InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. | 
                                    The solution of the inequality `(|x+2|-|x|)/(sqrt(8-x^(3))) ge 0` isA. `[-1,2]`B. `[1,2]`C. `[-1,1]`D. `[0,3sqrt(4))` | 
                            
| 
                                   Answer» Correct Answer - A `(a)` `(|x+2|-|x|)/(sqrt(8-x^(3))) ge 0` We must have `8-x^(3) gt 0` `implies x^(3) lt 8 implies x lt 2` Also `|x+2|-|x| ge 0` `implies |x+2| ge |x|implies (x+2)^(2)-x^(2) ge 0 implies 2(x+1) ge 0` `implies x ge -1` So `x in [-1,2)`  | 
                            |
| 2. | 
                                    The number of solutions of the equation `sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5)` isA. `0`B. `1`C. `2`D. More than `2` | 
                            
| 
                                   Answer» Correct Answer - C `(c )` `|x|-|x-1|+|x-2|=sqrt(5)` For `x ge 2`, `x-(x-1)+x-2=sqrt(5)impliesx=1+sqrt(5)` For ` 1 le x le 2`, `x-(x-1)+(2-x)=sqrt(5)` `x=3-sqrt(5)` No solution For `0 le x lt 1`, `x-(1-x)+2-x=sqrt(5)` `x=sqrt(5)-1` No solution For `x lt 0`, `-x-(1-x)+2-x=sqrt(5)` `x=1-sqrt(5)` Hence, `x=sqrt(5)+1` or `x=1-sqrt(5)`  | 
                            |
| 3. | 
                                    The number of integers satisfying the equation `|x|+|(4-x^(2))/(x)|=|(4)/(x)|` isA. `5`B. `4`C. `6`D. `7` | 
                            
| 
                                   Answer» Correct Answer - B `(b)` `|x|+|(4-x^(2))/(x)|=|x+(4-x^(2))/(x)|` As `|a|+|b|=|a+b|implies ab ge 0` `:.x((4-x^(2))/(x)) ge 0`, `x ne 0` `implies x^(2)-4 le 0` `implies x in [-2,2]-{0}`  | 
                            |
| 4. | 
                                    If `|(12x)/(4x^(2)+9)| le 1`, thenA. `x in R`B. `x in [-3,3]`C. `x in [-1,oo)`D. `x in (-oo,2]` | 
                            
| 
                                   Answer» Correct Answer - A `(a)` `|(12x)/(4x^(2)+9)| le 1` `-1 le (12x)/(4x^(2)+9) le 1` Since `4x^(2)+(9)` is postive for all real `x`, we can multiply by `4x^(2)+9` `:. -(4x^(2)+(9)) le 12x le (4x^(2)+(9))` `(2x+3)^(2) ge 0` and `(2x-3)^(2) ge 0` Above is true for all real values of `x`.  | 
                            |
| 5. | 
                                    The solution of `|x+(1)/(x)| gt 2` isA. `R-{0}`B. `R-{-1,0,1}`C. `R-{1}`D. `R-{-1,1}` | 
                            
| 
                                   Answer» Correct Answer - B `(b)` `|x+(1)/(x)|gt 2` (clearly `x ne 0`) `implies|(x^(2)+1)/(x)| gt 2 implies (x^(2)+1)/(|x|) gt 2` (`:.x^(2)+1 gt 0`) `impliesx^(2)+1 gt2|x|` `implies|x|^(2)-2|x|+1 gt 0 implies (|x|-1)^(2) gt 0` `implies |x| ne 1 implies x ne-1,1` `:.xinR-{-1,0,1}`  | 
                            |
| 6. | 
                                    The solution of `|2x-3| lt |x+2|` isA. `(-oo,1//3)`B. `(1//3,5)`C. `(5,oo)`D. `(-oo,1//3) uu (5,oo)` | 
                            
| 
                                   Answer» Correct Answer - B `(b)` `|2x-3| lt |x+2|` Squaring both sides `(2x-3)^(2)-(x+2)^(2) lt 0` `(x-5)(3x-1) lt 0` `implies x in ((1)/(3),5)`  | 
                            |
| 7. | 
                                    Solve : `(|x-1|-3)(|x+2)-5) lt 0`. | 
                            
| 
                                   Answer» Correct Answer - `x in (-7,-2) uu (3,4)` We have `(|x-1|-3)(|x+2|-5) lt 0` Case I : `x ge 1` `:. (x-4)(x-3) lt 0` `:.x in (3,4)` .......`(i)` Case II : `-2 le x lt 1` `:. (x-3)(x+2) gt 0` `:.x in (-oo,-2)uu(3,oo)` `:. Xin phi` (as `-2 le x lt 1`) Case III : `x lt -2` `:. (x+2)(x+7) lt 0` `:.x in (-7,-2)` ..........`(ii)` From `(i)` and `(ii)`, `x in (-7,-2)uu(3,4)`  | 
                            |
| 8. | 
                                    Solve, `(1-sqrt(21-4x-x^(2)))/(x+1) ge 0`. | 
                            
| 
                                   Answer» Correct Answer - `x in [-2-2sqrt(6),-1) uu [-2+2sqrt(6),3]` We have `(1-sqrt(21-4x-x^(2)))/(x+1)ge0` We must have `21-4x-x^(2) ge 0` `implies x^(2)+4x-21 le 0` `implies (x+7)(x-3) le 0` `implies x in [-7,3]` Case I : `x+1 gt 0 implies x gt -1` .......`(i)` So given inequality reduces to `1 ge sqrt(21-4x-x^(2))` `implies 1 ge 21-4x-x^(2)` `implies x^(2)+4x-20 ge 0` `implies (x+2)^(2)-(2sqrt(6))^(2) ge 0` `implies (x+2+2sqrt(6))(x+2-2sqrt(6)) ge 0` `implies x in [-2+2sqrt(6),3]` ............`(ii)` Case II : `x lt -1` So given inequality reduces to `1-sqrt(21-4x-x^(2)) le 0` `implies 1 le sqrt(21-4x-x^(2))` `implies 1 le 21-4x-x^(2)` `implies x^(2)+4x-20 le 0` `implies x in [-2-2sqrt(6),-1)` ...........`(iii)` So from `(ii)` and `(iii)`, `x in [-2-2sqrt(6),-1)uu[-2+2sqrt(6),3]`  | 
                            |
| 9. | 
                                    Solve, `(sqrt(2x-1))/(x-2) lt 1`. | 
                            
| 
                                   Answer» Correct Answer - `x in [1//2,2) uu (5,oo)` We have `(sqrt(2x-1))/(x-2) lt 1` We have `x ge (1)/(2)` Obviously `x lt 2` satisfies the inequality. For `x gt 2`, `sqrt(2x-1) lt x -2` `implies 2x-1 lt x^(2)-4x+4` `impliesx^(2)-6x+5 gt 0` `implies x in (-oo,1)uu(5,oo)` From `(i)`, `(ii)`, `(iii)` , `x in [1//2,2)uu(5,oo)`  | 
                            |
| 10. | 
                                    `(sqrt(8+2x-x^2)>6-3x)` | 
                            
| 
                                   Answer» Correct Answer - `x in (1,4]` `sqrt(8+2x-x^(2)) gt 6-3x` We must `8+2x-x^(2) ge 0` `implies x in [-2,4 ]` …….`(i)` For `6-2x lt 0` or `x gt 2` , inequality is satisfied. Let `6-3x ge 0` `implies x le 2`…….`(ii)` `implies 8+2x-x^(2) gt 36+9x^(2)-36x` `implies 5x^(2)-19x+14 lt 0` `implies (5x-14)(x-1) lt 0` `implies x in (1,(14)/(5))`.........`(iii)` From `(ii)` and `(iii)`, `x in (1,2]` `:. "finally" x in (1,4]`  | 
                            |
| 11. | 
                                    Solve `x-sqrt(1-|x|) lt 0`. | 
                            
| 
                                   Answer» Correct Answer - `x in [-1,-(1)/(2)+(sqrt(5))/(2))` `x-sqrt(1-|x|) lt 0` We must have `1-|x| ge 0` `implies |x| le 1` `implies x in [-1,1]` Case I : `x in[0,1]` So, we have `x lt sqrt(1-x)` `implies x^(2)lt1-x` `implies x^(2)+x-1 lt 0` `implies (x+(1)/(2))^(2)-((sqrt(5))//(2))^(2) lt 0` `implies x in[0,-(1)/(2)+(sqrt(5))/(2))` ..........`(i)` Case II : `x in [-1,0)` So, we have `x lt sqrt(1+x)` `implies "negative " lt "positive"` `implies x in [-1,0)`.........`(ii)` Hence, from `(i)` and `(ii)` `x in [-1,-(1)/(2)+(sqrt(5))/(2))`  | 
                            |
| 12. | 
                                    Solve the simultaneous equations `|x+2|+y=5`, `x-|y|=1`Find x. | 
                            
| 
                                   Answer» Correct Answer - `x=2` `|x+2|+y=5` ……….`(i)` `x-|y|=1` ……..`(ii)` Eliminating `x`, we get `|1+|y|+2|+y=5` `:. (3+|y|)+y=5` `:. y+|y|=2` `:.y=2` `:.x=2`  | 
                            |
| 13. | 
                                    Solve `|x-1|-2|=|x-3|`. | 
                            
| 
                                   Answer» Correct Answer - `[1,oo)` `||x-1||-2|=|x-3|` Case I : `x ge 3` `:. |x-1-2|=x-3 implies x-3=x-3` `:.x ge 3` Case II : If `1 le x lt3` `:. |x-1-2|=-(x-3)` `:. -(x-3)=-(x-3)implies1le x lt3` Case III : `-1 le x lt 1` `:, |-x+1-2|=-(x-3)` `:. |-x-1|=-(x-3) implies |x+1|=-x+3` `x+1=-x+3 implies 2x=2impliesx=1` Which is not possible Case IV : IF `x lt -1` `:. |-x+1-2|=-(x-3)` `implies |x+1|=-(x-3)implies-(x+1)=-(x-3)` `implies -x-1=-x+3` `implies` No solution Hence `x in [1,oo)`  | 
                            |
| 14. | 
                                    Solve `|x|^(2)-|x|+4=2x^(2)-3|x|+1`. | 
                            
| 
                                   Answer» Correct Answer - `x=+-3` `|x|^(2)-|x|+4=2x^(2)-3|x|+1` `implies |x|^(2)-|x|+4=2|x|^(2)-3|x|+1` `implies |x|^(2)-2|x|-3=0` `implies (|x|-3)(|x|+1)=0` `implies |x|-3=0implies|x|=3impliesx=+-3`  | 
                            |
| 15. | 
                                    Let `A={x:x^(2)-4x+3 lt 0,x in R }` `B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)x+5 le0}` If `B sube A`, then `p in `A. `[-4,-1]`B. `[-4,oo)`C. `(-oo,1)`D. `[0,1]` | 
                            
| 
                                   Answer» Correct Answer - A `(a)` `A=(1,3)` For `BsubeA{:(2^(1-1)+p le0,p le -1),(2^(1-3)+p le 0, p le -1//4):}}p le -1` `f(x)=x^(2)-2(p+7)x+5` `{:(f(1) le0 implies p ge -4),(f(3) le 0 implies pge-1):}}P ge -4` So `p in[-4,-1]`  | 
                            |
| 16. | 
                                    The solution set of the inequation `|(1)/(x)-2| lt 4`, isA. `(-oo,-1//2)`B. `(1//6,oo)`C. `(-1//2,1//6)`D. `(-oo,-1//2) uu (1//6,oo)` | 
                            
| 
                                   Answer» Correct Answer - D `(d)` `|(1)/(x)-2| lt 4 hArr-4 lt (1)/(x)-2 lt 4 hArr -2 lt (1)/(x) lt 6` Hence `x in (-oo,-(1)/(2))uu((1)/(6),oo)`  | 
                            |
| 17. | 
                                    Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then the sum of all possible values of |a-d|=A. `9`B. `18`C. `24`D. `30` | 
                            
| 
                                   Answer» Correct Answer - B `(b)` `|a-b|=2impliesa-b=+2` `|b-c|=3impliesb-c=+-3` `|c-d|=4impliesc-d=+-4` Possible values of `a-d` are `+-9`, `+-5`, `+-3`, `+-1` `:. |a-d|=9,5,3,1` Sum `=18`  | 
                            |
| 18. | 
                                    The number of integers satisfying `|2x-3|+|x+5| le |x-8|` isA. `5`B. `6`C. `7`D. `8` | 
                            
| 
                                   Answer» Correct Answer - C `(c )` `|2x-3|+|x+5| le |x-8|` `implies |2x-3|+|x+5| le |(2x-3)-(x-5)|` `implies (2x-3)(x+5) le 0 implies -5 le x le 3//2`  | 
                            |
| 19. | 
                                    If `f(x)=ax^(2)+bx+c` and `f(-1) ge -4`, `f(1) le 0` and `f(3) ge 5`, then the least value of `a` isA. `1//4`B. `1//8`C. `1//3`D. `-1//3` | 
                            
| 
                                   Answer» Correct Answer - B `(b)` `f(-1) ge -4` `implies a-b+c ge -4`………`(i)` `f(1) le 0` `implies a+b+c le 0` `implies -a-b-c ge 0`………`(ii)` `f(3) ge 5` and `9a+3b+c ge 5`……….`(iii)` From `(i)+(ii) implies -2b ge -4`…….`(iv)` From `(ii)+(iii)+(iv) implies 8a ge 1 implies age 1//8`  | 
                            |
| 20. | 
                                    The number of integral values of `x` satisfying the equation `|x-|x-4||=4` isA. `5`B. `7`C. `9`D. infinite | 
                            
| 
                                   Answer» Correct Answer - D `(d)` `f(x)=|x-|x-4||` `={{:(2|x-2|,,,xlt4),(4,,,xge4):}` For `|x-|x-4||=4` `2|x-2|=4impliesx=0`,`4` `:.` solution set is `{0}uu[4,oo)`.  | 
                            |
| 21. | 
                                    Which of the following is not the solution of `|2x+5|-|x-3| ge |x+8| ` ?A. `(-oo,-8]`B. `[3,oo)`C. `[-8,3)`D. none of these | 
                            
| 
                                   Answer» Correct Answer - C `(c )` `|2x+5|-|x-3| ge |x+8|` `implies |2x+5|-|x-3| ge |(2x+5)-(x-3)|` `implies (2x+5)(x-3) ge 0 implies -x le -(5)/(2)` or `x ge 3` .........`(i)` Also `|2x+5| ge |x-3|` Squaring both sides, `4x^(2)+20x+25 ge x^(2)-6x+9` `implies3x^(2)+26x+16 ge 0` `implies (3x+2)(x+8) ge 0` `implies x le -8` or `x ge -(2)/(3)`..........`(ii)` From `(i)` and `(ii)` , `x in (-oo,-8]uu[3,oo)`  | 
                            |
| 22. | 
                                    Let `a`, `b gt 0` satisfies `a^(3)+b^(3)=a-b`. ThenA. `a^(2)+b^(2)=1`B. `a^(2)+ab+b^(2) lt 1`C. `a^(2)+b^(2) gt 1`D. none of these | 
                            
| 
                                   Answer» Correct Answer - B `(b)` `a^(2)+ab+b^(2)=(a^(3)-b^(3))/(a-b)=(a^(3)-b^(3))/(a^(3)+b^(3)) lt 1`.  | 
                            |
| 23. | 
                                    The equation `|2ax-3|+|ax+1|+|5-ax|=(1)/(2)` possessesA. Infinite number of real solutions for some `a in R`B. finitely many real solutions for some `a in R'`C. no real solutions for some `a in R`D. no real solutions `a in R` | 
                            
| 
                                   Answer» Correct Answer - D `(d)` We have `|2ax-3|+|ax+1|+|5-ax|=(1)/(2)` Now `|2ax-3|+|ax+1|+|5-ax| ge |2ax-3-(ax+1)+5-ax|=1` So the given equation has no solution.  | 
                            |