Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

If x + 1/x = 23, then find the value of (√x – 1/√x).1. √252. √213. √294. √19

Answer» Correct Answer - Option 2 : √21

Given:

x + 1/x = 23

Formula Used:

(a – b)2 = a2 + b2 – 2ab

Calculations:

x + 1/x = 23

Subtracting 2 on both sides

x + 1/x – 2 = 23 – 2

⇒ (√x)2 + 1/(√x)2 – 2 = 21

⇒ (√x – 1/√x)2 = 21

∴ (√x – 1/√x) is √21

302.

If √x = √3 - √5, then the value of x2 - 16x + 6 is:1. 42. 03. 24. -2

Answer» Correct Answer - Option 3 : 2

Given:

√x = √3 – √ 5

Calculation:

Squaring both sides

(√x)2 = (√3 – √5)2

⇒ x = 3 + 5 – 2√15 

⇒ x – 8 = -2√15

Again, squaring both sides

(x – 8)2 = (-2√15)2

⇒ x2 + 64 – 16x = 4 × 15

⇒ x2 + 4 – 16x = 0

⇒ x2 – 16x + 6 = 2  

∴ The value is 2.

303.

In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I. x2 + 3√ 3 x - 120 = 0II 6y2 + 13√ 3y + 20  =01. x ≥ y2. x > y3. x ≤ y4. x < y5. No relation or x = y

Answer» Correct Answer - Option 5 : No relation or x = y

I. x2 + 3√ 3 x - 120 = 0

⇒ x2 + 8√3x - 5√ 3x - 120 = 0

⇒ x (x + 8√ 3x) - 5√ 3(x + 8√ 3) = 0

⇒ (x - 5√ 3)(x + 8√ 3 ) = 0

⇒ x = 5√ 3, -8√ 3

II 6y+ 13√ 3y + 20  = 0

⇒ 6y2 + 8√3x + 5√ 3x +20 = 0

⇒2√3 y (√ 3 y + 4) - 5(√ y + 4) = 0

⇒ (2√ 3 y - 5)(√ 3 y + 4 ) = 0

⇒ y = -5//2√ 3, -4/√ 3

value of xvalue of yrelation x,y
5√ 35//2√ 3x > y
5√ 3-4/√ 3x > y
-8√ 35//2√ 3x < y
-8√ 3-4/√ 3x < y

 

∴ There is no relation between x and y

304.

In an army camp soldiers are standing in such a way that the number of rows are equal to the number of soldiers in each row. If the total number of soldiers are 784, then find the number of soldiers in each row.1. 282. 183. 324. 22

Answer» Correct Answer - Option 1 : 28

Given-

Total number of soldiers = 784

Concept Used-

Concept of square root

Calculation-

Let the total number of rows and number of soldiers in each row be x

Total number of soldiers = x × x

According to the question -

x2 = 784

x = √784

x = 28

∴ Number of soldiers in each row is 28

305.

If [(x + a)/a] + [(x + b)/b] + [(x + c)/c] = 3, and x ≥ 1 then find the value of (ab + bc + ca)?1. 22. 03. 14. 3

Answer» Correct Answer - Option 2 : 0

Given:

[(x + a)/a] + [(x + b)/b] + [(x + c)/c] = 3

Calculation:

[(x + a)/a] + [(x + b)/b] + [(x + c)/c] = 3

⇒ x/a + a/a + x/b + b/b + x/c + c/c = 3

⇒ x/a + 1 + x/b + 1 + x/c + 1 = 3

⇒ x/a + x/b + x/c + 3 = 3

⇒ (bcx + acx + abx)/abc = 3 – 3

⇒ (bcx + acx + abx)/abc = 0

⇒ [x(ab + bc + ca)]/abc = 0

As from the question x ≥ 0

∴ (ab + bc + ca) = 0

306.

If (a68 + 1)/a34 = 34 than (a102 + 1)/a51 = ?1. 1982. 2043. 344. 51

Answer» Correct Answer - Option 1 : 198

Given, (a68 + 1)/a34 = 34

⇒ a34  + a-34 = 34      ---- (1)

⇒ a34  + a-34 + 2 = 36      {adding 2 both the sides}   

⇒ (a17  + a-17)2 = 62      {using, (a + b)2 = a2 + b2 + 2ab}   

⇒ (a17  + a-17) = 6      ---- (2)

Now, (a51  + a-51) = (a17  + a-17)( a34  + a-34 - a17 × a-17)      {using, a3 + b3 = (a + b) (a2 + b2 – ab)}   

⇒ (a102 + 1) / a51 = 6(34 – 1) = 198      {from eq. (1) and (2)}

307.

The cost of four cycle tyres and three tubes is Rs. 720, whereas the cost of the three cycle tyres and four tubes is Rs. 610. What is the cost of a tube?1. Rs. 502. Rs. 423. Rs. 454. Rs. 40

Answer» Correct Answer - Option 4 : Rs. 40

Let the cost of one cycle tyre be x, and the cost of one tube be y.

Here, The cost of four-cycle tyres and Three tubes is Rs. 720, and The cost of three cycle tyres and four tubes is Rs. 610.

So, 4x + 3y = 720      -----(1)

3x + 4y = 610      ----(2)

Multiplying equation (1) by 3 and equation (2) by 4,

12x + 9y = 2160     ----(3)

12x + 16y = 2440     ----(4)

Subtracting equation (3) from equation (4),

7y = 280

⇒ y = 40

Here, y is the cost of one tube.

Hence, the cost of a tube is "Rs. 40".

308.

If the value of [(127)3 + (173)3]/[(1.27)2 – 2.1971 + (1.73)2] is 30 × 10x, then find the value of ‘x’?1. 62. 53. 44. 8

Answer» Correct Answer - Option 2 : 5

Given:

[(127)3 + (173)3]/[(1.27)2 – 2.1971 + (1.73)2]

Concept:

Compare the given values with the formula of a3 + b3 and solve to get the desired answer.

Formula used:

a3 + b3 = (a + b)(a2 + b2 – ab)

⇒ (a3 + b3)/(a2 + b2 – ab) = a + b

Calculation:

∵ [(127)3 + (173)3]/[(1.27)2 – 2.1971 + (1.73)2]

⇒ {[(127)3 + (173)3]/[(127)2 – 21971 + (173)2]} × 10000

Now comparing the given values with the formula of a3 + b3:

⇒ {[(127)3 + (173)3]/[(127)2 – 21971 + (173)2]} × 10000 = (127 + 173) × 10000

⇒ 300 × 10000

⇒ 30 × 105

∴ x = 5

309.

If x2 + xy + y2 = 8 and x + √(xy) + y = 4, then find the value of √(xy)?

Answer» Correct Answer - Option 2 : 1

Given:

x2 + xy + y2 = 8

x + √(xy) + y = 4

Formula used:

(x + y)2 = x2 + y2 + 2xy

(x – y)2 = x2 + y2 – 2xy

Calculation:

∵ x + √(xy) + y = 4

⇒ x + y = 4 – (√xy)

Squaring both sides;

⇒ x2 + y2 + 2xy = 16 + xy – 8√xy

⇒ x2 + y2 + 2xy – xy = 16 – 8√xy

⇒ x2 + y2 + xy = 16 – 8√xy

⇒ 8 = 16 – 8√xy

⇒ 8√xy = 16 – 8

⇒ 8√xy = 8

⇒ √xy = 8/8 = 1

310.

If a(a + 3) = 4, find the value of the expression (a6 + 63a3 – 60)/4?1. 12. 03. 44. 2

Answer» Correct Answer - Option 1 : 1

Given:

a(a + 3) = 4

⇒ a2 + 3a = 4

Concept:

Cube both side of the given equation and then proceed.

Formula used:

(a + b)3 = a3 + b3 + 3ab(a + b)

Calculation:

∵ a2 + 3a = 4

On cubing both sides, we get;

(a2 + 3a)3 = 43

⇒ a6 + 27a3 + 3 × a2 × 3a(a2 + 3a) = 64

⇒ a6 + 27a3 + 3 × a2 × 3a(4) = 64

⇒ a6 + 27a3 + 36a3 = 64

⇒ a6 + 63a3 = 64      -----(1)

Putting the value of (1) in (a6 + 63a3 – 60)/4;

⇒ (64 – 60)/4

⇒ 4/4 = 1

311.

Factors of y30 – y27 + y24 – 1 are:1. (y – 1)2. (y + 1)3. Both (y – 1) and (y + 1)4. Neither (y – 1) nor (y + 1)

Answer» Correct Answer - Option 1 : (y – 1)

Concept:

If, (x + 1) or (x – 1) are factors of a given equation, then on putting x = 1 or x = (-1) in place of ‘x’ in the given equation will give 0. SO, by using option, put the value ‘y’ in the equation and test if the result comes 0 or not. If not, then it is not the factor of the equation, if yes, then it a factor of the given equation.

Calculation:

If (y – 1) is a factor,

Then, putting y = 1 in the given equation will give 0.

⇒ 130 – 127 + 124 – 1

⇒ 1 – 1 + 1 – 1 = 0

∴ (y – 1) is a factor of the given equation.

Now with (y + 1);

Put y = (-1) in the given equation;

⇒ (-1)30 – (-1)27 + (-1)24 – 1

⇒ 1 + 1 + 1 – 1 = 2

∴ (y + 1) is not a factor of given equation.

312.

If a = (√5 + 2)/(√5 – 2) and b = (√5 – 2)/( √5 + 2), then find the value of the expression a2 + b2 + ab?1. 3232. 3243. 3204. 321

Answer» Correct Answer - Option 1 : 323

Given:

a = (√5 + 2)/(√5 – 2)

b = (√5 – 2)/( √5 + 2)

Concept:

First rationalize the values of ‘a’ and ‘b’ and then proceed.

Formula used:

(a + b)2 = a2 + b2 + 2ab

(a + b)(a – b) = a2 – b2

Calculation:

∵ a = (√5 + 2)/(√5 – 2)

⇒ a = [(√5 + 2)( (√5 + 2)]/[(√5 – 2)(√5 + 2)]

⇒ a = [(√5 + 2)2]/[(√5)2 – (2)2]

⇒ a = [5 + 4 + 4√5]/(5 – 4)

⇒ a = (9 + 4√5)

Similarly;

b = (√5 – 2)/( √5 + 2)

⇒ b = [(√5 – 2)(√5 - 2)]/[(√5 + 2)(√5 – 2)]

⇒ b = [(√5 – 2)2]/[(√5)2 – (2)2]

⇒ b = [5 + 4 – 4√5]/(5 – 4)

⇒ b = (9 – 4√5)

Now, a2 + b2 + ab = (a + b)2 – ab

⇒ (9 + 4√5 + 9 – 4√5)2 – [(9 + 4√5)( 9 – 4√5)]

⇒ (18)2 – [(9)2 – (4√5)2]

⇒ 324 – (81 – 80)

⇒ 324 – 1

⇒ 323

∴ The value of the given expression is 323.

313.

What is the maximum value of expression x2/(2x + 3)?

Answer» Correct Answer - Option 3 : Cannot be determined

GIVEN:

Expression = x2/(2x + 3)

CONCEPT:

Maximum value of the expression

CALCULATION:

Let k = x2/(2x + 3)

⇒ k (2x + 3) = x2

⇒ 2kx + 3k = x2

⇒ x2 – 2kx – 3k = 0

For all real value of ‘x’, D ≥ 0

D = b2 – 4ac ≥ = 0

After comparing above equation with ax2 + bx + c = 0

a = 1, b = -2k and c = -3k

⇒ (-2k)2 – 4 × 1 × (-3k) ≥ 0

⇒ 4k2 + 12k ≥ 0

⇒ 4k (k + 3) ≥ 0

⇒ k ≥ 0 and k ≤ -3

⇒ k = (-∞, -3] ∪ [0, ∞)

Hence, maximum value of the expression cannot be determined.
314.

If x – (2√5/x) = 7, then find the value of the expression (x2 – 5x – 2√5)/[x2(x – 7)]?1. √52. √5/53. 1/54. 5√5

Answer» Correct Answer - Option 2 : √5/5

Given:

x – (2√5/x) = 7

⇒ x2 – 2√5 = 7x

Concept:

Arrange the asked equation and put the value of the given equation in it to get the answer.

Calculation:

∵ x2 – 2√5 = 7x      ------(1)

⇒ x2 – 7x = 2√5

On arranging the equation = (x2 – 5x – 2√5)/[x2(x – 7)]

We get;

[(x2 – 2√5) – 5x]/[x(x2 – 7x)]

⇒ (7x – 5x)/(x × 2√5)

⇒ 2x/(2√5x)

⇒ 1/√5 = √5/5

315.

Find the value of ‘y’ for which the equation 2(5y + 7) and 11(y -3) are equal?1. 512. 473. 454. 53

Answer» Correct Answer - Option 2 : 47

Given:

Equation 1 = 2(5y + 7)

Equation 2 = 11(y -3)

Equation 1 = Equation 2

Concept:

Just equate the equations and reach the answer.

Calculation:

∵ 2(5y + 7) = 11(y – 3)

⇒ 10y + 14 = 11y – 33

⇒ 11y – 10y = 14 + 33

⇒ y = 47

316.

Find the value of the expression (x2 – 2x + 1)/(x2 + 3x + 1), if it is given that x + (1/x) = 3.1. 1/32. 1/93. 1/54. 1/6

Answer» Correct Answer - Option 4 : 1/6

Given:

x + (1/x) = 3

Calculation:

∵ x + (1/x) = 3

⇒ (x2 + 1)/x = 3

⇒ x2 + 1 = 3x     -----(1)

Now, rearranging the given equation;

⇒ [(x2 + 1) – 2x]/[(x2 + 1) + 3x]

⇒ (3x – 2x)/(3x + 3x)     -----(From 1)

⇒ x/6x

⇒ 1/6

317.

If \(x + \frac {16} x = 8,\) then the value of \(x^2 + \frac {32}{x^2}\) is:1. 242. 183. 204. 16

Answer» Correct Answer - Option 2 : 18

Given:

x + 16/x = 8

Concept used:

Put the value and get the answer

Calculation:

Let the value of x be 4, then

4 + 16/4 = 8 (satisfy)

so 42 + 32/42 = 16 + 2 = 18

∴ The value of given identities is 18.

318.

If x + y = 10 and x2 + y2 = 68, then find xy1. 182. 243. 174. 16

Answer» Correct Answer - Option 4 : 16

Given:

x + y = 10

x2 + y2 = 68

Formula Used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

(x + y)2 = x2 + y2 + 2xy

⇒ (10)2 = 68 + 2xy

⇒ 100 - 68 = 2xy

⇒ xy = 32/2 = 16

∴ The value of xy is 16.

319.

Radha paid Rs. 920 for 4 earphones and 12 charging chords, while Rukmini paid Rs. 980 for 6 earphones and 10 charging chords. Find the cost of 5 earphones and 11 charging chords.1. Rs. 8902. Rs. 9703. Rs. 9504. Rs. 880

Answer» Correct Answer - Option 3 : Rs. 950

Let price per earphone be Rs. x and price per charging chord be Rs. y

According to question,

4x + 12y = 920      ----(1)

6x + 10y = 980      ----(2)

By equation (1) × 3 – equation (2) × 2,

⇒ 12x + 36y – 12x – 20y = 2760 – 1960

⇒ 16y = 800

⇒ y = 50

Put the value of y in eq. (1)

∴ 4x + 12 × 50 = 920

⇒ 4x = 920 – 600

x = 320/4 = 80

Now, Cost of 5 earphones and 11 charging chords = 5 × 80 + 11 × 50 = Rs. 950

∴ Cost of 5 earphones and 11 charging chords is Rs. 950

Short Trick: 

Let price per earphone be Rs. x and price per charging chord be Rsy

According to question,

4x + 12y = 920      ----(1)

6x + 10y = 980      ----(2)

Add equation (1) and (2) 

4x + 12y + 6x + 10y = 1900

⇒ 10x + 22y = 1900

⇒ 2(5x + 11y) = 1900

⇒ 5x + 11y = 950

∴ Cost of 5 earphones and 11 charging chords is Rs. 950

320.

If 4x2 + 1/(3x2) = 6, then find the value of 9x4 + 1/(16x4).1. 192. 18.253. 184. 18.75

Answer» Correct Answer - Option 4 : 18.75

Given:

4x2 + 1/3x2 = 6

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

As, 4x2 + 1/3x2 = 6

Multiplying both sides by 3/4, we’ll get

(3/4) × (4x2 + 1/3x2) = 6 × (3/4)

⇒ 3x2 + 1/4x2 = 9/2

Now squaring both sides, we’ll get

(3x2 + 1/4x2)2 = (9/2)2

⇒ 9x4 + 1/16x4 + 2 × 3x2 × (1/4x2) = 81/4

⇒ 9x4 + 1/16x4 + 3/2 = 81/4

⇒ 9x4 + 1/16x4 = 81/4 – 3/2

⇒ 9x4 + 1/16x4 = 18.75

 The value of 9x4 + 1/16x4 is 18.75

321.

The difference between two positive number is 5 and the sum of square of the numbers is 123. Find the square root of product of these number.1. 492. 643. 74. 63

Answer» Correct Answer - Option 3 : 7

Given :-

Difference between two positive number = 5

sum of their number of their square = 73

Concept :- 

(a - b)2 = a2 + b2 - 2ab

Calculation :-

Let first number be x 

⇒ Second number = y 

From question

⇒ x - y = 5    .....(1)

Again from question 

⇒ x2 + y2 = 123    ....(2) 

Now squaring both side of equation (1)

⇒ (x - y)2 = 52

⇒ x2 + y2 - 2xy = 25    ....(3)

Now put the value of equation (2) in equation (3)

⇒ 123 - 2xy = 25

⇒ 2xy = 123 – 25 

⇒ 2xy = 98 

⇒ xy = (98/2)

⇒ xy = 49

Now 

⇒ Square root of xy = √49 

⇒ Square root of xy = 7

∴ Square root of xy is 7

322.

Factorize (x - y)2 – 7(x2 – y2) + 12(x + y)21. 2(3x + 5y) (x + 2y)2. 3(2x + 5y) (2x + y)3. 5(3x + 2y) (x + 2y)4. 3(5x + 2y) (2x + y)

Answer» Correct Answer - Option 1 : 2(3x + 5y) (x + 2y)

(x - y)2 - 7(x2 - y2) + 12(x + y)2

= (x - y)2 – 7(x – y) (x + y) + 12(x + y)2 [As x2 – y2 = (x +y) (x + y)]

Let (x – y) = p & (x + y) = q, then

(x - y)2 - 7(x2 - y2) + 12(x + y)2

= p2 - 7pq + 12q2

= p2 - 4pq - 3pq + 12q2

= p(p - 4q) - 3q(p - 4q)

= (p - 3q) (p - 4q)

= [(x - y) - 3(x + y)] [(x - y) - 4(x + y)] [As (x - y) = p and (x + y) = q]

= (- 2x - 4y) (- 3x - 5y)

= 2(3x + 5y) (x + 2y)

323.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. x2 - 35x + 306 = 0II. y2 - 25y + 144 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relationship between x and y cannot be established.

Answer» Correct Answer - Option 1 : x > y

Calculation

I. x2 - 35x + 306 = 0

⇒ x2 - 17x - 18x + 306 = 0

⇒ x (x - 17) - 18 (x - 17) = 0

⇒ (x - 17) (x - 18) = 0

⇒ x = 17, 18

II. y2 - 25y + 144 = 0

⇒ y2 - 9y - 16y + 144 = 0

⇒ y (y - 9) - 16(y - 9) = 0

⇒ (y - 9) (y - 16) = 0

⇒ y = 9, 16

 Value of X 

 Value of Y 

 Relation 

17

9

x > y

17

16

x > y

18

9

x > y

18

16

x > y

 

∴ x > y
324.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. x2 + 31x + 240 = 0II. 5y2 + 60y + 135 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relationship between x and y cannot be established.

Answer» Correct Answer - Option 2 : x < y

Calculation

I. x2 + 31x + 240 = 0

⇒ x2 + 15x + 16x + 240 = 0

⇒ x (x + 15) + 16(x + 15) = 0

⇒ (x + 15) (x + 16) = 0

⇒ x = -15, -16

II. 5y2 + 60y + 135 = 0

⇒ 5y2 + 45y + 15y + 135 = 0

⇒ 5y (y + 9) + 15 (y + 9) = 0

⇒ (y + 9) (5y + 15) = 0

⇒ y = -9, -3

 Value of X 

 Value of Y 

 Relation 

- 15

- 9

x < y

- 15

- 3

x < y

- 16

- 9

x < y

- 16

- 3

x < y

∴ x < y

325.

In the given question, two equations are numbered l and II as given. Solve both the equations and mark the appropriate answer.I. x2 + 22x + 120 = 0II. 10y2 + 23y + 12 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or relationship between x and y cannot be established.

Answer» Correct Answer - Option 2 : x < y

Calculation

I. x2 + 22x + 120 = 0

⇒ x2 + 12x + 10x + 120 = 0

⇒ x(x + 12) + 10(x + 12) = 0

⇒ (x + 12)(x + 10) = 0

⇒ x = -12, -10

II. 10y2 + 23y + 12 = 0

⇒ 10y2 + 15y + 8y + 12 = 0

⇒ 5y(2y + 3) + 4(2y + 3) = 0

⇒ (2y + 3)(5y + 4) = 0

⇒ y = -3/2, -4/5

Value of X 

 Value of Y 

 Relation 

-12

-3/2

x < y

-12

-4/5

x < y

-10

-3/2

x < y

-10

-4/5

x < y

 

∴ x < y
326.

Price of 14 mangoes is Rs. 39.2. Find the price of 12 mangoes.1. Rs. 36 2. Rs. 33.63. Rs. 21.64. Rs. 336

Answer» Correct Answer - Option 2 : Rs. 33.6

Given-

Price of 14 mangoes = Rs. 39.2

Concept Used-

Solving linear equations.

Calculation-

Let price of one mango be Rs x 

According to condition- 

14x = 39.2

⇒ x = 2.8

⇒ 12x = 33.6

∴ The price of 12 mangoes is Rs. 33.6.

327.

Find the value of (21)3 – (39)3 + (18)3.1. 44,2262. -44,2263. 45,2264. -45,226

Answer» Correct Answer - Option 2 : -44,226

Calculations:

(21)3 – (39)3 + (18)3 = (a - b) (a2 + b2 + ab) + c3

⇒ (21-39) (212 + 392 + 21 × 39) + (18)3

⇒ -18 × (441 + 1521 + 819) + (18)3

⇒ 18(-2781 + (18)2)

⇒ 18(-2781 + 324)

⇒ 18 × (-2457)

⇒ -44,226.

∴ The value of expresssion - (21)3 – (39)3 + (18)is -44,226.

Short trick:

The algebraic identity states

If a – b + c = 0, then a+ b+ c= -3abc

As 21 – 39 + 18 = 0

⇒ (21)3 – (39)3 + (18)3 

⇒ -3 ×  21 × 39 × 18

⇒ -44,226. 

∴ The value of expresssion (21)3 – (39)3 + (18)is -44,226.

328.

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:1. 77602. 2403. 80004. 8240

Answer» Correct Answer - Option 1 : 7760

Given:

a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3

Formula Used:

a3 + b3 = (a + b)3 – 3ab(a + b)

Calculation:

a3 + b3 = (a + b)3 – 3ab(a + b)

⇒ a3 + b3 = (20)3 – 3 × 4 × 20       [∵ Given a + b = 20 and ab = 4]

⇒ a3 + b3 = 20 × (202 – 12)

⇒ a3 + b3 = 20 × (400 – 12)

⇒ a3 + b3 = 20 × 388

⇒ a3 + b3 = 7760

∴ Value of a3 + b3 is 7760

329.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.I. x2 + 9x + 18 = 0II. y2 + 8y + 12 = 01. x > y2. x ≥ y3. x < y4. x ≤ y5. x = y or the relation cannot be determined

Answer» Correct Answer - Option 5 : x = y or the relation cannot be determined

We will solve both the equations separately.

Equation I:

x2 + 9x + 18 = 0

⇒ x2 + 6x + 3x + 18 = 0

⇒ x(x + 6) + 3(x + 6) = 0

⇒ x = -6 or x = -3

Equation II:

y2 + 8y + 12 = 0

⇒ y2 + 6y + 2y + 12 = 0

⇒ y(y + 6) + 2(y + 6) = 0

⇒ y = -6 or y = -2

Value of x

Value of y

Relation

-6

-6

 x = y

-6

-2

 x < y

-3

-6

 x > y

-3

-2

 x < y


Comparing the values of x and y we get,

∴ x = y or the relationship cannot be determined

330.

Rs. 120 are divided among A, B, C such that A's share is Rs. 20 more than B's and Rs. 20 less than C's. What is B's share?1. Rs. 102. Rs. 203. Rs. 244. Rs. 28

Answer» Correct Answer - Option 2 : Rs. 20

Given:

Total amount = Rs. 120

A's share = Rs. 20 + B's share = C's share - 20

Calculations:

Let the share of A be Rs. y.

B's share = y - 20

C's share = y + 20

As given, Total amount = Rs. 120

⇒ y + y - 20 + y + 20 = 120

⇒ 3y = 120

⇒ y = 40

B's share = y - 20

⇒ 40 - 20

⇒ 20

∴ B's share is Rs. 20.

331.

य‌द‌ि `(2+sqrt(3))a=(2-sqrt(3))b=1` है तो `1/a+1/b` का मान ज्ञात करें।A. 1B. 2C. `2sqrt(3)`D. 4

Answer» Correct Answer - D
`(2+sqrt(3))a=(2-sqrt(3))b=1`
`implies 1/a=(2+sqrt(3))`
by rationals
`implies 1/b=(2-sqrt(3))`
`implies 1/a+1/b=2-sqrt(3)-2+sqrt(3)=4`
332.

य‌द‌ि ` a(2+sqrt(3))=b(2-sqrt(3))=1` है तो `a/(a^(2)+1)+1/(b^(2)+1)` का मान ज्ञात करें।A. -1B. 1C. 4D. 9

Answer» Correct Answer - B
`a(2+sqrt(3))=b(2-sqrt(3))=1`
`a=1/(2+sqrt(3)), b=1/(2-sqrt(3))`
`implies a=1/b`
`implies 1/(a^(2)+1)+1/(b^(2)+1)`
`implies /(1/(b^(2))+1)+1/(b^(2)+1)`
`=1/((1+b^(2))/(b^(2)))+1/(b^(2)+1)`
`implies (b^(2))/(b^(2)+1)+1/(b^(2)+1)`
`implies (b^(2)+1)/(b^(2)+1)=1`
333.

यदि `a^(2)+b^(2)+4c^(2)=2(a+b-2c)-3` और `a,b,c` वास्तविक संख्याऐं है तो `(a^(2)+b^(2)+c^(2))` का मान क्या होगा?A. 3B. `3 1/4`C. `2`D. `2 1/4`

Answer» Correct Answer - D
`a^(2)+b^(2)+4c^(2)=2(a+b-2c)-3`
`implies a^(2)+b^(2)+4c^(2)-2a-2b+4c+3=0`
`implies a^(2)-2a+1+b^(2)-2b+1+4c^(2)`
`+4c=1=0`
`(a-1)^(2)+(b-1)^(2)+(2c+1)^(2)=0`
`:. a-1=0, a=1`
`b-1=0, b=1`
`2c+1=0, c=(-1)/2`
`:. a^(2)+b^(2)+c^(2)`
`=1+1+1/4=2+1/4=9/4=2 1/4`
334.

य‌द‌ि `(x-3)^(2)+(y-5)^(2)+(z-4)^(2)=0` है, तो `(x^(2))/9+(y^(2))/25+(z^(2))/16` का मान क्या होगा?A. 12B. 9C. 3D. 1

Answer» Correct Answer - C
`(x=3)^(2)+(y-5)^(2)+(z-4)^(2)=0`
`:. (x-3)^(2)=0, x=3`
`(y-5)^(2)=0 , y=5`
`(z-4)^(2)=0, z=4`
`:. (x^(2))/9+(y(2))/25+(c^(2))/16`
`implies 9/9+25/25+16/16=3`
335.

य‌द‌ि `a+b+c,a^(2)+b^(2)=c^(2)=14` और `a^(3)+b^(3)+c^(3)=36` है तो `abc` का मान क्या होगा?A. 3B. 6C. 9D. 12

Answer» Correct Answer - B
`a+b+c=6`
`=a^(2)+b^(3)+c^(3)=36`
Put values as
`a=1, b=1, c=3`
`1+2+3=6`
`1+4+9=14`
`1+8+27=36`
`:. abc=1xx2xx3=6`
Alternate:
`:.(a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2(ab+bc+ca)`
`36=14+2(ab+bc+ca)`
`(ab+bc+ca)=11`
`impliesa^(3)+b^(3)+c^(3)-3abc=(a+b+c)`
`(a^(2)+b^(2)+c^(2)-ab-bc-ca)`
`implies 36-3abc=6(14-11)`
`implies 36-3abc=6xx3`
`-3abc=18-36`
`3abc=18`
`abc=6`
336.

यदि `x=3t, y=1/2(t+1)` है तो `t` का मान क्या होगा जिसके लिए `x=2y` है?A. `1`B. `1/2`C. `-1`D. `2/3`

Answer» Correct Answer - B
`x=3t`
`y=1/2(t+1)`
`y=1/2(t+1)`
`x=2y`
`implies x=2xx1/2(t+1)`
`x=t+1`
`:. 3t=t+1`…………..iii
(from equation i and ii)
`2t=1`
`t=1/2`
337.

यदि `a+b=1, c+d=1` और `a-b=d/c` है तो `c^(2)-d^(2)` का मान क्या होगा?A. `a/b`B. `b/a`C. `1`D. `-1`

Answer» Correct Answer - B
`a+b=1`
`c+d=1`
`a-b=d/c`
or `1/(a-b)=c/d`
`(a+b)/(a-b)=c/d( :. a+=1)`
by C & D rule
`implies ((a+b)-(a-b))/((a+b)-(a-b))=(c+d)/(c-d)`
`implies (2a)/(2b)=(c+d)/(c-d)`
`implies a/b=(c+d)/(c-d)`
Now multiply & divide by `(c+d)`
`a/b=((c+d))/((c-d))xx((c+d))/((c+d))=((c+d))/(c^(2)-d^(2))`
`implies a/b=((c+d)^(2))/((c^(2)-d^(2)))`
`c+d=1`
`a/b=1/(c^(2)-d^(2))`
`c^(2)-d^(2)=b/a`
338.

If \(x + y + z = 3\) and \(xy + yz + zx=-11\), then what is the value of \({x^3} + {y^3} + {z^3} - 3xyz\)?1. 1262. 1453. 1214. 154

Answer» Correct Answer - Option 1 : 126

Given:

x + y + z = 3 and xy + yz + zx = -11

Concept used:

Algebra

Calculation:

(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)

Using the above values in the equation,

⇒ (3)2 = x2 + y2 + z2 + 2(-11)

⇒ x2 + y2 + z2 = 22 + 9

⇒ x2 + y2 + z2 = 31

\({x^3} + {y^3} + {z^3} - 3xyz\) = (x + y + z) [(x2 + y2 + z2 - (xy + yz + zx)]

\({x^3} + {y^3} + {z^3} - 3xyz\) = (3) [(31 + 11)]

\({x^3} + {y^3} + {z^3} - 3xyz\) = 126

339.

A positive number which when increased by 17 is equal to 84 times the reciprocal of the number. The number is:1. 42. 53. 64. 3

Answer» Correct Answer - Option 1 : 4

Given:

A positive number which when increased by 17 is equal to 84 times the reciprocal of the number

calculation:

Let the positive number be x 

Reciprocal of a positive number = 1/x

x + 17 = 84 × 1/x

⇒ x (x + 17) = 84

⇒ x2 + 17x = 84

⇒ x2 + 17x - 84 = 0

⇒ x2 + 21x - 4x - 84 = 0

⇒ x(x + 21) - 4( x + 21) = 0

⇒ (x + 4)(x - 21) = 0

⇒ x = 4, -21

The value of x is positive, So x = 4

∴ The required value is 4

340.

Twenty times a positive integer is less than its square by 96. What is the integer1. 242. 203. 304. 14

Answer» Correct Answer - Option 1 : 24

Let the positive integer be 'x'

Then, 20 times integer = 20x

Square of integer = x2

Twenty times a positive integer is less than its square by 96

x2  = 20x + 96

⇒ x2 - 20x - 96 = 0

⇒ x- 24x + 4x - 96 = 0

⇒ x ( x -24) + 4( x - 24) = 0

⇒ (x + 4) × (x -24) = 0

⇒ x = -4,  x = 24

∴ The positive integer is 24

341.

If xa × xb × xc = 1, the the value of a3 + b3 + c3 is

Answer» Correct Answer - Option 4 : 3abc

Given

xa × xb × xc = 1

Formula used

1) am × an = am + n

2) a0 = 1

3) a+ b+ c− 3abc = (a + b + c)(a2 + b+ c− ab − bc − ca)

Calculation

xa × xb × xc = 1

⇒ xa + b + c = 1

⇒ xa + b + c = x0

On comparing both sides we get,

a + b + c = 0

a+ b+ c− 3abc = (a + b + c)(a2 + b+ c− ab − bc − ca)

Putting (a + b + c) = 0 we get,

a+ b+ c− 3abc = 0

⇒ a+ b+ c2 = 3abc

342.

If \({x^2} - \sqrt 3 x + 1 = 0\), then \(\left( {{x^3} + {x^{ - 3}}} \right)\) is equal to:

Answer» Correct Answer - Option 1 : 0

Given:

\({x^2} - √ 3 x + 1 = 0\)

Concept used:

Algebra

Calculation:

Divide the given equation by x

⇒ \(x + \frac{1}{x} = √ 3 \)

We need to find (x + 1/x)3

Let (x + 1/x) = k = √3

\({\left( {x + \frac{1}{x}} \right)^3} = {x^3} + \frac{1}{{{x^3}}} + 3k\)

\({x^3} + \frac{1}{{{x^3}}} = {\left( {x + \frac{1}{x}} \right)^3} - 3k\)

\({x^3} + \frac{1}{{{x^3}}} = {\left( {\sqrt 3 } \right)^3} - 3k\)

\({x^3} + \frac{1}{{{x^3}}} = 3\sqrt 3 - 3\sqrt 3 \)

∴ \({x^3} + \frac{1}{{{x^3}}} = 0\)

343.

Find the value of x for the given equation (x – 3)3 = (2x – 4)2 – 13x2 + x3.1. 12. 23. 34. 4

Answer» Correct Answer - Option 1 : 1

Formula Used:

(a – b)3 = a3 – b3 – 3a2b + 3ab2

(a – b)2 = a2 + b2 – 2ab

Calculation:

(x – 3)3 = (2x – 4)2 – 13x2 + x3

⇒ x3 – 27 – 9x2 + 27x = 4x2 + 16 – 16x – 13x2 + x3

⇒ x3 – 27 – 9x2 + 27x = -9x2 + x3 + 16 – 16x

⇒ -27 + 27x = 16 –16x

⇒ 43x = 43

∴ x = 1

The correct option is 1 i.e. 1

344.

If 1 - a2 = a, then what is the value of \(a^6+\frac{1}{a^6}\) ?1. -162. +163. -184. +18

Answer» Correct Answer - Option 4 : +18

Given:

1 - a2 = a

Calculation:

As, 1 - a2 = a

Dividing the given equation by 'a', we get

\( {1 \ \over a}\)- a = 1      ----(i)

Cubing equation (i), we get

\( {1 \ \over a^3}\) - a3 - 3 × \( {1 \ \over a}\)× a × (\( {1 \ \over a}\)- a) = 1

\( {1 \ \over a^3}\) - a3  = 1 + 3 = 4     ----(ii)

squaring equation (ii), we get

\({1 \ \over a^6}\) + a6 - 2 = 16

\({1 \ \over a^6}\) + a6 = 16 + 2 = 18

∴ The value of \({1 \ \over a^6}\) + a6 is 18

345.

In the given questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.I: 3x2 – 15x + 12 = 0II : 4y2 – 80y + 256 = 01. x > y2. x ≤ y3. x ≥ y4.  x &lt; y

Answer» Correct Answer - Option 2 : x ≤ y

Calculation:

I: 3x2 – 15x + 12 = 0

⇒ 3x2 – 12x – 3x + 12 = 0

⇒ 3x(x – 4) – 3(x – 4) = 0

⇒ (x – 4) × (3x – 3) = 0

⇒ x = 4, 1

II: 4y– 80y + 256 = 0

Dividing the equation by 4 we'll get

⇒ y2 – 20y + 64 = 0

⇒ y2 – 4y – 16y + 64 = 0

⇒ y × (y – 4) – 16 × (y – 4) = 0

⇒ (y – 4) × (y – 16) = 0

⇒ y = 4 and 16

Comparing values of x and y,

Value of x

Relation

Value of y

4

=

4

4

16

1

4

1

16


 From the table we can say, x ≤  y.

346.

What is the number of zeroes of the polynomial x2 + 6x +15?1. 12. 23. 34. No zero

Answer» Correct Answer - Option 4 : No zero

Given:

The polynomial is x2 + 6x +15

Calculation:

x2 + 6x +15

here, a = 1, b = 6 and c = 15

Now, determinant = b2 - 4ac = 62 - 4 × 1 × 15 = 36 - 60 = -24 < 0

Since the determinant is negative therefore it has no zeros.

If the determinant is negative (D < 0)

It doesn’t have a zero which implies that the quadratic equation had no roots and hence it doesn’t intersect the x-axis. As the roots of the polynomial lie on the x-axis.

347.

The number of boys in a class is three times the number of girls. Which one of the following numbers cannot represent the total number of children in the class ?1. 422. 443. 484. 52

Answer» Correct Answer - Option 1 : 42

Given:

The number of boys in a class is three times the number of girls

Calculation:

Let number of girls be x and number of boys = 3x.

Then, total number of students = 3x + x = 4x 

Thus, to find exact value of x, the total number of students must be divisible by 4

44, 48, and 52 are divisible by 4, whereas 42 is not divisible by 4

42 cannot represent the total number of children in the class 

348.

a - b = 9, ab = 10 find the value of a + b1. 112. 123. 164. 22

Answer» Correct Answer - Option 1 : 11

Given:

a - b = 9

ab = 10

Formula Used:

(a – b)2 = (a + b)2 – 4ab

Calculation:

substituting the values in the formula 

92 = (a + b)– 4 × 10

⇒ 81 + 40 = (a + b)2

⇒ (a + b)= 121

Taking root on both sides 

a + b = 11

∴ The value of a + b is 11

349.

500 is divided into two parts in such a way that one-third of one part is 72 less than the other. Find both the numbers.1. 321, 1762. 321, 1793. 394, 1064. 372, 128

Answer» Correct Answer - Option 2 : 321, 179

Given:

Total number = 500

One-third of first part = Second part – 72

Calculation:

Let the second part be x

According to question

(1/3) of First part = x – 72

⇒ First part = 3 × (x – 72) = 3x – 216

First part + Second part = 500

⇒ 3x – 216 + x = 500

⇒ 4x – 216 = 500

⇒ 4x = 716

⇒ x = 179

First part = 3x – 216 = 3 × 179 – 216 = 321

∴ The numbers are 321 and 179

350.

`(x/y+y/x)` और `sqrt(x^(2)+y^(2))` का तृतीयानुपाती क्या है?A. `xy`B. `sqrt(xy)`C. `root(3)(xy)`D. `root(4)(xy)`

Answer» Correct Answer - A
Third proportional of a and b
`=(b^(2))/a`
Third proportional `(x/y+y/x)` and `sqrt(x^(2)+y^(2))`
`((sqrt(x^(2)+y^(2)))^(2))/(x/y+y/x)=(x^(2)+y^(2))/((x^(2)+y^(2))/(xy))=xy`