Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

What is `int tan^(2) x sec^(4) x dx` equal to ?A. `(sec^(5)x)/(5) + (sec^(3) x)/(3) + c`B. `(tan^(5)x)/(5) + (tan^(3)x)/(3) + c`C. `(tan^(5) x)/(5) + (sec^(3)x)/(3) + c`D. `(sec^(5)x)/(5) + (tan^(3)x)/(3) + c`

Answer» Correct Answer - B
Let `I = int tan^(2) x sec^(4) x dx`
Let `tan x = t`
`rArr sec^(2) x dx = dt`
`:. I = int tan^(2) x.sec^(2) x.sec^(2) x.dx`
`= int tan^(2) x (1 + tan^(2)x) sec^(2) x.dx`
`:. I = int t^(2) (1 + t^(2)) dt = int (t^(2) + t^(4)) dt`
`= (t^(5))/(5) + (t^(3))/(3) + c = (tan^(5) x)/(5) + (tan^(3)x)/(3) + c`
252.

What is `int sin x log (tan x) dx` equal to ?A. `cos x log tan x + log tan (x//2) + c`B. `-cos x log tan x + log tan (x//2) + c`C. `cos x log tan x + log cot (x//2) + c`D. `-cos x log tan x + log cot (x//2) + c`

Answer» Correct Answer - B
`int sin x log (tan x) dx`
`= - cos x log tan x - int (-cos x) (1)/(tan x). Sec^(2) x dx`
`= - cos x log tan x + int (1)/(sin x) dx`
`= - cos x log (tan x) + int (1 + "tan"^(2) (x)/(2))/(2 "tan "(x)/(2)) dx`
Let `t = "tan"(x)/(2)`
`rArr (dx)/(dt) = (2)/(1 + t^(2)) rArr dx = (2)/(1 + t^(2)).dt`
So, `- cos x. log (tan x) + int (1 + "tan"^(2) (x)/(2))/(2 "tan"(x)/(2)).dx`
`= - cos x. log (tan x) + int (1 + t^(2))/(2t).(2)/(1 + t^(2))dt`
`= - cos x log tan x + int (1)/(t) .dt`
`= - cos x log tan x + log (t) + c`
`= - cos x log tan x + log tan ((x)/(2)) + c`
253.

What is `int (d theta)/(sin^(2) theta + 2 cos^(2) theta -1)` equal to ?A. `tan theta + c`B. `cot theta + c`C. `(1)/(2) tan theta + c`D. `(1)/(2) cot theta + c`

Answer» Correct Answer - A
Let `I = int (d theta)/(sin^(2) theta + 2 cos^(2) theta - 1)`
`= int (d theta)/(1- cos^(2) theta + 2 cos^(2) theta - 1) = int (d theta)/(cos^(2) theta)`
`= int sec^(2) theta d theta = tan theta + c`
254.

`1f I=int(dx)/((2a x+x^2)^(3/2))`

Answer» Correct Answer - `-(x+a)/(a^(2)sqrt(2ax+x^(2)))+C`
`2ax+x^(2)=(x+a)^(2)-a^(2).`
Now, put `x+a=a sec theta`
` :. dx= a sec theta tan theta d theta`
` :. int (dx)/((2ax+x^(2))^(3//2))=int(a sec theta tan theta)/(a^(3) tan^(3) theta)d theta`
`=(1)/(a^(2))int(cos theta)/(sin^(2) theta) d theta`
`= -(1)/(a^(2)sin theta)+C`
`= -(1)/(a^(2)sqrt(1-(a^(2))/((x+a)^(2))))+C`
`=-(x+a)/(a^(2)sqrt(2ax+x^(2)))+C`
255.

Evaluate:`int(sqrt(x)dx)/(1+x)`

Answer» Correct Answer - `2sqrt(x)-2tan^(-1)sqrt(x)+C`
` " Put " x=t^(2) or dx=2tdt.` Then,
`int(sqrt(x)dx)/(1+x)=2int(t^(2)dt)/(1+t^(2)) `
` =2int(1-(1)/(1+t^(2)))dt `
`=2(t-tan^(-1)t)+C`
` =2sqrt(x)-2tan^(-1)sqrt(x)+C`
256.

Evaluate:`int(x^2tan^(-1)x^3)/(1+x^6)dx`

Answer» Correct Answer - `((tan^(-1)x^(3))^(2))/(6)+C `
`I= int tan^(-1)x^(3)*x^(2)/(1+x^(6))dx`
` " Let " tan^(-1)x^(3)=t`
` :. dt=(3x^(2))/(1+x^(6))dx `
` :. I=(1)/(3)int tdt=(t^(2))/(6)+C=((tan^(-1)x^(3))^(2))/(6)+C `
257.

Evaluate: `int(x^2tan^(-1)x)/(1+x^2) dx`

Answer» Let `x=tan theta.`
` :. dx=sec^(2) theta d theta`
` :. I=int (x^(2)tan^(-1)x)/(1+x^(2))dx`
`=int (theta tan^(2) theta)/(1+tan^(2)theta)*sec^(2) theta d theta`
`= int theta tan^(2) theta d theta`
`=int theta (sec^(2) theta-1) d theta`
`=int theta sec^(2) theta d theta - int theta d theta`
`=theta tan theta -int 1*tan theta d theta-(theta^(2))/(2) +c`
`=theta tan theta -log_(e)|cos theta|-(theta^(2))/(2)+c, " where " theta = tan^(-1)x`.
258.

Evaluate ` int 2x^(3)e^(x^(2))dx`.

Answer» `I= int x^(2)e^(x^(2))(2x)dx`
Let `x^(2)=t`
` :. I=int t e^(t)dt`
`=t*e^(t)-int 1*e^(t)dt`
`=t*e^(t)-e^(t)+c`
`=x^(2)*e^(x^(2))-e^(x^(2))+c`
259.

Evaluate ` int x log x dx`.

Answer» `int underset (II)(x)underset(I)(log)x dx`
`=logx {int x dx}-int {(d)/(dx)(logx)intxdx}dx`
`=(logx)(x^(2))/(2)int(1)/(x)(x^(2))/(2)dx`
`=(x^(2))/(2)log x-(1)/(2)int x dx`
`=(x^(2))/(2)logx-(1)/(2)((x^(2))/(2))+C=(x^(2))/(2)logx-(1)/(4)x^(2)+C`
260.

Evaluate:`int(a x^3+b x)/(x^4+c^2)dx`

Answer» Correct Answer - `(a)/(4)log(x^(4)+c^(2))+(b)/(2)(1)/(c)"tan"^(-1)(x^(2))/(c)+k`
`I=int(ax^(3)+bx)/(x^(4)+c^(2))dx `
`=int[(ax^(3))/(x^(4)+c^(2))+(bx)/(x^(4)+c^(2))]dx`
`=(a)/(4)int(4x^(3))/(x^(4)+c^(2))dx+(b)/(2)int(2x)/(x^(4)+c^(2))dx `
` " " I_(1) " "+ " "I_(2)`
`=(a)/(4)log(x^(4)+c^(2))+(b)/(2)int(dt)/(t^(2)+c^(2)) " " (" in " I_(2), " put " x^(2)=t)`
` =(a)/(4)log(x^(4)+c^(2))+(b)/(2)(1)/(c)"tan"^(-1)(x^(2))/(c)+k`
261.

Evaluate:`int(log(1+1/x))/(x(1+x))dx`

Answer» Correct Answer - ` -((log(1+(1)/(x)))^(2))/(2) + C`
Let `log(1+(1)/(x))=t`
` :. (0-(1)/(x^(2)))/(1+(1)/(x)) dx=dt `
` implies (-dx)/(x(x+1))=dt `
` implies int(log(1+(1)/(x)))/(x(1+x))dx=-int t dt `
`=- (t^(2))/(2) +c `
` = -((log(1+(1)/(x)))^(2))/(2) + c`
262.

What is `int (e^(x) + 1)^(-1) dx` equal to?A. `ln (e^(x) + 1) + c`B. `ln (e^(-x) + 1) + c`C. `-l (e^(-x) + 1) + c`D. `-(e^(x) + 1) + c`

Answer» Correct Answer - C
Let I `= int (e^(x) + 1)^(-1) dx = int (1)/(e^(x) + 1) dx = int (e^(-x))/(1 + e^(-x)) dx`
Let `1 + ^(-x) =t rArr -e^(-x) dx = dt`
`:. I = - int (1)/(t) dt = - log t + c = - log (1 + e^(-x)) + c`
263.

If `int(dx)/(f(x)) = log {f(x)}^(2) + c`, then what is f(x) equal to ?A. `2x + alpha`B. `x + alpha`C. `(x)/(2) + alpha`D. `x^(2) + alpha`

Answer» Correct Answer - C
We check from the given option one by one. Options (a) and (b) do not satisfy. We check option (c)
Let `f(x) = (x)/(2) + alpha`
`:. int (dx)/((x)/(2) + alpha) = int (2dx)/((x + 2 alpha))`
`=2 log (x + 2 alpha) + c_(1) = log (x + 2alpha)^(2) + c_(1)`
`= log ((x)/(2) + alpha)^(2) + log 2^(2) + c_(1) = log ((x)/(2) + alpha)^(2) + c`
264.

Evaluate: (i) `int(sinsqrt(x))/(sqrt(x)) dx`(ii) `int((x+1)e^x)/(sin^2(x e^x)) dx`A. `-e^(x) cot x + c`B. `cos^(2) (x e^(x)) + c`C. `log sin (x e^(x)) + c`D. `- cot (x e^(x)) + c`

Answer» Correct Answer - D
Let the given integral be
`I = int (e^(x) (1 + x))/(sin^(2) (xe^(x))) dx`
Put `x e^(x) = t and e^(x) (1 + x) dx = dt`
`rArr I int (dt)/(sin^(2)t) = int "cosec"^(2) t dt`
`= - cot t + c = - cot (x e^(x)) + c`
265.

What is the value of `int(sqrtx + x)^(-1) dx`?A. `ln (x + sqrtx) + c`B. `2 ln (1 + sqrtx) + c`C. `2 ln (x + sqrtx) + c`D. `2 ln (x - sqrtx) + c`

Answer» Correct Answer - B
`int (x + sqrtx)^(-1) dx = int (1)/((x + sqrtx)) dx`
`= int (1)/((sqrtx.sqrtx + sqrtx)).dx`
Let `sqrtx + 1 = t`
then, `(1)/(2sqrtx) dx = dt rArr (1)/(sqrtx) dx = 2dt`
`:. Int (1)/(sqrtx (sqrtx + 1))dx = int (2dt)/(t) = 2 log t + c`
`= 2 log (1 + sqrtx) + c`
266.

What is the value of `int(dx)/((x^(2) + a^(2)) (x^(2) + b^(2)))` ?A. `int([{tan^(-1) (x//a)}//a - {tan^(-1) (x//b)}//b])/((a^(2) + b^(2))) + c`B. `int([{tan^(-1) (x//a)}//a + {tan^(-1) (x//b)}//b])/((a^(2) +b^(2))) + c`C. `int([{tan^(-1) (x//a)}//a + {tan^(-1)(x//b)}//b])/((b^(2) -a^(2))) + c`D. `int([{tan^(-1) (x//a)} //a+ {tan^(-1) (x //b)}//b])/((b^(2) - a^(2))) + c`

Answer» Correct Answer - D
The given integral is `int (dx)/((x^(2) + a^(2)) (x^(2) + b^(2)))` Breaking the expression under integral into partial fraction
`(1)/((x^(2) + a^(2)) (x^(2) + b^(2)))`
`= ((1)/((x^(2) + a^(2))) - (1)/((x^(2) + b^(2)))) xx (1)/(b^(2) -a^(2))`
The given integral is
`(1)/((b^(2) -a^(2))) int ((1)/((x^(2) + a^(2))) - (1)/((x^(2) + b^(2))))dx`
`= (1)/((b^(2) -a^(2))) int [(1)/(x^(2) + a^(2)) dx - int (1)/(x^(2) + b^(2)) dx]`
`= (1)/((b^(2) -a^(2))) {(tan^(-1) ((x)/(a)))/(a) - (tan^(-1) ((x)/(b)))/(b)} + c`
267.

`Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n`both `f(x)a n dg(x)`are odd functions`f(x)`is monotonic function`f(x)=g(x)`has no real roots`int(f(x))/(g(x))dx=-1/x+3/(x^3)+c`A. both `f(x)` and `g(x)` are odd functionsB. `f(x)` is one-one functionC. `f(x)=g(x)` has no real rootsD. `int (f(x))/(g(x))dx=(1)/(x)+(3)/(x^(3))+c`

Answer» Correct Answer - A::C::D
Let `I=int((x^(4)+1))/((x^(6)+1))dt=int((x^(2)+1)^(2)-2x^(2))/((x^(2)+1)(x^(4)-x^(2)+1))dx`
`=int((x^(2)+1)dx)/((x^(4)-x^(2)+1))-2 int (x^(2)dx)/((x^(6)+1))`
`=int((1+(1)/(x^(2)))dx)/((x^(2)-1+(1)/(x^(2))))-2 int (x^(2)dx)/((x^(3))^(2)+1)`
In the first integral, put `x-(1)/(x)=t," i.e., " (1+(1)/(x^(2)))dx=dt`
and in the second integral put `x^(3) =u, " i.e., " x^(2)dx=(du)/(3)`
Then ` I=int (dt)/(1+t^(2))-(2)/(3)int(du)/(1+u^(2))=tan^(-1) t-(2)/(3)tan^(-1)u +C`
`=tan^(-1)(x-(1)/(x))-(2)/(3)tan^(-1)(x^(3))+C`
Here, `f(x)=x-(1)/(x) and g(x)=x^(3)`
Draw the graphs of `f(x) and g(x)` .
We find that `f(x)` is many-one and `f(x)=g(x)` has no real roots.
`int(f(x))/(g(x))dx=int(x-(1)/(x))/(x^(3))dx=int((1)/(x^(2))-(1)/(x^(4)))dx= -(1)/(x)+(3)/(x^(3))+C`
268.

Evaluate: `int(sqrt(tanx))dx`

Answer» `-1/2log(1+tan^(2//3)x)+1/4log(tan^(4//3)x-tan^(2//3)x+1)+sqrt(3)/2tan^(-1)+(2tan^(2//3)x-1)/sqrt(3)+c`
269.

Evaluate: `intsqrt(secx-1) dx`

Answer» ` I=int sqrt(secx-1)dx=int sqrt((1-cosx)/(cosx))dx`
`=int sqrt(((1-cosx))/(cosx)xx((1+cosx))/((1+cosx)))dx`
`=int sqrt((1-cos^(2)x)/(cosx+cos^(2)x))dx`
`=int(sinx)/(sqrt(cos^(2)x+cosx))dx`
Let `cosx=t.` Then `d(cosx)=dt` or `-sinx dx=dt.` Therefore,
`I=int(-dt)/(sqrt(t^(2)+t))`
`=-int(dt)/(sqrt((t+(1)/(2))^(2)-((1)/(2))^(2)))`
`=-log|(t+(1)/(2))+sqrt((t+(1)/(2))^(2)-((1)/(2))^(2))|+C`
` =-log|(t+(1)/(2))+sqrt(t^(2)+t)|+C`
`=-log|(cosx +(1)/(2))+sqrt(cos^(2)x+cosx)|+C`
270.

What is `int (a + b sin x)/(cos^(2) x) dx` equal to ?A. `a sec x + b tan x + c`B. `a tan x + b sec x + c`C. `a cot x + b "cosec" x + c`D. `a "cosec" x + b cot x + c`

Answer» Correct Answer - B
Consider `int (a + b sin x)/(cos^(2)x) dx = int ((a)/(cos^(2)x) + (b sin x)/(cos^(2)x)) dx`
`= int (a sec^(2) x + b tan x sec x) dx = a tan x + b sec x + c`
271.

Evaluate `int(tanx dx)/(sqrt(2+3tan^(2)x)).`

Answer» `int(tanx dx)/(sqrt(2+3tan^(2)x))=int(sinx dx)/(sqrt(2cos^(2)x+3sin^(2)x))`
`=int(sinx dx)/(sqrt(2cos^(2)x+3(1-cos^(2)x)))`
`=int(sinx dx)/(sqrt(3-cos^(2)x))`
`=-int(dt)/(sqrt(3-t^(2)))`
`=-"sin"^(-1)(t)/(sqrt(3))+c`
`=-"sin"^(-1)(cosx)/(sqrt(3))+c`
272.

Evaluate: `∫(dx)/[(x+2)^(8)(x-1)^(6)]^(1//7)`

Answer» `7/3((x-1)/(x+2))^(1//7)+C`
273.

Evaluate: `∫(dx)/[(x-1)(2-x)]^(3//2)`

Answer» `2(sqrt((x-1)/(2-x))-sqrt((2-x)/(x-1)))+C`
274.

`intsqrt((x-3)/(x-4))dx`

Answer» `sqrt((x-3)(x-4))+"ln"(sqrt(x-3)+sqrt(x-4))+C`
275.

Evaluate: `int(4^(x)+5^(x))/(7^(x))dx`

Answer» `int(4^(x)+5^(x))/(7^(x))dx = int[(4/7)^(x)+(5/7)^(x)]dx=((4//7)^(x))/(ln(4/7)) + (5//7)^(x)/(ln(5/7))+C`
276.

Evaluate `int(dx)/((x^2+2x+2)sqrt(x^2+2x-4))`

Answer» `-1/(2sqrt(6))"ln"(sqrt(x^(2)+x-4)/sqrt(x^(2)+2x-4))-(sqrt(6)(x+1))/(sqrt(6)(x+1))+C`
277.

Evaluate: `int2^(xlog_(2)^(3))`dx

Answer» We have `int2^(xlog_(2)^(3))dx=int3^(x)dx=3^(x)/(ln3)+C`
278.

Evaluate: `int3x^(6)dx`

Answer» `int3x^(6)dx = 3/7x^(7)+C`
279.

Evaluate: `int(dx)/((2x^(2)+1)sqrt(1-x^(2))`

Answer» `-1/sqrt(3)tan^(-1)(sqrt(x+1))/(sqrt(3)x)+C`
280.

Evaluate: `int(x^(3)+5x^(2)-4+7/x+2/sqrt(x))` dx

Answer» `int(x^(3)+5x^(2)-4+7/x+2/sqrt(x))`dx
`=intx^(3)dx + int5x^(2)dx-int4dx + int7/xdx+int2/sqrt(x)dx`
`=intx^(3)dx+int5x^(2)dx-int4dx+int7/x dx+int2/sqrt(x)dx`
`=ints^(2)dx+5intx^(2)dx-4.int1.dx+7.int1/xdx+2.intx^(1/2)dx`
`=x^(4)/4+5.x^(3)/3-4x+7ln|x|+2(x^(1//2)/(1//2))+C=x^(4)/4+5/3x^(3)-4x+7ln |x|+4sqrt(x)+C`
281.

Evaluate: `int(dx)/((x+1)sqrt(1+x-x^(2))`

Answer» `sin^(-1)(3/2-1/(x+1))/sqrt(5)/2+C`
282.

Evaluate: `int(dx)/((x^(2)+5x+6)sqrt(x+1))`

Answer» `2tan^(-1)(sqrt(x+1))-sqrt(2)tan^(-1)(sqrt(x+1))/sqrt(2)+C`
283.

Evaluate: `int(dx)/((x+2)sqrt(x+1))`

Answer» `2tan^(-1)(sqrt(x+1))+C`
284.

Evaluate: `int1/((x+2)(x+3))dx`

Answer» `"ln"|(x+2)/(x+3)|+C`
285.

Evaluate: `int(dx)/((x+1)(x^(2)+1))`

Answer» `1/2"ln"|x+1|-"ln"(x^(2)+1)+1/2tan^(-1)(x)+C`
286.

Evaluate: `intsqrt(tanx)`dx

Answer» `1/sqrt(2)(y/sqrt(2))+1/(2sqrt(2))"ln"|(y-sqrt(2))/(y+sqrt(2))|+C`, where `y=sqrt(tanx)=1/sqrt(tanx)`
287.

If `f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0)`, and f(0) = 0, then the value of f(1) isA. `-1//2`B. `1//4`C. `1//2`D. `-1//4`

Answer» Correct Answer - B
`f(x)=int(5x^(8)+7x^(6))/(x^(14)(2+(1)/(x^(7))+(1)/(x^(5)))^(2))dx`
`=int((5)/(x^(6))+(7)/(x^(8)))/((2+(1)/(x^(7))+(1)/(x^(5)))^(2))dx`
`"Put, "2+(1)/(x^(7))+(1)/(x^(5))=t`
`rArr" "f(x)=-int(dt)/(t^(2))`
`=(1)/(t)+c`
`=((x^(7))/(2x^(7)+x^(2)+1))+c`
`" "f(0)=0`
`rArr" "c=0`
`rArr" "f(x)=((x^(7))/(2x^(7)+x^(2)+1))`
`rArr" "f(1)=(1)/(4)`
288.

Evaluate: `int(x^(2)-1)/(x^(4)-7x^(2)+1)`dx

Answer» `1/6"ln"|(x+1/x-3)/(x+1/x+3)|+C`
289.

If `f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0)`, and f(0) = 0, then the value of f(1) isA. `-(1)/(2)`B. `-(1)/(4)`C. `(1)/(4)`D. `(1)/(2)`

Answer» Correct Answer - C
We have, `f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx`
`=int(5((x^(8))/(x^(14)))+7((x^(6))/(x^(14))))/((x^(2)/(x^(7))+(1)/(x^(7))+(2x^(7))/(x^(7)))^(2))dx`
(dividing both numerator and denominator by `X^(14)`)
`=int(5x^(-6)+7x^(-8))/((x^(-5)+x^(-7)+2)^(2))dx`
Let `x^(-5) + x^(-7)+2 = t`
`rArr (-5x^(-6)-7x^(-8))dx = dt`
`rArr (5x^(-6)+7x^(-8))dx = - dt`
`therefore f(x) = int - (dt)/(t^(2))= - intt^(-2)dt`
`= -(t^(-2+1))/(-2+1)+C=-(t^(-1))/(-1)+C=(1)/(t)+C`
`=(1)/(x^(-5)+x^(-7)+2)+C=(x^(7))/(2x^(7)+x^(2)+1)+C`
`therefore f(0)=0`
`therefore 0 = (0)/(0+0+1)+C rArr C = 0`
`therefore f(x)=(x^(7))/(2x^(7)+x^(2)+1)`
`rArr" "f(1)=(1)/(2(1)^(7)+1^(2)+1)=(1)/(4)`
290.

`int (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 dx`A. `(1)/(3(1+tan^(3)x))+C`B. `(-1)/(3(1+tan^(3)x))+C`C. `(1)/(1+cot^(3)x)+C`D. `(-1)/(1+cot^(3)x)+C`

Answer» Correct Answer - B
We have, `I = int(sin^(2)x*cos^(2)x)/((sin^(6)x + cos^(3)x*sin^(2)x+sin^(3)x*cos^(2)x+cos^(5)x)^(2))dx`
` = int(sin^(2)x cos^(2)x)/{{sin^(3)x(sin^(2) x + cos^(2)x)+cos^(3)x(sin^(2)x +cos^(2)x)}^(2))dx`
`=int(sin^(2)x cos^(2) x)/((sin^(3)x + cos^(3)x)^(2))dx=int(sin^(2)x cos^(2)x)/(cos^(6)x(1+tan^(3)x)^(2))dx`
`=int(tan^(2)x sec^(2)x)/((1+tan^(3)x)^(2))dx`
Put `tan^(3) x = t rArr 3 tan^(2)x sec^(2) xdx = dt`
`therefore" "I = (1)/(3)int(dt)/((1+t)^(2))`
`rArr" "I = (-1)/(3(1+t))+C rArr I=(-1)/(3(1+tan^(3)x))+C`
291.

If `x^2!=n pi-1, n in N`. Then, the value of `int x sqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx` is equal to:A. `ln|(1)/(2)sec(x^(2)+1)|+C`B. `ln|sec((x^(2)+1)/(2))|+C`C. `(1)/(2)ln|sec(x^(2)+1)|+C`D. `(1)/(2)ln|(2)/(sec(x^(2)+1))|+C`

Answer» Correct Answer - B
`I=(1)/(2)int2xsqrt((2sin(x^(2)+1)-sin2(x^(2)+1))/(2sin(x^(2)+1)+sin2(x^(2)+1)))dx`
`x^(2)+1=t rArr 2x = dt`
`I=(1)/(2)intsqrt((2sint-sin 2t)/(2sin t +sin 2r))dt`
`=(1)/(2)intsqrt((2-2cost)/(2+2cost))dt`
`=(1)/(2)int tan.(t)/(2)dt`
`=(1)/(2)(ln|sec.(t)/(2)|)/((1)/(2))+c`
`=ln|sec((x^(2)+1)/(2))|+c`
292.

If `x^2!=n pi-1, n in N`. Then, the value of `int x sqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx` is equal to:A. `(1)/(2)log_(e)|sec(x^(2)-1)|+C`B. `log_(e)|sec((x^(2)-1)/(2))|+C`C. `log_(e)|(1)/(2)sec^(2)(x^(2)-1)|+C`D. `(1)/(2)log_(e)|sec^(2)((x^(2)-1)/(2))|+C`

Answer» Correct Answer - B
Let `I = intx sqrt((2 sin(x^(2)-1)-sin 2(x^(2)-1))/(2 sin(x^(2)-1)+sin 2(x^(2)-1)))dx`
Put `(x^(2)-1)/(2)=theta rArr x^(2)-1 = 2theta rArr 2x dx = 2 d theta`
`rArr" ""x dx"=d theta`
Now, `I = intsqrt((2sin 2 theta - sin 4 theta)/(2 sin 2 theta + sin 4 theta))d theta`
`=int sqrt((2sin 2 theta - 2 sin 2 theta cos 2 theta)/(2sin 2 theta + 2 sin 2 theta cos 2 theta))d theta" "(therefore sin 2 A = 2 sin A cos A)`
`=int sqrt((2 sin 2 theta(1-cos 2 theta))/(2 sin 2 theta(1+cos 2 theta)))d theta`
`=int sqrt((1-cos 2 theta)/(1+cos 2 theta))d theta = int sqrt((2sin^(2)theta)/(2 cos^(2)theta))d theta`
`[therefore 1-cos 2 A = 2 sin^(2)A and 1 + cos 2 A = 2 cos^(2) A]`
`=int sqrt(tan^(2)theta) d theta = int tan theta d theta`
`=log_(e)|sec theta|+C=log_(e)|sec((x^(2)-1)/(2))|+C[therefore theta = (x^(2)-1)/(2)]`
293.

`int(sin2x)/(sin^4x+cos^4x)d x`A. `cot^(-1)(tan^(2)x)+c `B. `tan^(-1)(tan^(2)x)+c `C. `cot^(-1)(cot^(2)x)+c `D. `tan^(-1)(cot^(2)x)+c `

Answer» Correct Answer - B
` I= int(sin2x)/(sin^(4)x+cos^(4)x)dx`
`=int(2sinx cosx)/(sin^(4)x+cos^(4)x)dx`
`=int(2tanx sec^(2)x)/(1+tan^(4)x)dx `
`"Let " tan^(2)x=t " or " 2tanxsec^(2)xdx=dt`
` :. I=int(dt)/(1+t^(2))=tan^(-1)t+C=tan^(-1)(tan^(2)x)+C`
294.

`int(dx)/(x(x^n+1))` is equal toA. `(1)/(n)log((x^(n))/(x^(n)+1))+c`B. `(1)/(n)log((x^(n)+1)/(x^(n)))+c`C. `log((x^(n))/(x^(n)+1))+c`D. non of these

Answer» Correct Answer - A
`I=int(dx)/(x(x^(n)+1))=int(x^(n-1))/(x^(n)(x^(n)+1))dx`
`"Putting " x^(n)=t " so that " nx^(n-1)dx=dt, i.e.,`
` "we get " x^(n-1)dx=(1)/(n)dt`
`I=int((1)/(n)dt)/(t(t+1))=(1)/(n)int((1)/(t)-(1)/(t+1))dt`
`=(1)/(n)(log t-log(t+1))+C`
`=(1)/(n)log((x^(n))/(x^(n)+1))+C`
295.

Evaluate: `int(dx)/(1+3cos^(2)x)`

Answer» Multiply Nr. And Dr. of given integral by `sec^(2)x`, we get
I = `int(sec^(2)x dx)(tan^(2)x+4) = 1/2tan^(-1)(tanx)/(2)+C`
296.

`int(sin2x)/(sin5xsin3x)dx` is equal toA. `log sin3x-log sin5x+c`B. `(1)/(3)log sin3x+(1)/(5)log sin5x+c`C. `(1)/(3)log sin3x-(1)/(5)log sin5x+c`D. `3log sin3x-5log sin5x+c`

Answer» Correct Answer - C
`int(sin2x)/(sin5xsin3x)dx=int(sin(5x-3x))/(sin5xsin3x)`
`=int(sin5xcos3x-cos5xsin3x)/(sin5xsin3x)dx`
`=(1)/(3)logsin3x-(1)/(5)logsin5x+C`
297.

Evaluate: `intcos^(5)cosxsin^(4)xdx`

Answer» Let I`=intcos^(5)xsin^(4)dx` put `sinx=t rArr cosxdx=dt`
`rArr I=int(1-t^(2))^(2).t^(4).dt=int(t^(4)-2t^(2)+1)t^(4)dt= intt^(B)-2t^(6)+t^(4)dt`
`=t^(9)/9-(2t)^(7)/7+t^(5)/5+C`, where t=sinx
298.

Evaluate: `intsin^(4)xcos^(2)xdx`

Answer» `intsin^(4)xcos^(2)dx=1/8int4sin^(2)xcos^(2)x.2sin^(2)xdx=1/8intsin^(2)2x(1-cos2x)dx`
`=1/8intsin^(2)2dx-1/8intsin^(2)2xcos2xdx=1/16 int(1-cos4x)dx-1/48(sin2x)^(3)`
`=x/16 -(sin4x)/(64) -1/48 (sin2x)^(3)+C`
299.

`intcos^(3)x" " dx=`

Answer» `intcos^(3)xdx=(1)/(4)int(3cosx+cos3x)dx`
`=(3)/(4)intcosxdx+(1)/(4)intcos3xdx`
`=(3)/(4)sinx+(1)/(12)sin3x+c`
300.

`int(sin2x)/(sin^4x+cos^4x)d x`A. `cot^(-1)cot^(2)x+C`B. `-cot^(-1)(tan^(2)x)+C`C. `tan^(-1)(tan^(2)x)+C`D. `-tan^(-1)(cos2x)+C`

Answer» Correct Answer - ABCD