(x^(2)+y^(2))`
`=8xx((sqrt(3)+sqrt(2)))/2xx((sqrt(3)-sqrt(2)))/2`
`[((sqrt(3)+sqrt(2))^(2))/4+(sqrt(3)-sqrt(2))^(2)/4]`
`=2(3-2)[(3+2+2sqrt(6)+3+2-2sqrt96)/4]`
`=2xx1xx10/4=5`
299.

यदि `x+1/x=2` हो तो `x^(2)+1/(x^(2))` किसके बराबर होगा?

Answer» Correct Answer - B
`x+1/x=2`
But `x=1`
So `x^(2)+1/(x^(2))=1^(2)+1/(1^(2))=2`
300.

If x2 + 1/x2 = 34, then find the value of √x – 1/√x. 

Answer» Correct Answer - Option 3 : 2

GIVEN:

x2 + 1/x2 = 34

CONCEPT:

If x2 + 1/x2 = a,

then x – 1/x = √(a – 2)

x + 1/x = √(a + 2)

CALCULATION:

x2 + 1/x2 = 34

If x2 + 1/x2 = a, then x + 1/x = √(a + 2)

x + 1/x = √(a + 2) = √36 = 6

If x + 1/x = a, then √x – 1/√x = √(a – 2)

⇒ √x – 1/√x = √(6 – 2)

∴ The value of √x – 1/√x is 2.