InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 351. |
In certain city the Taxi charges comprise of a fixed charge and the charge of the distance travelled. A person paid Rs. 156 for a journey of 16 km and another person paid Rs. 204 for the journey of 24 km. The amount paid by a passenger who has travelled 30 km is 1. 2362. 2403. 2484. 256 |
|
Answer» Correct Answer - Option 2 : 240 Given In certain city the Taxi charges comprise a fixed charge and the charge of the distance travelled. A person paid Rs. 156 for a journey of 16 km and another person paid Rs. 204 for the journey of 24 km. Calculation Let the fixed charge be Rs. 'x' And let the charge of 1 km travelled be Rs. 'y' x + 16y = 156 _____(1) And x + 24y = 204 _____(2) Subtracting equation (1) from equation (2), we get 8y = 48 ⇒ y = 6 By putting the value of y in equation (1) we get, x = 156 - 16(6) = 60 ∴ The amount paid by a passenger who has travelled 30 km = x + 30y ⇒ 60 + 30(6) = 60 + 180 = Rs. 240 |
|
| 352. |
If a – b = 8 and ab = 3, then find the value of a3 – b3.1. 5362. 5243. 5844. 684 |
|
Answer» Correct Answer - Option 3 : 584 Given: a – b = 8 ab = 3 Formula used: (a – b)3 = a3 – b3 – 3ab(a – b) Calculation: (a – b)3 = a3 – b3 – 3ab(a – b) ⇒ 83 = a3 – b3 – 3 × 3 × (8) ⇒ 512 = a3 – b3 – 72 ⇒ a3 – b3 = 512 + 72 = 584 ∴ The correct answer is 584 |
|
| 353. |
यदि `x^(2)-y^(2)=80` और `x-y=8` है तो `x` और `y` का औसत ज्ञात करें।A. 2B. 3C. 4D. 5 |
|
Answer» Correct Answer - D `x^(2)-y^(2)=80` `implies (x-y)(x+y)=80` `x-y=8`………….i `:. (x+y)xx8=80` `(x+y)=10`…………..ii Now average of `x` and `y` `=(x=y)/2=10/2=5` |
|
| 354. |
Divide 27 into two parts in such a way that 5 times the first part and 11 times the second part both together are equal to 195, then the ratio of the first and second part is1. 3 : 22. 17 : 103. 2 : 74. 5 : 4 |
|
Answer» Correct Answer - Option 2 : 17 : 10 Given: Number = 27 5 times the first part and 11 times the second part both together = 195 Calculation: Let, the first part = x And second part = y According to the question, 5x + 11y = 195 ---- (1) × 1 x + y = 27 ---- (2) × 5 From (1) – (2) we get, ⇒ 6y = 60 ⇒ y = 10 From (1) we get, ⇒ 5x = 85 ⇒ x = 17 ∴ Required ratio of x : y is 17 : 10 |
|
| 355. |
If a - b = 5 and a2 + b2 = 31 then find the value of ab?A. 4B. 5C. 2D. 31. C2. A3. B4. D |
|
Answer» Correct Answer - Option 4 : D Given: a - b = 5 a2 + b2 = 31 Formula used: (a - b)2 = a2 + b2 - 2ab Calculation: (a - b)2 = a2 + b2 - 2ab ⇒ 52 = 31 - 2ab ⇒ 25 = 31 - 2ab ⇒ 2ab = 31 - 25 ⇒ 2ab = 6 ⇒ ab = 3 ∴ The value of ab is 3. |
|
| 356. |
यदि `a^(2)+b^(2)+c^(2)+3=2(a-b-c)` है तो `2a-b+c` का मान ज्ञात करें।A. 3B. 4C. 0D. 2 |
|
Answer» Correct Answer - D `a^(2)+h^(2)+c^(2)+3=2(a-b-c)` `a^(2)+b^(2)+c^(2)3-2a+2b+2c=0` `a^(2)-2a+1+b^(2)+2b+1+c^(2)+2c` `+1=0` `(a-1)^(2)+(b+1)^(2)+(c+1)^(2)=0` `a=1,b=-1, c=-1` `:. 2a-b+c=2+1-1=2` |
|
| 357. |
यदि `a/b=c/d=e/c=3` है तो `(2a^(2)+3c^(2)+4e^(2))/(2b^(2)+3d^(2)+4f^(2))=?`A. `2`B. `3`C. `4`D. `9` |
|
Answer» Correct Answer - D `a/b=c/d=e/f=3/1` `implies(2xx9+3xx9+4xx9)/(2xx1+3xx1+4xx1)` `=(18+27+36)/(2+3+4)=81/9=9` |
|
| 358. |
If 2(a2 + b2) = (a + b)2 then,1. a = b2. b = 2a3. a = 2b4. a = -b |
|
Answer» Correct Answer - Option 1 : a = b Given: 2(a2 + b2) = (a + b)2 Formula used: (a + b)2 = (a2 + b2 + 2ab) Calculation: According to the question: 2(a2 + b2) = (a + b)2 ⇒ 2(a2 + b2) = (a2 + b2 + 2ab) ⇒ 2a2 + 2b2 = (a2 + b2 + 2ab) ⇒ 2a2 + 2b2 – a2 – b2 – 2ab = 0 ⇒ a2 + b2 – 2ab = 0 ⇒ (a – b)2 = 0 ⇒ a – b = 0 ⇒ a = b ∴ The answer is a = b. |
|
| 359. |
In a trust, Raj and Rohit donated Rs. 195. Rohit and Raksha donated Rs. 512 together. If Rohit donated 1/7 of amount donated by Raksha. Then how much more Raj donated compare to Rohit? 1. Rs. 672. Rs. 1953. Rs. 644. Rs. 448 |
|
Answer» Correct Answer - Option 1 : Rs. 67 Given: Donated by Raj + Rohit = Rs. 195 Donated by Rohit + Raksha = Rs. 512 Rohit donated = 1/7 of Raksha Calculation: Donated by Raj + Rohit = Rs. 195 ……………….(1) Donated by Rohit + Raksha = Rs. 512 ……………………(2) Rohit donated = 1/7 of Raksha …………………….(3) ⇒ Let assume that amount donated by Raksha = Rs. x From equation (3) and (2) ⇒ 1/7 of x + x = Rs. 512 ⇒ 8/7 x = 512 ⇒ x = (512 × 7)/8 ⇒ x = Rs. 448 ⇒ Amount donated by Raksha = Rs. 448 According to equation (3) ⇒ Amount donated by Rohit = 448 × 1/7 = Rs. 64 …………….(4) According to equation (1) and (4) ⇒ Amount donated by Raj = Rs. 195 – Rs.64 = Rs. 131 ⇒ Amount more donated by Raj = Rs. 131 – Rs. 64 = Rs. 67 ∴ Rs. 67 more donated by Raj than Rohit. The correct option is 1 i.e. Rs. 67 |
|
| 360. |
If 5(2x - 2) + 2 = 3(2x + 4), then find the value of x.1. 32. 43. 54. 6 |
|
Answer» Correct Answer - Option 3 : 5 Given: 5(2x - 2) + 2 = 3(2x + 4) Calculation: 5(2x - 2) + 2 = 3(2x + 4) ⇒ 10x - 10 + 2 = 6x + 12 ⇒ 10x - 6x = 12 + 8 ⇒ 4x = 20 ⇒ x = 20/4 ⇒ x = 5 ∴ The value of x is 5. |
|
| 361. |
If it is given that (x/3) + (3/x) = 1, find the value of [(x2 – 3x + 9)/(x2 - 3x)]? |
|
Answer» Correct Answer - Option 1 : 0 Given: (x/3) + (3/x) = 1 Calculation: ∵ (x/3) + (3/x) = 1 ⇒ (x2 + 9)/3x = 1 ⇒ x2 + 9 = 3x ------(1) Now, rearranging the given equation; ⇒ [(x2 + 9) – 3x]/(x2 - 3x) ⇒ (3x – 3x)/(x2 – x2 - 9) ------(From 1) ⇒ 0 |
|
| 362. |
`x,y` के वर्ग के व्युत्क्रमानुपाती है जब `y=2` है तब `x=1` है तो जब `y=6` है तब `x` का मान ज्ञात करें।A. 3B. 9C. `1/3`D. `1/9` |
|
Answer» Correct Answer - D `x prop 1/(y^(2))` (Inversely proportional) `x=k/(y^(2))` `(y-2)` for `(x=1)` (given) `:. 1=k/((2)^(2))implies1=k/4` `k=4` ltbr `:.` For `y=6` `x=4/((6)^(2))=1/9=1/9` |
|
| 363. |
`(5x)/(6x^(2)+20x+1)` का मान ज्ञात करें?A. `1/4`B. `1/6`C. `1/5`D. `1/7` |
|
Answer» Correct Answer - D `2x+1/(3x)=5` `implies 6x^(2)+1=15x` `:. (5x)/(6x^(2)+20x+1)` `=(5x)/(15x+20x)=(5x)/(35x)=1/7` |
|
| 364. |
If 7x + 3y = 4 and 2x + y = 2, then find the value of x and y.1. x = 6, y = -22. x = -2, y = 63. x = -3, y = 44. x = 4, y = -3 |
|
Answer» Correct Answer - Option 2 : x = -2, y = 6 Given: 7x + 3y = 4 and 2x + y = 2 Calculation: 7x + 3y = 4 ----(1) 2x + y = 2 ----(2) By solving, equation (1) - 3 × equation(2) ⇒ 7x + 3y - 3(2x + y) = 4 - (3 × 2) ⇒ x = -2 Putting the value of x in equation (1) 7x + 3y = 4 ⇒ 7 × (-2) + 3y = 4 ⇒ y = 6 ∴ The value of x and y is -2 and 6. |
|
| 365. |
If (a × b)/c = (a2 + ab - b2)/ (c + a), for all natural numbers of a, b and c, then the value of (4 × 5)/7 is:1. 42. 13. 04. 3 |
|
Answer» Correct Answer - Option 2 : 1 Given: (a × b)/c = (a2 + ab - b2)/ (c + a) Calculation: According to question (42 + 4 × 5 - 52)/ (7 + 4) ⇒ (16 + 20 – 25)/11 ⇒ (36 – 25)/11 ⇒ 11/11 ⇒ 1 ∴ (4 × 5)/7 = (42 + 4 × 5 - 52)/ (7 + 4) = 1 The correct option is 2 i.e. 1. |
|
| 366. |
If (a × b)/(c ) = (a2 + ab - b2)/ (c - a), for all natural numbers of a, b and c, then the value of (2 × 7)/(5) is:1. 3/312. - 31/33. - 3/314. 31/3 |
|
Answer» Correct Answer - Option 2 : - 31/3 Given: a = 2 b = 7 c = 5 Calculation: [(2)2 + (2 × 7) – (7) 2]/ (5 - 2) ⇒ (4 + 14 – 49)/3 ⇒ (18 – 49)/3 ⇒ (-31/3) ∴ (2 × 7)/(5) = [(2)2 + (2 × 7) – (7) 2]/ (5 - 2) = - 31/3 The correct option is 2 i.e. - 31/3 |
|
| 367. |
यदि `x-y=2, xy=24` है तो `(x^(2)+y^(2))` का मान ज्ञात करें।A. 25B. 36C. 63D. 52 |
|
Answer» Correct Answer - D `x-y=2, xy=24` (given) by squaring `x^(2)+y^(2)-2xy=4` `x^(2)+y^(2)-2xx24=4` `x^(2)+y^(2)=4+48=52` |
|
| 368. |
यदि `x,(y^(2)-1)` का व्युत्क्रमानुपाती है। `x=24` जब `y=10` है। यदि `y=5` तो `x` क मान ज्ञात करें।A. 99B. 12C. 24D. 100 |
|
Answer» Correct Answer - A `x prop 1/(y^(2)-1)` (Given) `x=kxx1/(y^(2)-1)` ( `k` is constant) Now `x=24` when `y=10` given `implies24=kxx 1/((10)^(2)-1)` `implies 24=k/99` `k=24xx99` `x=?` `y=5` `x=24xx99xx1/(25-1)` `=24xx99xx1/24 x=99` |
|
| 369. |
a and b are two natural numbers such that a2 - b2 is a prime number. Then the value of a2 - b2 is1. a - b2. a + b3. ab4. None of the above |
|
Answer» Correct Answer - Option 2 : a + b Concept A Prime number is a number divisible by 1 and itself only. a2 - b2 = (a - b)(a + b) Calculation a2 - b2 = (a - b)(a + b) is a prime So, it is divisible by 1 and itself So, either (a - b) = 1 or (a + b) = 1 But (a + b) ≠ 1 {a and b are natural numbers} ∴ (a - b) = 1 ⇒ a2 - b2 = (1)(a + b) = a + b |
|
| 370. |
If \(\frac {8 + 2\sqrt 3}{3\sqrt 3 + 5} = a\sqrt 3 - b,\) then the value of a + b is equal to:1. 152. 163. 184. 24 |
|
Answer» Correct Answer - Option 3 : 18 Given : \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaaGioaiabgUcaRiaaikdacqGHAiI1caaIZaaa % paqaa8qacaaIZaWaaOaaa8aabaWdbiaaiodaaSqabaGccqGHRaWkca % aI1aGaaiiOaaaaaaa!3FA0! \frac{{8 + 2\surd 3}}{{3√ 3 + 5\;}}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaaGioaiabgUcaRiaaikdacqGHAiI1caaIZaaa % paqaa8qacaaIZaWaaOaaa8aabaWdbiaaiodaaSqabaGccqGHRaWkca % aI1aGaaiiOaaaaaaa!3FA0! \frac{{8 + 2\surd 3}}{{3\sqrt 3 + 5\;}}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaaGioaiabgUcaRiaaikdacqGHAiI1caaIZaaa % paqaa8qacaaIZaWaaOaaa8aabaWdbiaaiodaaSqabaGccqGHRaWkca % aI1aGaaiiOaaaaaaa!3FA0! \frac{{8 + 2\surd 3}}{{3\sqrt 3 + 5\;}}\) = a√3 - b Calculations : \(\frac {8 + 2\sqrt 3}{3\sqrt 3 + 5}\) multiply numerator and denominator by \(\frac {3\sqrt 3 - 5}{3\sqrt 3 - 5} \) We get ⇒ 7√3 - 11 = a√3 - b Now compare both sides of the equation we will get, a = 7 and b = 11 a + b = 7 +11 ⇒ 18 ∴ the value of a + b will be 18 |
|
| 371. |
A two digit number is 4 times the sum of its two digits. The number that is formed by reversing its digits is 27 more than the original number. What is the number?1. 272. 363. 424. 54 |
|
Answer» Correct Answer - Option 2 : 36 Let the tens and units digit of number are 'x', 'y' respectively First condition: 10x + y = 4(x + y) ⇒ 10x + y = 4x + 4y ⇒ 10x - 4x = 4y - y ⇒ 6x = 3y ⇒ 2x = y ----(1) Second condition: Reversed Number = (10y + x) (10x + y) + 27 = 10y + x ⇒ 10x - x + y - 10y = -27 ⇒ 9x - 9y = -27 ⇒ 9(x - y) = -27 ⇒ (x - y) = -27/3 ⇒ (x - y) = -3 ----(2) Substitute the value of eq.1 in equation.2, we can get the value of x x - 2x = -3 ⇒ x = 3 Substitute the value of x in in eq.1, we can get the value of y 2 × 3 = y ⇒ y = 6 According to first condition the original number = 10 × 3 + 6 ⇒ 36 Adding 27 to the first condition = 36 + 27 ⇒ 63 According to the second condition the reversed number = 10 × 6 + 3 ⇒ 6 ∴ The original number is 36 |
|
| 372. |
If x2 - 6x + 1 = 0, then the value of \({x^2} + \frac{1}{{{x^2}}}\) is1. 302. 343. 324. None of the above |
|
Answer» Correct Answer - Option 2 : 34 Calculation x2 - 6x + 1 = 0 Dividing the whole equation by x, x - 6 + 1/x = 0 \(\Rightarrow x + {1 \over x} = 6\) Squaring both sides we get, \(x^2 + {1\over x^2} + 2 = 36\) \(\Rightarrow x^2 + {1\over x^2} = 36 - 2 = 34\) |
|
| 373. |
यदि `a+1/a=sqrt(3)` है तो `a^(6)=1/(a^(6))+2` का मान क्या होगा?A. 1B. 2C. `3sqrt(3)`D. `5` |
|
Answer» Correct Answer - B `a+1/a=sqrt(3)` `a^(6)=-1` `:. a^(6)-1/(a^(6))+2=-1-(-1)+2` |
|
| 374. |
यदि `(x+1/x)^(2)=3` है तो `(x^(72)+x^(66)+x^(54)+x^(24)+x^(6)+1)` का मान क्या होगा? |
|
Answer» Correct Answer - A `(x+1/x)^(2)=3` `x+1/x=sqrt(3)` `impliesx^(3)+1/(x^(3))+3sqrt(3)+3sqrt(3)` `implies x^(3)+1/(x^(3))=0` `impliesx^(6)+1=0` `impliesx^(6)=-1` `impliesx^(72)+x^(66)+x^(54)+x^(24)+x^(6)+1` `implies (x^(6))^(12)+(x^(6))^(11)+(x^(6))^(9)+(x^(6))^(4)+x^(6)+1` `implies (-1)^(12)+(-1)^(11)+(-1)^(9)+(-1)^(4)+` `-1+1` `implies1-1-1+1-1+1=0` `a+1/a=sqrt(3)` `a^(6)=-1` `:. a^(6)-1/(a^(6))+2=-1-1/((-1))+2` `=-1+1+2=2` |
|
| 375. |
Simplify: (8.3)2 - (1.7)2 1. 662. 6.63. 104. 0.66 |
|
Answer» Correct Answer - Option 1 : 66 Concept: Using the formula: x2 - y2 = (x + y) (x - y) Calculation: (8.3)2 - (1.7)2 = (8.3 + 1.7) (8.3 - 1.7) = 10 × 6.6 = 66 |
|
| 376. |
If x = 3, y = 2, then the value of (x + y)(x - y) is?1. 52. 63. 44. 0 |
|
Answer» Correct Answer - Option 1 : 5 Calculation: (x + y)(x - y) = x2 - y2 = 9 - 4 = 5 |
|
| 377. |
If \(x + \frac{1}{x} = 3\), then the value of \({x^5} + \frac{1}{{{x^5}}}\) is1. 1332. 1433. 1234. None of the above |
|
Answer» Correct Answer - Option 3 : 123 Formula used (a + b)2 = a2 + b2 + 2ab (a + b)3 = a3 + b3 + 3ab(a + b) Calculation \(x + \frac{1}{x} = 3\) Squaring both sides of the equation \((x + \frac{1}{x})^2 = 9\) \(\Rightarrow x^2 + {1 \over x^2} + 2 = 9\) \(\Rightarrow x^2 + {1 \over x^2} = 9 - 2 = 7\) \(x + \frac{1}{x} = 3\) Cubing both sides we get \((x + \frac{1}{x})^3 = 27\) \(\Rightarrow x^3 + {1 \over x^3} + 3( x + {1 \over x}) = 27\) \(\Rightarrow x^3 + {1 \over x^3} = 27 - 9 = 18\) Now, \((x^2 + {1 \over x^2 })(x^3 + {1 \over x^3}) = x^5 + {1 \over x^5} + x + {1 \over x}\) \(\Rightarrow 7 \times 18 = x^5 + {1 \over x^5} + 3\) \(\Rightarrow x^5 + {1 \over x^5} = 126 - 3 = 123\) |
|
| 378. |
For the equation (x -1)2 + (x - 2)2 + (x - 3)2 = 01. values of x are 1, 2, 32. values of x are -1, -2, -33. there is no real value of x4. None of the above |
|
Answer» Correct Answer - Option 1 : values of x are 1, 2, 3 Concept When a2 + b2 + c2 = 0 then a = 0, b = 0 and c = 0 Calculation (x - 1)2 + (x - 2)2 + (x - 3)2 = 0 ⇒ (x - 1)2 = 0 and (x - 2)2 = 0 and (x - 3)2 = 0 [square of a number can't be negative] ⇒ x - 1 = 0, x - 2 = 0 and x - 3 = 0 ⇒ x = 1, 2, 3 |
|
| 379. |
If \(\sqrt x + \frac{1}{{\sqrt x }} = 4\), find the value of \({x^2} + \frac{1}{{{x^2}}}\).1. 1962. 2583. 2544. 194 |
|
Answer» Correct Answer - Option 4 : 194 Given: √ x + (1/√ x) = 4 Calculation: Squaring both sides, [√ x + (1/√ x)]2 = 42 =16 x + 2 + (1/x) = 16 We get, x + (1/x) = 16 - 2 = 14 ----(1) Squaring both sides of (1), [x + (1/x)]2 = 142 = 196 x2 + 2 + (1/x2) = 196 x2 + (1/x2) = 194 ∴ The value of x2 + (1/x2) is 194. |
|
| 380. |
IF x = 3 + √8, find the value of \({x^3} + \frac{1}{{{x^3}}}\).1. 2162. 1983. 2004. 196 |
|
Answer» Correct Answer - Option 2 : 198 Given: x = 3 + √8 Calculation: as x = 3 + √8 (1/x) = 1/(3 + √8) Rationalising we get, (1/x) = 3 - √8 Then, x + (1/x) = 3 + √8 + 3 - √8 = 6 ----(1) taking cube of (1) we get, [x + (1/x)]3 = 63 x3 + (1/x)3 + 3 × x × (1/x) [x + (1/x)] = 216 x3 + (1/x)3 + 3 × [x + (1/x)] = 216 x3 + (1/x)3 = 216 - 3 × [x + (1/x)] x3 + (1/x)3 = 216 - 3 × 6 = 198 ∴ The value of x3 + (1/x)3 is 198. |
|
| 381. |
When 5 children from class A join class B, the number of children in both classes is the same. If 25 children from B, join A, then the number of children in A becomes double the number of children in B. The ratio of the number of children in A to those in B is:1. 9 : 82. 19 : 183. 19 : 174. 18 : 17 |
|
Answer» Correct Answer - Option 3 : 19 : 17 Given: When 5 children join B from A, the number of children in both classes is the same If 25 children from B join A, the number of children in A becomes double the number in B Calculation: Let the number of children in class A be 'a' and that of class B be 'b' As per question 5 children from class A join class B ⇒ a - 5 = b + 5 ⇒ a - b = 10 -----eq-n (1) Also, when 25 children from B join A, the number of children in A becomes double the number of children in B ⇒ a + 25 = 2 × (b - 25) ⇒ 2b - a = 75 ------eq-n (2) By adding eq-n (1) and (2), we get b = 85 and a= 95 ∴ The ratio of the number of children in A to the number of children in B is 19 ∶ 17 |
|
| 382. |
Solve:x2 + 8x + 15 = 01. (x – 5) (x – 3)2. (x + 5) (x – 3)3. (x – 5) (x + 3)4. (x + 5) (x + 3) |
|
Answer» Correct Answer - Option 4 : (x + 5) (x + 3) Calculation: x2 + 8x + 15 = 0 ⇒ x2 + 3x + 5x + 15 = 0 ⇒ x(x + 3) + 5(x + 3) = 0 ⇒ (x +5) (x + 3) = 0 ∴ The required answer is (x + 5) (x + 3) |
|
| 383. |
If a3 + b3 = 217 and a + b = 7, then the value of ab is:1. -12. 63. -64. 7 |
|
Answer» Correct Answer - Option 2 : 6 Given: a3 + b3 = 217 (a + b) = 7 Formula Used: (a + b)3 = a3 + b3 + 3ab (a + b) Calculation: Substituting the values in the formula (7)3 = 217 + 3ab (7) 343 – 217 = 21ab 126/21 = ab ∴The value of ab is = 6 |
|
| 384. |
`(x-y)^(2),(x^(2)-y^(2))^(2)` इन संख्याओं का दूसरा अनुपात क्या है?A. `(x+y^(3))(x+y^(4))`B. `(x+y)^(4)(x-y)^(2)`C. `(x+y)(x-y)^(2)`D. `(x+y)^(2)(x-y)^(3)` |
|
Answer» Correct Answer - C Third ratio `a:x:x:b` `x^(2)=ab` `x=sqrt((x-y)^(2)(x^(2)-y^(2))^(2))` `x=(x-y)(x^(2)-y^(2))` `x(x-y)(x-y)(x+y)` `x=(x+y)(x-y)^(2)` |
|
| 385. |
यदि `x(3-2/x)=3/x` हो तो `x^(2)+1/(x^(2))` का मान क्या है?A. `3 1/9`B. `3 2/9`C. `2 1/9`D. `2 4/9` |
|
Answer» Correct Answer - D `x(3-2/x)=3/x` `3x-2=3/x` `3x-3x=2` `3(x-1/x)=2` `x-1/x=2/3` Squaring both side `x^(2)+1/(x^(2))-2xx x xx 1/x=4/9` `x^(2)+1/(x^(2))=4/9+2` `[x^(2)+1/(x^(2))=2 4/9]` `x^(2)+1/(x^(2))=2 4/9` |
|
| 386. |
यदि `x+1/x=1` है तो `2/(x^(2)-x+2)=?`A. `2//3`B. `2`C. `1`D. `4` |
|
Answer» Correct Answer - B Given `x+1/x=1` Find, `2/(x^(2)-x+2)=?` `x+1/x=1` `x^(2)+1=x` `(x^(2)-x)=-1` Putting value in, `2/((x^(2)-x)+2)=2` |
|
| 387. |
यदि `a/(q-r)+b/(r-p)-c/(p-q)` तो `pa+qb+rc` का मान क्या होगा? |
|
Answer» Correct Answer - A Let `a/(q-r)=b/(r-p)=c/(p-q)=k` `q/(q-r)=k` (on multiplying by `P`) `pa=k(pq=pr)`………….i In the same way we can write `qb=k(qr-qp)`………….ii and `fc=k(rp-rq)`……………iii on adding eq i, ii and iii `pa+qb+rc=k(p-pr+qr-qp+rp-rq)` `pa+qb+rc=0` |
|
| 388. |
यदि `x^(2)+y^(2)+z^(2)=2(x+z-1)` है तो `x^(3)y^(3)+z^(3)=?`A. -1B. 2C. 0D. 1 |
|
Answer» Correct Answer - B Given `x^(2)+y^(2)+z^(2)=2(x+z-1)` Find `x^(3)+y^(3)+z^(3)=?` `implies x^(2)+y^(2)+z^(2)=2(x+z-1)` `implies x^(2)+y^(2)+z^(2)=2x+2z-2` `implies x^(2)+y^(2)+z^(2)=2x+2z-1-1` `implies (x^(2)+1-2x)+y^(2)+(z^(2)+1-2z)=0` `implies (x-1)^(2)+y^(2)+(z-1)^(2)=0` `implies (x-1)^(2)=0` `implies x=1` `implies y^(2)=0` `implies y=0` `implies (z-1)^(2)=0` `implies z=1` Value substituted in question, `implies x^(3)+y^(3)+z^(3)` `implies 1^(3)+0+1^(3)` `implies 2` |
|
| 389. |
यदि `p^(2)+1/(p^(2))=47` हो तो `P+1/p` का मान बताएं?A. 5B. 6C. 7D. 8 |
|
Answer» Correct Answer - C `P^(2)+1/(P^(2))=47` On adding 2 both side `P^(2)+1/(P^(2)+2)=47+2` `(P+1/P)^(2)=49` `(P+1/P)=7` `P+1/P=7` |
|
| 390. |
यदि `(a+1/a)^(2)=3` है तो `a^(3)+1/(a^(3))` का मान बताएं? |
|
Answer» Correct Answer - A `(a+1/a)^(2)=3` `a+1/a=sqrt(3)` Taking cube on both sides `implies a^(3)+1/(a^(3))+3(a)xx(1/a)xx(a+1/a)` `=3sqrt(3)` `implies a^(3)+1/(a^(3))+3sqrt(3)=sqrt(3)` `a^(3)+1/(a^(3))=3sqrt(3)-3sqrt(3)=0` |
|
| 391. |
यदि `a=sqrt(2)+1,b=sqrt(2)-1` हो तो `1/(a+1)+1/(b+1)` का मान बताएं? |
|
Answer» Correct Answer - B `a=sqrt(2)+1,b=sqrt(2)-1` `1/(a+1)+1/(b+1)=1/(sqrt(2)+1+1)+` `1/(sqrt(2)-1+1)=1/(sqrt(2)+2)+1/(sqrt(2))` `=1/(sqrt(2)(sqrt(2)+1))+1/(sqrt(2))` `=(1+sqrt(2)+1)/(sqrt(2)(sqrt(2)+1))=(2+sqrt(2))/(2+sqrt(2))=1` |
|
| 392. |
यदि `x=1+sqrt(2)+sqrt(3)` और `y=1+sqrt(2)-sqrt(3)` तो `(x^(2)+4xy+y^(2))/(x+y)` का मान क्या होगा?A. `2sqrt(2)`B. `2(2+sqrt(2))`C. `1`D. `6` |
|
Answer» Correct Answer - D According to the question `x=1+sqrt(2)+sqrt(3)`………….i `y=1+sqrt(2)-sqrt(3)`……………..ii `implies (x^(2)+4xy+y^(2))/(x+y)` `implies((x+y)^(2)+2xy)/(x+y)` From equation i + ii `x+y=2+2sqrt(2)` `xy=(1+sqrt(2))^(2)-(sqrt(3))^(2)` `=3+2sqrt(2)-3` `=2sqrt(2)` `implies ((2+2sqrt(2))^(2)+4sqrt(2))/(2+2sqrt(2))` `implies (4+8+8sqrt(2)+4sqrt(2))/(2+2sqrt(2))` `implies (12+12sqrt(2))/(2+2sqrt(2))` `=(12(1+sqrt(2)))/(2(1+sqrt(2)))=6` |
|
| 393. |
यदि `x+1/x=-2` है तो `x^(p)+x^(q)` का मान क्या होगा?A. -2B. 1C. 0D. 2 |
|
Answer» Correct Answer - C `x+1/x=-2` `x=-1` `to x^(p)+x^(q)` `=(-1)^(p)+(-q)^(q)` [`p` is even no & `q` is odd no] `=1-1=0` |
|
| 394. |
यदि `1/a(a^(2)+1)=3`, हो तो `(a^(6)+1)/(a^(3))` का मान ज्ञात कीजिए?A. 9B. 18C. 27D. 1 |
|
Answer» Correct Answer - B `1/a (a^(2)+1)=3` `a+1/a=3` `a^(3)+1/(a_(3))=(3)^(3)-3xx3` `=27-9=18` `(a^(6)+1)/(a_(3))=18` |
|
| 395. |
यदि `x+1/x=sqrt(13)`, हो तो `3x//(x^(2)-1)` का मान क्या होगा?A. `3sqrt(13)`B. `(sqrt(13))/13`C. `1`D. `3` |
|
Answer» Correct Answer - C Given `=x+1/x=sqrt(13)` than `=(3x)/(x^(2)-1)=3/(x-1/x)`………i Now `x+1/x=sqrt(13)` On squaring both side `x^(2)+1/(x^(2))=13-2=11` `x^(2)+1/(x^(2))-2=11-2` `(x-1/x)^(2)=9=3^(2)` `x-1/x=3` Put this value in equation i `=3/(x-1/x)=3/3=1` |
|
| 396. |
यदि `x+1/x=3`, यहां `x!=0` है तो `(x^(4)+3x^(3)+5x^(2)+3x+1)/(x^(4)+1)` का मान क्या होगा?A. 3B. 5C. 7D. 2 |
|
Answer» Correct Answer - A `x+1/x=3` `x^(2)+1=3x`………….i `(x^(2)+1)^(2)=9x^(2)` `x^(4)+1+2x^(2)=9x^(2)` `x^(4)+1=7x^(2)` ………….ii `:. (x^(4)+3x^(3)+5x^(2)+3x+1)/(x^(4)+1` `(12x^(2)+3x^(3)+3x)/(7x^(2))` From equation i `implies (12x+3(x^(2)+1))/(7x)` `=(12x+3xx3x)/(7x)` `implies (21x)/(7x)` `=3` |
|
| 397. |
यदि `5x-9y=5` और `125x^(3)+729y^(3)=120` है तो `x` तथा `y` का गुणनफल का मान क्या होगा?A. 45B. `1//9`C. `1//135`D. `135` |
|
Answer» Correct Answer - C Given `5x+9y=5` …………i `125x^(3)+729y^(3)=120`……………ii From equation i cubing both sides `=(5x+9y)^(3)=5^(3)` `implies 125x^(3)+729y^(3)+3xx5x xx 9y` `(5x+9y)=125` `implies 125x^(3)+729y^(3)+125xy xx 5-126` `implies 120+135 xy xx 5=125` `implies 135xy xx 5=5` `implies xy=1/135` `implies` Therefore produce of `x` and `y=1/135` |
|
| 398. |
यदि `x+1/x=5`, हो तो `(5x)/(x^(2)+5x+1)` का मान बताइए?A. `1/3`B. `1/4`C. `1/2`D. `1/5` |
|
Answer» Correct Answer - C `x+1/x=5` then `(5x)/(x^(2)5x+1)` `=5/(x+5+1/x)=5/(x^(2)+1/x+5)` `5/(5+5)=1/2` |
|
| 399. |
यदि `a(x+y)=b(x-y)=2ab` हो तो `2(x^(2)+y^(2))` का मान क्या होगा?A. `2(a^(2)-b^(2))`B. `2(a^(2)+b^(2))`C. `4(a^(2))-b^(2))`D. `4(a^(2)+b^(2))` |
|
Answer» Correct Answer - D `a(x+y)=b(x-y)=2ab` `a(x+y)=2ab` `x+y=2b` On squaring both side `x^(2)+y^(2)+2xy=4b^(2)`………..9i `b(x-y)=2ab` `x-y=2a` On squaring both side `x^(2)+y^(2)-2xy=4a^(2)`…………….ii add equation i + ii `2(x^(2)+y^(2))=4(a^(2)+b^(2))` |
|
| 400. |
यदि `a+b-5` और `a-b-3`, हो तो `(a^(2)+b^(2))` का मान बताइए?A. 17B. 18C. 19D. 20 |
|
Answer» Correct Answer - A `a+b=5` `a^(2)+b^(2)+2ab=25` …………..i `a-b=3` `a^(2)+b^(2)-2ab=9`………….ii From equation i and ii `2(a^(2)+b^(2))=34` `a^(2)+b^(2)=17` |
|