Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

`int " log"_(e) " x dx "`

Answer» Correct Answer - `x (log_(e) x-1)+c`
302.

`int(sinx)/(1+sin x) dx`

Answer» Correct Answer - `sec x-tan x+x+c`
303.

`intsqrt(1-cos 2x) dx`

Answer» Correct Answer - `-sqrt(2) cos x+c`
304.

`inttan^(- 1)((3x-x^3)/(1-3x^2)) dx`

Answer» Correct Answer - `3x tan^(-1) x-(3)/(2) log (1+x^(2)) +c`
305.

`int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2)` , then (a,b) isA. `(1, -1)`B. `(-1, 1)`C. `((1)/(2),-(1)/(2))`D. `((1)/(2),(1)/(2))`

Answer» Correct Answer - D
Let `l=int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=int(dx)/(x^(2)-1)+int(dx)/(x^(2)+4)`
`" "[because (2x^(2)+3)/((x^(2)-1)(x^(2)+4))=(1)/(x^(2)-1)+(1)/(x^(2)+4)]`
`rArr" "l=(1)/(2)log((x-1)/(x+1))+(1)/(2)tan^(-1).(x)/(2)+C`
`But" "l=a log((x-1)/(x+1))+b tan^(-1)((x)/(2))+C`
`therefore" "a=(1)/(2), b=(1)/(2)`
306.

Evaluate: `int(x+1)/(x^2+4x+5) dx`

Answer» Correct Answer - `(1)/(2) log |3x^(2)+4x+5 |-tan^(-1) (x+2)+c`
307.

` (i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx`

Answer» Correct Answer - `(i) log | tan^(-1)x|+c" "(ii) e^(tan^(-1)x)+c`
308.

Evaluate : `int x^n log x dx.`

Answer» Correct Answer - ` (x^(n+1))/(n+1)[log x-(1)/(n+1)]+c`
309.

`inte^(x+3) dx`

Answer» Correct Answer - `e^(x+3)+c.`
310.

`int(e^(x) (1+x))/(sin^(2) (x e^(x)))dx`

Answer» Correct Answer - `-cot (x e^(x)) +c`
311.

`int(2-3 cos x)/(sin^(2) x)dx`

Answer» Correct Answer - `-2 cot x+3 cosec x+c`.
312.

The value of `int(3x+2)/((x-2)^(2)(x-3))dx` is equal toA. `11log (x-3)/(x-2)-(8)/(x-2)+C`B. `11log (x+3)/(x+2)-(8)/(x-2)+C`C. `11log(x-3)/(x-2)+(8)/(x-2)+C`D. `11log (x+3)/(x+2)+(8)/(x-2)+C`

Answer» Correct Answer - C
Let l`=int(3x+2)/((x-2)^(2)(x-3))dx" …(i)"`
Again, let
`(3x+2)/((x-2)^(2)(x-3))=(A)/((x-2))+(B)/((x-2)^(2))+(C)/((x-3))" …(ii)"`
`rArr" "3x+2=A(x-2)(x-3)+B(x-3)+C(x-2)^(2)" ...(iii)"`
On putting the values of `x=2,3` respectively, we get
`3xx2+2=B(2-3)`
`rArr B=-8`
and `3xx3+2=C(3-2)^(2)`
`rArr" "C=11`
On equation the coefficient of `x^(2)` in Eq. (iii), we get
`0=A+C" "rArr" "A=-11`
On putting the values of A, B and C in Eq. (ii), we get
`(3x+2)/((x-2)^(2)(x-3))=-(11)/((x-2))-(8)/((x-2)^(2))+(11)/((x-3))`
`therefore" "l=int[-(11)/((x-2))-(8)/((x-2)^(2))+(11)/(x-3)]dx`
`-11log(x-2)+(8)/((x-2))+11log(x-3)+C`
`11log((x-3)/(x-2))+(8)/((x-2))+C`
313.

`inte^(sin theta)[log sin theta+"cosec"^(2)theta]cos theta d theta` is equal toA. `inte^(sin theta)[log sin theta+"cosec"^(2)theta]+C`B. `e^(sin theta)[log sin theta+"cosec "theta]+C`C. `e^(sin theta)[log sin theta-"cosec "theta]+C`D. `e^(sin theta)[log sin theta - "cosec"^(2) theta]+C`

Answer» Correct Answer - C
Let `l=inte^(sin theta)(log sin theta)cos theta d theta+int e^(sin theta)"cosec"^(2)thetacos theta d theta`
Put `sin theta = t rArr cos theta d theta = dt`
`therefore" "l=int e^(t) log t dt +int e^(t)t^(-2)dt`
`=logt e^(t)-int(e^(t))/(t)dt+(e^(t)t^(-1))/(-1)-int(e^(t)t^(-))/(-1)dt`
`=e^(t)(logt-(1)/(t))+c`
`=e^(sin theta)(log sin theta - "cosec" theta )+C`
314.

`int (2x-sin 2x)/(1-cos 2x) dx`

Answer» Correct Answer - `-x cot x+c`
315.

`int(3x+1)/(2x^(2)+x-1)dx`

Answer» Correct Answer - `(3)/(4) log|2x^(2) +x-1|+(1)/(15) log |(2x-1)/(2x+2)|+c`
316.

`int(sec^(2)x)/(sqrt(tanx))dx`

Answer» Correct Answer - `2sqrt(tanx)+c`
317.

`int(1+cos 2x)/(1-cos 2x)dx`

Answer» Correct Answer - `-cot x-x+c`
318.

`int((x+1)(2x-3))/(x) dx`

Answer» Correct Answer - `x^(2) -x-3log x+c`
319.

If `int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(B)/(x)+log|(x)/(x+1)|+C` , thenA. `A=(1)/(2), B=1`B. `A=1, B=-(1)/(2)`C. `A=-(1)/(2), B=1`D. A = 1, B = 1

Answer» Correct Answer - C
`int(dx)/(x^(4)+x^(3))=int((x+1)-x)/(x^(3)(x+1))dx=int((1)/(x^(3))-(1)/(x^(2)(x+1)))dx`
`=int((1)/(x^(3))-(1)/(x^(2))+(1)/(x(x+1)))dx`
`=int((1)/(x^(3))-(1)/(x^(2))+(1)/(x)-(1)/(x+1))dx`
`=-(1)/(2x^(2))+(1)/(x)+log|x|-log|x+1|+C`
`-(1)/(2x^(2))+(1)/(x)+log|(x)/(x+1)|+C`
`therefore" "A=-(1)/(2) and B=1`
320.

`int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C`, thenA. `f(x)=log(logx),g(x)=(1)/(logx)`B. `f(x)=logx, g(x)=(1)/(logx)`C. `f(x)=(1)/(logx),g(x)=log(logx)`D. `f(x)=(1)/(xlogx),g(x)=(1)/(logx)`

Answer» Correct Answer - A
Given, `int[log(logx)+(1)/((logx)^(2))]dx`
`=x[f(x)-g(x)]+C`
`LHS=int underset("II")(1).log underset("I")((logx))dx+int(1)/((logx)^(2))dx`
On integration by parts, we get
`xlog(logx)-int(1)/(logx)dx+int(1)/((logx)^(2))dx `
Again using integration by parts, we get
`xlog(logx)-(x)/(logx)-int(1)/((logx)^(2))dx+int(1)/((logx)^(2)dx+C`
`=x[log(logx)-(1)/(logx)]+C`
`therefore f(x)=log(logx),g(x)=(1)/(logx)`
321.

Evaluate:`int{s in(logx)+cos(logx)}dx`

Answer» Correct Answer - ` x sin (log x) +c`
322.

`int(2x-1)/(2x^2+2x+1)dx`

Answer» Correct Answer - `(1)/(2) log |2x^(2) +2x+1|-2 tan^(-1) (2x+1)+c`
323.

Evaluate: `int(x^2+1)/(x^2-1) dx`

Answer» Correct Answer - `x+log |(x-1)/(x+1)|+c`
324.

The value of `int(cos xdx)/((sinx-1)(sinx-2))` is equal toA. `log|(sinx-2)/(sinx-1)|+C`B. `log((sinx-1)/(sinx-2))+C`C. `log(sinx-2)+C`D. None of these

Answer» Correct Answer - A
Let `l=int(cosxdx)/((sinx-1)(sinx-2))`
Put `sinx = t rArr cos x dx=dt`
`therefore" "l=int(dt)/((t-1)(t-2))=int((1)/(t-2)-(1)/(t-1))dt`
`=log|t-2|-log|t-1|+C`
`=log|(t-2)/(t-1)|+C=log|(sinx-2)/(sinx-1)|+C`
325.

`(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx`

Answer» Correct Answer - `(i) sec x-cosec x+c " "(ii) -cot x-tan x+c`
326.

`int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx` is equal toA. `ln(tan^(2)x)+sqrt(1+tan^(2)x)+C`B. `secx+C`C. `sqrt(1-tan^(2)x)+C`D. None of the above

Answer» Correct Answer - D
`I=int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx=int(tanx.sec^(2)x)/(sqrt(1+tan^(4)x))dx`
`"Put "tanx=t`
`rArr" "sec^(2)x dx=dt`
`int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx=int(t)/(sqrt(1+t^(4)))dt`
`"Let "t^(2)=t rArr 2t dt = dy`
`therefore" "I=int(dy)/(2sqrt(1+y^(2)))=(1)/(2)ln|y+sqrt(y^(2)+1)|+C`
`=(1)/(2)ln|tan^(2)x+sqrt(tan^(4)x+1)|+C`
327.

`int(3+2cosx)/((2+3cosx)^(2))dx` is equal toA. `((sinx)/(2+3cosx))+C`B. `((2cosx)/(2+3sinx))+C`C. `((2cosx)/(2+3cosx))+C`D. `((2sinx)/(2+3sinx))+C`

Answer» Correct Answer - A
Divide numerator and denominator by `sin^(2)x`, then
`int(("3 cosec"^(2)x+"2 cosec x cot x"))/(("2 cosec x "+3 cot x)^(2))dx`
Put `" 2 cosec x "+"3 cot x = t`
` therefore" "(-"2 cosec x cot x "-"3 cosec"^(2)x)dx=dt`
`=int-(dt)/(t^(2))=(1)/(t)+C=(1)/("2 cosec x"+"3 cot x")+C`
`=(sinx)/((2+3 cos x))+C`
328.

Find `int[log(logx)+1/((logx)^2)]dx`

Answer» Correct Answer - `x log (log x) -(x)/(log x) +c`
329.

Evaluete `intx/(x^4+x^2+1)dx`

Answer» Correct Answer - `(1)/(sqrt(3))tan^(-1) ((2x^(2)-1)/(sqrt(3)))+c`
330.

`" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is `A. x sin xB. x cos xC. sin x+x cos xD.

Answer» Correct Answer - b
` f(x) = int_(0)^(x) t sin t dt`
Using partial integration
`f(x) =[int sin t dt -int [((d)/(dt)t) int sin t dt ]dt]_(0)^(x)`
`= [t( -cos t)]_(0)^(x) - int_(0)^(x) (-cos t)dt`
`=[-t cos t + sin t]_(0)^(x)`
`rArr f(x) =-x cos x + sin x`
Now differebntiate with respect to x .
f(x) = -[{x(-sin x)}+cos x] +cos x
`= sin x- cos x + cos x =x sin x`
331.

`intx/((x^2-a^2)(x^2-b^2))dx`

Answer» Correct Answer - `(1)/(2(a^(2)-b^(2)))log |(x^(2)-a^(2))/(x^(2)-b^(2))|+c`
332.

If `I=int(sinx+sin^3x)/(cos2x) dx`=`Pcosx+Q log|f(x)|+R`,thenA. `P=(1)/(2), Q=(1)/(4sqrt2)`B. `P=(1)/(4),Q=-(1)/(sqrt2)`C. `f(x)=(cosx+1)/(sqrt2cosx-1)`D. `f(x)=(sqrt2cosx-1)/(sqrt2cosx+1)`

Answer» Correct Answer - D
`l=int(sinx+sin^(3)x)/(cos2x)dx=int(sin x(2-cos^(2)x))/((2cos^(2)x-1))dx`
Put `cos x= t rArr dx = -sin x dx`
`therefore" "l=int(t^(2)-2)/(2t^(2)-1)dt=(1)/(2)int(2t^(2)-4)/(2t^(2)-1)dt`
`=(1)/(2)int dt -(3)/(2)int (dt)/(2t^(2)-1)`
`=(1)/(2)t-(3)/(2sqrt2)xx(1)/(2)ln|(sqrt2t-1)/(sqrt2t+2)|+C`
`=(1)/(2)cos x-(3)/(4sqrt2)ln|(sqrt 2 cos x-1)/(sqrt2 cos x+1)|+C`
So, `P=1//2, Q=(-3)/(4sqrt2)and f(x)=(sqrt2 cos x-1)/(sqrt2 cos x+1)`
or `P=1//2, Q=(3)/(4sqrt2)and f(x)=(sqrt2 cos x+1)/(sqrt2 cos x-1)`
333.

`int(x^(2)+cos^(2)x)/(x^(2)+1)."cosec"^(2)xdx` is equal toA. `cotx +cot^(-1)x+C`B. `-e^(ln tan^(-1))x-cot x+C`C. `C-cotx+cot^(-1)x`D. `-tan^(-1)x-("cosec x")/(sec x)+C`

Answer» Correct Answer - C
`l=int(x^(2)+cos^(2)x)/(x^(2)+1)."cosec"^(2)xdx`
`=int(x^(2)+1+cos^(2)x-1)/(x^(2)+1)."cosec"^(2)xdx`
`=int(1-(sin^(2)x)/(x^(2)+1))."cosec"^(2)xdx`
`=int("cosec"^(2)x-(1)/(x^(2)+1))dx`
`=-cotx - tan^(-1)x+C_(1)=-cot x+cot^(-1)x-(pi)/(2)+C_(1)`
`=-cotx+cot^(-1)x+C" where, "C=C_(1)-(pi)/(2)`
334.

`int(dx)/(e^(x)+e^(-x)+2)` is equal toA. `(1)/(e^(x)+1)+C`B. `(1)/(e^(x)+1)+C`C. `(1)/(1+e^(-x))+C`D. None of these

Answer» Correct Answer - D
`l=int(dx)/(e^(x)+e^(-x)+2)=int(e^(x)dx)/(e^(2x)+2e^(x)+1)=int(e^(x))/((e^(x)+1)^(2))dx`
Put, `e^(x)+1=t`
`therefore" "e^(x)dx=dt`
`therefore" "l=int(dt)/(t^(2))=-(1)/(t)+C=(-1)/(e^(x)+1)+C`
335.

The integral `int(dx)/(x^(2)(x^(4)+1)^(3//4))` equalA. `((x^(4)+1)/(x^(4)))^(1//4)+C`B. `(x^(4)+1)^(1//4)+C`C. `-(x^(4)+1)^(1//4)+C`D. `-((x^(4)+1)/(x^(4)))^(1//4)+C`

Answer» Correct Answer - D
Let `l=int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))=int(dx)/(x^(5)(1+(1)/(x^(4)))^((3)/(4)))`
Put `1+(1)/(x^(4))=t^(4)" "rArr" "-(4)/(x^(5))dx=4t^(3)dt`
`rArr" "(dx)/(x^(5))=-t^(3)dt`
`therefore" "l=int(-t^(3)dt)/(t^(3))=-intdt=-t+C=-(1+(1)/(x^(4)))^((1)/(4))+c`
336.

`intx/((1+sinx))dx`

Answer» Correct Answer -`x (tan x-sec x) +log (1+sin x) +c`
337.

`int((x^(4)-x)^(1//4))/(x^(5))dx` is equal toA. `(4)/(15)(1-(1)/(x^(3)))^(5//4)+C`B. `(4)/(5)(1-(1)/(x^(3)))^(5//4)+C`C. `(4)/(15)(1+(1)/(x^(3)))^(5//4)+C`D. None of these

Answer» Correct Answer - A
Let `l=int((x^(4)-x)^(1//4))/(x^(5))dx=int(x(1-(1)/(x^(3)))^(1//4))/(x^(5))dx`
`=int((1-(1)/(x^(3)))^(1//4))/(x^(4))dx`
Put `1-(1)/(x^(3))=t^(4) rArr (3)/(x^(4))dx= 4t^(3)dt`
`therefore" "l=(4)/(3)int t.t^(3)dt=(4)/(3).((t^(5))/(5))+C=(4)/(!5)(1-(1)/(x^(3)))^(5//4)+C`
338.

`int(2)/((2-x)^(2))root3((2-x)/(2+x))dx` is equal toA. `(4)/(3)((2+x)/(2-x))^(2//3)+C`B. `(3)/(4)((2+x)/(2-x))^(2//3)+C`C. `(3)/(4)((2-x)/(2+x))^(2//3)`D. `(3)/(4)((2+x)/(2-x))^(4//3)+C`

Answer» Correct Answer - B
Put `(2-x)/(2+x)=z^(3) rArr x=(2-2z^(3))/(1+z^(3))`
`rArr" "dx=(-12z^(2)dz)/((1+z^(3))^(2))`
`therefore" "int(2)/((2-x)^(2)) root3((2-x)/(2+x))dx`
`=int(2)/([2-(2-2z^(3))/(1+z^(3))]^(2)).z.((-12z^(3)))/((1+z^(3))^(2))dz`
`=(-3)/(2)int(dz)/(z^(3))=(3)/(4z^(2))+C=(3)/(4)((2+x)/(2-x))^(2//3)+C`
339.

The value of the integral `int(dx)/(x^(n)(1+x^(n))^(1//n)), n in N` isA. `(1)/((1-n))(1+(1)/(x^(n)))^(1-1//n)+C`B. `(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`C. `(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`D. `(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`

Answer» Correct Answer - A
`int(dx)/(x^(n)(1+x^(n))^(1//n))=int(dx)/(x^(n).x((1)/(x^(n))+1)^(1//n))`
`=int(dx)/(x^(n+1)((1)/(x^(n))+1)^(1//n))`
`"Put "(1)/(x^(n))+1=t`
`rArr-(n)/(x^(n+1))dx=dt`
`rArr" "-(1)/(n)int(dt)/(t^(1//n))=-(1)/(n)int t^(-1//n)dt=-(1)/(n).(t^(1-(1)/(n)))/((1-(1)/(n)))+C`
`=(1)/((1-n))(1+(1)/(x^(n)))^(1-(1)/(n))+C`
340.

The integral `int(dx)/((sqrtx+root3(x^(2))))` represents the functionA. `6{root3(x^(2))-root3(x)+ln|1+root3(x)|}+C`B. `3root3(x^(2))-6root6(x)+6ln|1+root6(x)|+C`C. `3root3(x^(2))+6root6(x)+6ln|1+root6(x)|+C`D. `6root3(x^(2))-3root3(x)+6ln|1+root3(x)|+C`

Answer» Correct Answer - B
Let `l=int(dx)/((sqrtx+root3(x^(2))))`
`"Put "x=t^(6)`
`therefore" "dx=6t^(5)dt`
`"Then, "l=int(6t^(5)dt)/((t^(3)+t^(4)))=6int(t^(2)dr)/((1+t))`
`=6int(t-1+(1)/(1+t))dt`
`=6{(t^(2))/(2)-t+ln|1+t|}+C`
`=3t^(2)-6t+6ln|1+t|+C`
`=3t^(2)-6t+6ln|1+t|+C`
`=3.root3(x)-6.root6(x)+6ln|1+root6(x)|+C`
341.

`int e^(sqrtx) dx`

Answer» Correct Answer - `2e^(sqrt(x))(sqrt(x)-1)+c`
342.

If `d/(dx)f(x)=4x^3-3/(x^4)`such that `f(2)=0.`Then f(x) is(A) `x^4+1/(x^3)-(129)/8` (B) `x^3+1/(x^4)+(129)/8`(C) `x^4+1/(x^3)+(129)/8` (D) `x^3+1/(x^4)-(129)/8`A. `x^(4)+(1)/(x^(3))-(129)/(8)`B. `x^(3)+(1)/(x^(4))+(129)/(8)`C. `x^(4)+(1)/(x^(3))+(129)/(8)`D. `x^(3)+(1)/(x^(4))-(129)/(8)`

Answer» Correct Answer - A
Given, `(d)/(dx)f(x)=4x^(3)-(3)/(x^(4))`
`rArr" Anti - derivative of "(4x^(3)-(3)/(x^(4)))=f(x)`
`therefore" "f(x)=int(4x^(3)-(3)/(x^(4)))dx=4intx^(3)dx-3 int x^(-4)dx`
`rArr" "f(x)=4((x^(4))/(4))-3 ((x^(-3))/(-3))+C=x^(4)+(1)/(x^(3))+C`
Also, `f(2)=0`
`therefore" "f(2)=(2)^(4)+(1)/((2)^(3))+C`
`rArr" "16+(1)/(8)+C=0 rArr C=-(16+(1)/(8))`
`rArr" "C=-(129)/(8)`
`therefore" "f(x)=x^(4)+(1)/(x^(4))-(129)/(8).`
343.

`int (dx)/(x(x^(2)+1))" equals "`A. `log|x|+(1)/(2)log(x^(2)+1)+C`B. `-log|x|+(1)/(2)log(x^(2)+1)+C`C. `(1)/(2)log|x|+log (x^(2)+1)+c`D.

Answer» Correct Answer - A
`" Let " (1)/(x(x^(2) +1))+(A)/(x)+(Bx+c)/(x^(2)+1)`
1=A `(x^(2) +1) +(Bx+c)x`
x=0 then 1=A (0+1) +0 `rArr ` A=1
Equating the coefficient of `x^(2)`
`0= A+B rArr B=- A=-1`
Equating the coefficeints of `x,0 =C`
` :. (1)/(x(x^(2) +1)) =(1)/(x)+ (-x)/(x^(2) +1)`
` :. int(1)/(x(x^(2)+1))dx = int ((1)/(x)-(x)/(x^(2)-1))dx`
`=log |x|-(1)/(2) log (x^(2)+1)+c`
344.

Integral of `(x^(3)+3x+4)/(sqrtx)` isA. `(2)/(7)x^(5//2)+(2)/(3)x^(3//2)+8x^(1//2)+C`B. `(2)/(7)x^(7//2)+2x^(3//2)+8x^(1//2)+C`C. `(1)/(7)x^(7//2)+2x^(3//2)+8x^(1//2)+C`D. `x^(7//2)+3x^(3//2)+4x^(1//2)+C`

Answer» Correct Answer - B
`int(x^(3)+3x+4)/(sqrtx)dx`.
`int(x^(3)+3x+4)/(sqrtx)dx=int(x^(3))/(sqrtx)dx+3int(x)/(sqrtx)dx+4int(1)/(sqrtx)dx`
`=int x^(3).x^(-1//2)dx+3 intx^(1//2)dx+4 int x^(-1//2)dx`
`=int x^(5//2)dx+3int x^(1//2)dx+4 intx^(-1//2)dx`
`=(x^((5//2)+1))/((5//2)+1)+(3x^((1//2)+1))/((1//2)+1)+(4x^((-1//2)+1))/((-1//2)+1)+C`
`" "[because int x^(n)dx=(x^(n+1))/(n+1)]`
`=(x^(7//2))/(7//2)+(3x^(3//2))/(3//2)+(4x^(1//2))/(1//2)+C`
`=(2)/(7)x^(7//2)+2x^(3//2)+8x^(1//2)+C`
345.

`"The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"`A. `(1+x^(4)) ^(1//4)+c`B. `(1-x^(-4))^(1//4) +c`C. `-(1+x^(-4))^(1//4)+c`D.

Answer» Correct Answer - D
346.

Evaluate :`int_(-pi//4)^(pi//4) |sin x|dx`

Answer» Correct Answer - `(2-sqrt(2))`
347.

Evaluate :`int_(0)^(8) |x-5|dx`

Answer» Correct Answer - 17
348.

Evaluate :` int_(-pi//2)^(pi//2) |sin x|dx`

Answer» Correct Answer - 2
349.

Evaluate : `int_(0)^(1) (1-x)^(3//2) dx`

Answer» Correct Answer - `(4)/(35)`
350.

Evaluate : `int_(0)^(4) x(4-x)^(3//2)dx`

Answer» Correct Answer - `(512)/(35)`