Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

सिद्ध कीजिए `tan^(-1)sqrt(x)=(1)/(2)cos^(-1) ""((1-x)/(1+x)), x in [0,1]`

Answer» Putting, `x=tan^(2)theta`, we get
RHS `=1/2cos^(-1)(1-x)/(1+x)`
`=1/2cos^(-1)((1-tan^(2)theta)/(1+tan^(2)theta))`
`=1/2cos^(-1)(cos2theta)`
`=(1/2 xx 2theta) = theta=tan^(-1)sqrt(x)`= LHS
`[therefore x=tan^(2)theta rArr tantheta=sqrt(x) rArr theta=tan^(-1)sqrt(x)]`
Hence, `tan^(-1)=1/2cos^(-1)((1-x)(1+x))`.
52.

Prove that `tan^(-1)(x/sqrt(a^(2)-x^(2)))=sin^(-1)x/a.`

Answer» Putting, `x=asintheta`, we get
LHS`=tan^(-1)(x/sqrt(a^(2)+x^(2))`
`=tan^(-1)(asintheta)/sqrt(a^(2)-a^(2)sin^(2)theta)`.
`=tan^(-1)(asintheta)/(a costheta)=tan^(-1)(tantheta)`
`=theta=sin^(-1)x/a`=RHS.
`therefore tan^(-1)(1/(sqrt(x^(2)-1))=(pi/2-sec^(-1)x)`.
53.

The value of `cos^(-1)(cos(14pi/6))` isA. `(13pi)/6`B. `(7pi)/6`C. `(5pi)/6`D. `2pi/6`

Answer» Correct Answer - D
Let `cos^(-1)(cos(14pi)/6)=x,` where `x in [0,pi]`.
Then, `cosx=cos(13pi)/6=cos(2pi+2pi/6)=cos2pi/6 rArr x=2pi/6`.
54.

Find the value of `tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))`

Answer» We have,
`tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))`
`=tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y)`.
`=tan^(-1)(x/y)-tan^(-1){(x/y-1)/(x/y+1))}`
`=tan^(-1)(1)=pi/4`.
55.

If `sin(sin^(-1)(1/5)+cos^(-1)(x))=1` Find the value of x

Answer» We have,
`sin(sin^(-1)1/5+cos^(-1)x)=1`
`rArr sin^(-1)1/5+ cos^(-1)x=sin^(-1)1=pi/2`.
`rArr cos^(-1)x=(pi/2-sin^(-1)1/5)`
`rArr cos^(-1)x=cos^(-1)1/5 rArr x=1/5`.
Hence, `x=pi/4`.
56.

Find the value of: `tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2)`A. `pi`B. `(2pi)/3`C. `(3pi)/4`D. `pi/2`

Answer» Correct Answer - C
`tan^(-1)1+cos^(-1)(-1/2)+sin^(-1)(-1/2)=pi/4+(pi-cos^(-1)1/2)=-sin^(-1)1/2`
`(pi/4+pi-pi/3-pi/6)=(3pi)/4`.
57.

`cos^-1 (1/2) + 2 sin^-1 (1/2).`A. `(2pi)/3`B. `(3pi)/3`C. `2pi`D. none of these

Answer» Correct Answer - A
`cos^(-1)1/2+2sin^(-1)1/2=pi/3+(2 xx pi/6)=(pi/3+pi/3)=(2pi)/3`.
58.

Find the principal value of: `sin^(-1)(-1/2)`A. `-pi/6`B. `(5pi)/6`C. `(7pi)/6`D. none of these

Answer» Correct Answer - A
Let `sin^(-1)(-1/2)=x`, where `x in [-pi/2,pi/2]`.
Then, `sinx=-1/2=-sinpi/6=sin(-pi/6) rArr x=-pi/6`.
59.

Find the principal value of: `cos^(-1)(-1/(sqrt(2)))`A. `-pi/4`B. `pi/4`C. `(3pi)/4`D. `(5pi)/4`

Answer» Correct Answer - C
Let `cos^(-1)(-1/sqrt(2))=x`, where `x in [0,pi]`
Then, `cosx=-1/sqrt(2)=-cospi/4=cos(pi-pi/4)=cos(3pi)/4 rArr x=(3pi)/4`
60.

Solve `tan^(-1)2x+tan^(-1)3x=pi/4`.A. `1/2` or `-2`B. `1/3` or `-3`C. `1/4` or `-2`D. `1/6` or `-1`

Answer» Correct Answer - D
`tan^(-1)3x+tan^(-1)3=tan^(-1)2x=pi/4 rArr tan^(-1)((3x+2x)/(1-6x^(2))=pi/4`.
`therefore (5x)/(1-6x^(2))=tanpi/4 =1 rArr 6x^(2)+5x-1=0`
`rArr (x+1)(6x-1)=0`.
`rArr x=-1` or `x=1/6`.
61.

Prove the following results:`tan(cos^(-1)4/5+tan^(-1)2/3)=(17)/6`A. `13/6`B. `17/6`C. `19/6`D. `23/6`

Answer» Correct Answer - B
`cos^(-1)x=tan^(-1)sqrt(1-16/25)/(4/5)=tan^(-1)3/4`.
`therefore cos^(-1)4/5+tan^(-1)2/3=tan^(-1)3/4+tan^(-1)2/3=tan^(-1)(3/4+2/3)/(1-3/4 xx 2/3)=tan^(-1)(3/4+2/3)/(1-3/4 xx 2/3) = tan^(-1)17/6`
`therefore` given exp. `=tan{tan^(-1)17/6}=17/6`
`therefore` given exp. `=tan{tan^(-1)17/6}=17/6`.
62.

If `sin^(-1)x+sin^(-1)y=(2pi)/3`, then `cos^(-1)x+cos^(-1)y` is equal toA. `pi/6`B. `pi/3`C. `pi`D. `(2pi)/3`

Answer» Correct Answer - B
`sin^(-1)x+sin^(-1)y=(2pi)/3 rArr (pi/2-cos^(-1)x)+(pi/2-cos^(-1)y)=(2pi)/3`.
`therefore cos^(-1)x+cos^(-1)y=(pi-(2pi)/3)=pi/3`.
63.

Find the value of: i) `sin^(-1)(sinpi/3)` ii) `cos^(-1)(cos(2pi)/3))`, iii) `tan^(-1)(tanpi/4)`

Answer» We have,
i) `sin^(-1)(sinpi/3)=pi/3`, since `pi/3 in [-pi/2, pi/2]`.
ii) `cos^(-1)(cos(2pi)/3)=(2pi)/3`, Since `(2pi)/3 in [0,pi]`
iii) `tan^(-1)(tanpi/4)=pi/4`, since `pi/4 in (-pi/2,pi/2)`
64.

Prove that : `cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3`

Answer» We have
LHS `=cot^(-1)7+cot^(-1)8+cot^(-1)18`
`=(tan^(-1)1/7+ tan^(-1)1/8)+tan^(-1)1/18`
`=tan^(-1)((1/7+1/8)/(1-1/7 xx 1/8)) + tan^(-1)1/18=tan^(-1)((15/56)/(55/56))+tan^(-1)1/18`
`=(tan^(-1)3/11+tan^(-1)1/18)=tan^(-1)((3/11+1/18)/(1-3/11 xx 1/18))`
`=tan^(-1)((1/7+1/8)/(1-1/7 xx 1/80) + tan^(-1)1/18=tan^(-1)((15/56)/(55/56))+tan^(-1)1/18`
`=(tan^(-1)3/11 + tan^(-1)1/18)=tan^(-1)((3/11+1/18)/(1-3/11 xx 1/18))`
`=tan^(-1)((65/198)/(195/198))=tan^(-1)1/3=cot^(-1)3` RHS.
`therefore` LHS=RHS.
65.

`Sin[pi/3-sin^(-1)(-1/2)]`A. 1B. 0C. `-1/2`D. none of these

Answer» Correct Answer - A
`sin{pi/3-sin^(-3)(-1/2)}=sin{pi/3+sin^(-1)1/2}=sin(pi/3+pi/6)=sinpi/2=1`.
66.

Prove that `ta n^-1 1/3 + ta n ^-1 1/5 + ta n ^-1 1/7 + ta n ^-1 1/8 = pi/4`

Answer» We have,
LHS `=(tan^(-1)1/3+tan^(-1)1/5)+(tan^(-1)1/7+tan^(-1)1/8)`.
`=tan^(-1)((1/3 +1/5))/(1-1/3 xx 1/5) + tan^(-1)((1/7+1/8)/(1-1/7 xx 1/8))`
`=tan^(-1)((8/15)/(14/15)) + tan^(-1)((15/56)/(55/56)`
`=tan^(-1)8/14+tan^(-1)15/55=tan^(-1)4/7+tan^(-1)3/11`
`=tan^(-1)((4/7+3/11)/(1-4/7 xx 3/11))= tan^(-1)((65/77)/(65/77)) = tan^(-1)1=pi/4`= RHS.
`therefore` LHS=RHS.
67.

Evaluate: `sin(1/2cos^(-1)4/5)`A. `1/sqrt(5)`B. `2/sqrt(5)`C. `1/sqrt(10)`D. `2/sqrt(10)`

Answer» Correct Answer - C
Let `cos^(-1)4/5=x`, where `x in [0,pi]`. Then, `cosx=4/5`.
Since, `x in [0,pi] to 1/2 x in [0,pi/2] rArr sin1/2 x gt 0`.
`sin(1/2cos^(-1)4/5) = sin1/2x =sqrt((1-cosx)/2)=sqrt((1-4/5)/(2))=1/sqrt(10)`.
68.

Evaluate: `cos(sin^(-1)3/5+sin^(-1)5/(13))`

Answer» Let `sin^(-1)=3/5=A` and `sin^(-1)5/13=B`. Then,
`A,B in [-pi/2,pi/2] rArr cosA gt 0` and `cosB gt 0`.
`therefore sinA=3/5` and `sinB=5/13`
`rArr cosA=sqrt(1-sin^(2)A)=sqrt(1-9/25)=sqrt(16/25)=4/5` and `cosB=sqrt(1-sin^(2)B) = sqrt(1-25/169)=sqrt(144/169)=12/13`.
`therefore cos(sin^(-1)3/5+sin^(-1)5/13)=cos(A+B)=cosAcosB-sinAsinB`
`=(4/5 xx 12/13) -(3/5 xx 5/13)`
`=(48/65 -15/65) = 33/65`.
69.

Prove that `tan^(-1)3/4+tan^(-1)3/5-tan^(-1)8/19=pi/4`.

Answer» We have,
LHS `={tan^(-1)3/4+tan^(-1)3/5}-tan^(-1)8/19`
`=tan^(-1){((3/4+3/5)/(1-3/4 xx 3/5))}-tan^(-1) 8/19`
`=tan^(-1)(27/1)-tan^(-1)8/19`
`=tan^(-1)((27/11-8/19))/(1+27/11 xx 8/9))=tan^(-1)(425/425) = tan^(-1)=pi/4` =RHS.
`therefore` LHS=RHS.
70.

Prove that `tan^-1(1/7)+tan^-1(1/13)=tan^-1(2/9)`

Answer» We know that `tan^(-1)x+tan^(-1)y=tan^(-1)(x+y)/(1-xy), xy lt 1`.
Let `x=1/7` and `y=1/13`. Then, `xy=1/91 lt 1`.
`therefore tan^(-1)1/7 +tan^(-1){(1/7+1/13)/(1-1/7 xx 1/13)}=tan^(-1)(20/90)=tan^(-1)2/9`.
71.

if `tan^(-1)(4/3)=theta`, find the value of `costheta`.

Answer» `tan^(-1)4/3=theta`, where `theta in (-pi/2,pi/2)`.
`therefore tantheta=4/3`.
We know that `costheta gt 0`, when `theta=(-pi/2,pi/2)`.
`therefore costheta=1/(sectheta)=1/sqrt(1+tan^(2)theta)=1/sqrt(1+16/9)=3/5`.
72.

If `cot^(-1)(-1/5)=theta`, find the values of `sintheta`.

Answer» Given: `cot^(-1)(-1/5)=theta`, where `theta in (0,pi)`.
`therefore cot(theta)=-1/5`.
`sintheta gt 0` in `(0,pi)`.
`sintheta =1/("cosec"theta)=1/sqrt(1+cot^(2)theta)=1/sqrt(1+1/25)=5/sqrt(26)`.
73.

Prove that: i) `sin^(-1)(3x-4x^(3))=3sin^(-1)x, |x| le 1/2` ii) `cos^(-1)(4x^(2)-3x)=3cos^(-1)x,1/2 le x le 1` iii) `tan^(-1)""(3x-x^(3))/(1-3x^(2))=3tan^(-1)x, |x| lt 1/sqrt(3)` iv) `tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""(3x-x^(3))/(1-3x^(2))`

Answer» i) Put `x=sintheta`, ii) Put `x=costheta`, iii) Put `x=tantheta`, iv) Use `tan^(-1)A+tan^(-1)B`