Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Evaluate `lim_(xto0) (1-cos(1-cosx))/(x^(4)).`

Answer» `1-cos(1-cosx)=2sin^(2)((1-cosx)/(2))`
`=2sin^(2)("sin"^(2)(x)/(2))`
`:. underset(xto0)lim(1-cos(1-cosx))/(x^(4))=underset(xto0)lim(2sin^(2)("sin"^(2)(x)/(2)))/(x^(4))`
`=underset(xto0)lim(2sin^(2)("sin"^(2)(x)/(2)))/(("sin"^(2)(x)/(2))^(2)).("sin"^(4)(x)/(2))/(((x)/(2))^(4).16)=1/8`
52.

Evaluate `lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).`

Answer» Correct Answer - 2
`underset(xto0)lim(cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x)=underset(xto0)lim(2tan^(-1)x)/(sin^(-1)x)=2`
53.

Evaluate `lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.`

Answer» Correct Answer - `1//32`
`underset(xto0)lim(8(1-"cos"(x^(2))/(4))(1-"cos"(x^(2))/(2)))/(x^(8))`
`=underset(xto0)lim(8xx2"sin"^(2)(x^(2))/(8)xx2"sin"^(2)(x^(2))/(4))/(x^(8))`
`=underset(xto0)lim(32)/(64xx16).("sin"^(2)(x^(2))/(8))/(x^(4)/(64)).(2"sin"^(2)(x^(2))/(4))/(x^(4)/(16))`
`=1/32`
54.

The value of `lim_(xrarr1)(log_5 5x)^(log_x5)` , isA. 1B. eC. -1D. none of these

Answer» Correct Answer - B
55.

Differentiate the following with respect to x(i) y = 25, (ii) y = π/4

Answer»

(i) dy/dx = 0

(ii) dy/dx = 0

56.

Differentiate the following with respect to x(i) y = 5 cos α, α is a constant.(ii) y = x6

Answer»

(i) dy/dx = 0

(ii) dy/dx = 6x5

57.

The value of `lim_(xrarr0) (logx-1)/(x-e)`, isA. 1B. `(1)/(e)`C. eD. 0

Answer» Correct Answer - B
We have,
`lim_(xtoe) (logx-1)/(x-e)=lim_(xtoe)(logx-loge)/(x-e)=lim_(xtoe)(log .x/e)/(x-e)`
`lim_(xtoe)(log (1+x/e-1))/(x-e)=lim_(xto e) (log{1+((x-e)/(e))})/(e((x-e)/e))=(1)/(e)`
58.

The value of `lim_(xrarr1) (logx)/(sin pi x)`, isA. `(1)/(pi)`B. `-pi`C. `pi`D. `-(1)/(pi)`

Answer» Correct Answer - D
We have,
`lim_(xto1) (logx)/(sin pi x)=lim_(xto1) (log {1+(x-1)})/(sin (pi-pix))`
` =lim_(xto1) (log {1+(x-1)})/(sin pi(1-x))`
` =lim_(xto1) (log {1+x(x-1)})/(x-1)xx(x-1)/(sinpi(1-x))`
` =-(1)/(2)lim_(xto1) (log {1+x(x-1)})/(x-1)xx (pi(x-x))/(sin pi(1-x))= -(1)/(pi)`
59.

`lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0` is equal toA. `log_(2)((pi)/(2))`B. `log_e 2`C. `log_e a`D. `a`

Answer» Correct Answer - C
We have,
`lim_(xto pi//2)(a^(cotx)-a^cosx)/(cotx-cosx)`
` lim_(xto pi//2) a^cosx ((a^cotx-cos x-1)/(cot x -cos x)) =a ^(cos pi//2)xxlog _(e) a= log_e a `
60.

`lim_(xrarr oo) (1+(2)/(x))^x` equalsA. eB. `oo`C. `e^2`D. `(1)/(e)`

Answer» Correct Answer - C
We have,
`lim_(xto oo) (1+(2)/(x))^(x) =e x ^(lim_(xtooo)(2)/(x)xxx)=e^2`
61.

If `l =lim_(xrarr0) (tanx^(n))/((tanx)^m)`, where `m,n in N`, thenA. `l=1 " for all " m,n in N`B. `l={(1" if "n gt m,,),(0" if "n lt m,,):}`C. `l={(1" if "n = m,,),(0" if "n gt m,,):}`D. `l=0 " for all " m,n in N`

Answer» Correct Answer - C
We have,
` l=lim_(xto0) (tanx^n)/((tanx)^m)`
` rArr l=lim_(xto0) ((tanx^n)/(x^n))xx(x^n)/(x^m)xx((x)/(tanx))^m`
` rArr l=lim_(xto0) 1xx x^(n-m)xx1`
`rArr l=lim_(xto0) x^(n-m)rArr l={(0,if,ngtm,),(1,if,n=m,),(oo,if,n=m,):}`
62.

`lim_(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2))` is equal toA. 1B. `sqrt(2//3)`C. `sqrt(3//2)`D. `e^(1//2)`

Answer» Correct Answer - B
We observe that
`(x^4+x^2+x+1)/(x^2-x+1)to(2)/(3)as xto-1`
But, ` (1-cos(x+1))/(x+1)^2to (0)/(0) as xto -1`.
` therefore lim_(xto-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2))`
` =((2)/(3))^(lim_(xto-1)((1-cos(x+1))/(x+1)^2))=((2)/(3))^(lim_(xto-1))(2sin^(2).(x+1)/(2))/(4((x+1)/2)^(2))=((2)/(3))^(1//2)`
63.

If `lim_(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2,` then there existsA. `a=1,b=(-3)^(1//3)`B. `a=1,b=3^(1//3)`C. `a=-1,b=-(3)^(1//3)`D. none of these

Answer» Correct Answer - A
We have,
`lim_(xto0)((1+a^3)+8e^(1//x))/(1+(1-b^3)e^(1//x))=2 [(oo)/(oo)"form"]`
`rArr lim_(xto0) ((1+a^3)e^(-1//x)+8)/(e^(-1//x)+(1-b^3))=2`
`rArr (0+8)/(0+(-b^3))=2 rArr 1-b^3=4rArr b^3=-3rArr b=(-3)^(1//3)`
Again,
`lim_(xto0) ((1+a^3)+8e^(1//x))/(1+(1-b^3)e^(1//x))=2`
`rArrlim_(xto0) ((1+a^3)+8e^(1//x))/(1+4e^(1//x))=2`
`rArr 1+a^3=2`
` rArr a=1`
64.

The largets value of non negative integer for which `lim_(x->1){(-a x+sin(x-1)+a]1-sqrt(x))/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4`A. 2B. 3C. 4D. 5

Answer» Correct Answer - A
We have ,
`lim_(alphato1){(-ax+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=(1)/(4)`
`lim_(alphato1){((sin(x-1))/(x-1)-a)/(1+(sin(x-1))/(x-1))}^(1+sqrt(x))=(1)/(4)`
`rArr ((1-a)/(2))^2=(1)/(4)`
`rArr a^2=2a=0rArra=0,2`.
65.

Let `f: R->[0,oo)` be such that `lim_(x->5) f(x)` exists and `lim_(x->5) ((f(x))^2-9)/sqrt(|x-5|)=0` then `lim_(x->5)f(x)=`A. 1B. 2C. 3D. 0

Answer» Correct Answer - C
`lim_(xto5)((f(x))^2-9)/(sqrt(|x-5|))=0`
` rArr lim_(xto5)(f(x))^2-9=0`
` rArr l^2-9=0, "where" lim_(xto5)f(x)=l`
`rArr l= +-3`
`rArr l=3 [because f(x)ge 0 " for all " x in R ]`
`rArr lim_(xto5)f(x)=3`
66.

`lim_(xrarr0)(e^(1//x)-1)/(e^(1//x)+1)`,isA. -1B. 1C. 0D. non-existent

Answer» Correct Answer - D
Let `f(x)(e^1//x-1)/(e^(1//x)+1)`.Then,
(LHL of `f(x)` at `x=0`)
` =lim_(xto0^-)f(x) =lim_(hto0) f(0-h)=lim_(hto0) (e^1//x-1)/(e^(-1//x)+1)`
`=lim_(hto0) (((1)/(e^(1//h))-1)/((1)/(e^(1//h))+1))=-1[e^(1//h)to oo rArr (1)/(e^(1//h))to0]`
and,
` [RHL of ` f(x)` at `x=0`]
`=lim_(xto0^+) f(x) =lim_(hto0) f(0+h)=lim_(hto0) (e^(1//h)-1)/(e^(1//h)+1)`
`lim_(hto0)(((1)/(e^(1//h))-1)/(1+e^(1//h)))["Dividing Nr and by "e^(1//h)]`
Clearly, `lim_(xto0^-) f(x)ne lim_(xto0^+)f(x)`.
Hence, `lim_(xto0) f(x)` does not exist.
67.

Let `f(x)=[x]=` Greatest integer less than or equal to x and k be an integer. Then, which one of the following in not correct?A. `lim_(xtok^-)f(x)=k-1`B. `lim _(xtok)f(x)=k`C. `lim _(xtok)f(x)"exists"`D. `lim_(xtok)f(x)` does not exist

Answer» Correct Answer - C
We have, `f(x)=[x]`
`therefore ("LHS at" x =k)`
`=lim_(xtok^-)f(x)=lim_(hto0)=lim_(hto0)f(k-h)=lim_(hto0)[h-k]`
`=lim_(hto0)k-1=k-1[because k-1ltk-hltk-hlt ktherefore [k-h]=k-1]`
`therefore (RHL "at" x=k)`
`=lim_(xto0)f(x)=lim_(hto0)f(k-h)=lim_(hto0)[k+h]`
`=lim_(hto0)k=k[because klt k+hlt k+1therefore [k+h]=k]`
Clearly, `lim_(xt0k^+)f(x) ne lim_(xtok^+)f(x). So, lim_(xtok)f(x)` does not exist.
68.

Evaluate:  \(\lim\limits_{x \to 0}\frac{sin\,nx}{x}\)

Answer»

\(\lim\limits_{x \to 0}\frac{sin\,nx}{x}\)

\(=\lim\limits_{x \to 0}n.\frac{sin\,nx}{x}\)

\(=n\lim\limits_{x \to 0}(\frac{sin\,nx}{x})\) 

= n .1

= n

69.

The left hand limit of the function f(x)=4A. 1B. -1C. 0D. non-existent

Answer» Correct Answer - B
`("LHL of" f(x) " at " x=4)`
`-lim_(xto4^-)f(x)=lim_(hto0)f(4-h)=lim_(hto0)(|4-h-4|)/(4-h-4)`
`=lim_(hto0)(|-h|)/(-h)=lim_(hto0)(h)/(-h)=lim_(hto0)-1=-1`.
To evalate RHL of `f(x) at x=a` i.e.,`lim_(xtoa^+)f(x)` we may use the following algorithm:
70.

The right hand limit of the funtion f(x) = 4A. 1B. -1C. 0D. non-existent

Answer» Correct Answer - A
We have,
(RHL of `f(x)at x=4`)
`lim_(xto4^+)f(x)=lim_(hto0)f(4+h)=lim_(hto0)(|4+h-4|)/(4+h-4)`
`lim_(hto0)(|h|)/(h)-lim_(hto0)(h)/(h)=lim_(hto0)1=1`.
71.

Let `f(theta)=(1)/(tan^9 theta){(1+tantheta)^10+(2+tantheta)^10+....+(20+tantheta)^10}-20tan theta` The left hand limit of `f(theta)" as "theta to (pi)/(2)`,isA. `1900`B. `2000`C. `2100`D. `2200`

Answer» Correct Answer - C
Let `xtan theta`. Then,
`f(tan^-1x)=((1+x)^10+(2x+x)^10+.....+ (20+x)^10-20x^10)/(x^9)`
and `xtooo "as" theta to (pi^-)/(2)`
`lim_(theta to(pi^-)/(2))f(theta) =lim_(xtooo) f(tan^-1x)`
` =lim_(xt0 oo) ((1+x)^10+(2+x)^10+....+(20+x)^10-20x^10)/(x^9)`
` =lim_(xto oo) (sum_(r=1)^(20)(r+x)^10-x^10)/(x^9)`
` =lim_(xtooo) sum_(r=1)^(20) (.^10C_(0) r^10+.^10C_(1) r^9+.....+.^10C_(9))/ (x^9)`
` =sum_(r=1)^(20)lim_(xtooo) {(.^10C_(0) r^10)/(x^9)+(.^10C_(1) r^9)/(r^8)+.....+.^10C_(9) r}`
` =sum_(r=1)^(20).^10C_(0)r=10 (sum_(r=1)^(20)r)=10xx(20xx21)/(2)=2100`
72.

Find the value of \(\lim\limits_{x \to 0}\frac{e^x-1}{x}\)

Answer»

\(​​​​\lim\limits_{x \to 0}\frac{e^x-1}{x}\) 

\(=\lim\limits_{x \to 0}\frac{[1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+....]-1}{x}\) 

\(=\lim\limits_{x \to 0}\frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...}{x}\) 

\(=\lim\limits_{x \to 0}[\frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...}{x}]\) 

= 1.

73.

Find the left hand limit and right hand limit of the greatest integer function f(x) = [x] = greatest integer less than or equal to x at x = k, where k is an integer. Also, show that \(\lim\limits_{x \to k}\) f(x) does not exit.

Answer»

We have−

f(x) = [x]

L.H.L (of x = k)

\(=\lim\limits_{x \to k-}f(x)\)

\(=\lim\limits_{h \to 0}f(k-h)\) 

\(=\lim\limits_{h \to 0}[k-h]\)

\(=\lim\limits_{h \to 0}(k-1)\)   [∵ k − 1 < k − h < k

⇒ [k − h] = k − 1]

= k-1

R.H.L (of x = k)

\(\lim\limits_{h\to 0}f(k+h)\)

\(=\lim\limits_{h\to 0}(k+h)\) 

\(=\lim\limits_{h\to 0}k\)   [∵ k < k + h < k + 1

⇒ [k + h] = k]

= k

Here, L.H.L ≠ R.H.L

∴ \(\lim\limits_{x \to k}f(x)\) does not exit.

74.

\(\lim\limits_{x \to a}\frac{\sqrt x+\sqrt a}{x+a}=?\)

Answer»

\(\lim\limits_{x \to a}\frac{\sqrt x+\sqrt a}{x+a}\) 

\(=\frac{\sqrt a+\sqrt a}{a+a}\) 

\(=\frac{2\sqrt a}{2a}\) 

\(=\frac{\sqrt a}{a}\) 

\(=\frac{1}{\sqrt a}\)

75.

The value of `lim_(x->a) (sinx/sina)^(1/(x-a))=`A. `e^sin a `B. `e^tan a `C. `e^cot a `D. 1

Answer» Correct Answer - C
76.

Evaluate:-  \(\lim\limits_{h \to a}\frac{(x+2)^{3/2}-(a+2)^{3/2}}{x-a}\)

Answer»

Let x + 2 = y,

then y → a + 2 as x → a

∴ \(\lim\limits_{h \to a}\frac{(x+2)^{3/2}-(a+2)^{3/2}}{x-a}\)

\(=\lim\limits_{h \to a}\frac{y^{3/2}-(a+2)^{3/2}}{y-(a+2)}\)   [∵ x + 2 = y ⇒ x = y − 2]

\(=\frac{3}{2}(a+2)^{\frac{3}{2}-1}\)-1

\(=\frac{3}{2}(a+2)^\frac{1}{2}\) 

[∵ \(\lim\limits_{h \to a}\frac{x^n-a^n}{x-a}=na^{n-1}\) ]

77.

Evaluate :\(\lim\limits_{x \to \frac{\pi}{6}}\frac{cot^2x-3}{cosec\,x-2}\)

Answer»

\(\lim\limits_{x \to\frac{\pi}{6}}\frac{cot^2x-3}{cosec\,x-2}\)

\(=\lim\limits_{x \to\frac{\pi}{6}}\frac{cosec^2x-1-3}{cosec\,x-2}\)

\(=\lim\limits_{x \to\frac{\pi}{6}}\frac{cosec^2x-4}{cosec\,x-2}\) 

\(=\lim\limits_{x \to\frac{\pi}{6}}\frac{(cosec\,x-2)(cosec\,x+2)}{(cosec\,x-2)}\) 

\(=\lim\limits_{x \to\frac{\pi}{6}}(cosec\,x+2)\)      [x ≠ π/6]

\(= cosec\frac{\pi}{6}+2\) 

= 2 + 2 

= 4

78.

`lim_(h -> 0) (sin(a+3h)-3sin(a+2h)+3sin(a+h)-sina)/h^3 =`A. `sin a `B. `-sina`C. `cos a `D. `-cos a `

Answer» Correct Answer - D
79.

The value of `lim_(h->0) ((a+h)^2sin(a+h)-a^2sina)/h=`A. `2asina+a^2cos a`B. ` 2a sin a -a^2 cos a`C. `2a cos a +a^2sin a`D. none of these

Answer» Correct Answer - A
80.

If `lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2)` exists and is equal to l, then `b+d+l` is equal toA. 5B. 6C. 7D. 4

Answer» Correct Answer - B
It is given that
`lim_(xto-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2)=l`
`rArrlim_(xto-1)(sin(x^3+bx^2+cx +d))/((x+1)^3{(log_e(1+(x+1)))/((x+1))}^2)xx (sqrt(2+x+1)=l`
`rArrlim_(xto-1)(sin(x^3+bx^2+cx +d))/((x^3+bx^2+cx +d))xx(1)/({(log_e(1+(x+1)))/((x+1))}^2)xx(x^3+bx^2+cx +d)/((x+1)^3)xx(sqrt(2+x+1)=l`
`rArrlim_(xto-1)1xx(1)/((1)^2)xx(x^3+bx^2+cx +d)/((x+1)^3)xx2=l`
`rArrlim_(xto-1)(x^3+bx^2+cx +d)/((x+1)^3)xx(l)/(2)`
`rArrb=3,c=3,d=1 and l=2`
`therefore b+d+l=3+1+2=6`
81.

`lim_(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix)` is equal toA. `logn((2)/(3))`B. 0C. `n log n((2)/(3))`D. not defined

Answer» Correct Answer - A
`underset(xto1)lim(1+sinpi((3x)/(1+x^(2))))/(1+cospix)=underset(xto1)lim(1-cos"((3pi)/(2)-(3pix)/(1+x^(2))))/(1-cos(pi-pix))`
`=underset(xto1)lim(2sin^(2)"((3pi)/(4)-(3pix)/(2(1+x^(2)))))/(2-sin^(2)((pi)/(2)-(pix)/(2)))`
`=underset(xto1)lim(((3pi)/(4)-(3pix)/(2(1+x^(2))))/((pi)/(2)-(pix)/(2)))^(2)`
`=underset(xto1)9(((1)/(2)-(x)/(1+x^(2)))/(1-x))^(2)`
`=underset(xto1)lim9((x-1)/(2(1+x^(2))))^(2)=0`
82.

Let `f(x) = 1 /(sqrt( 18 - x^2)` The value of `Lt_(x -> 3) (f(x)-f(3)) / (x-3)` is

Answer» Correct Answer - D
83.

Find the value of \(\lim\limits_{x\to-3}\sqrt[3]{2-2x}\)

Answer»

\(\lim\limits_{x\to-3}\sqrt[3]{2-2x}\)

=\(\sqrt[3]{2-2(-3)}\)

\(=\sqrt[3]{2+6}\)

\(=\sqrt[3]{8}=2\)

84.

The value of `lim_(xrarr1)(log_2 2x)^(log_x5)`, isA. `5//2`B. `e^log_2 5`C. `log 5//log 2`D. `e^log ar 5^2`

Answer» Correct Answer - B
85.

`lim_(xrarr0) (sinx^n)/((sinx)^m), (mltn)` is equal toA. 1B. 0C. `n//m`D. none of these

Answer» Correct Answer - B
86.

If `0lt xlty`, then `lim_(xrarroo) (y^n+x^n)^(1//n)` is equal toA. eB. xC. yD. none of these

Answer» Correct Answer - C
87.

Let `S_(n)=1+2+3+...+n " and " P_(n)=(S_(2))/(S_(2)-1).(S_(3))/(S_(3)-1).(S_(4))/(S_(4)-1)...(S_(n))/(S_(n)-1)`, where `n inN,(nge2) Then ``underset(ntooo)limP_(n)`=__________.A. `(1)/(4)`B. `(1)/(24)`C. `(1)/(16)`D. `(1)/(8)`

Answer» Correct Answer - `(3)`
`S_(n)=(n(n+1))/(n)" and "S_(n)-1=((n+2)(n-1))/(2)`
`:." "(S_(n))/(S_(n)-1)=(n(n+1))/(2).(2)/((n+2)(n-1))=((n)/(n-1))((n+1)/(n+2))`
`:." "P_(n)=((2)/(1).(3)/(2).(4)/(3).(5)/(4)...(n)/(n-1))((3)/(4).(4)/(5).(5)/(6)...(n+1)/(n+2))`
`=((n)/(1))((3)/(n+2))`
`:." "underset(ntooo)limP_(n)=3`
88.

`lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1))` is equal toA. -1B. 1C. 0D. none of these

Answer» Correct Answer - A
`(x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1))`
`(x^(4)(1-tan^(2)x+tan^(4)x))/(tan^(4)x(tan^(4)x-tan^(2)x+1))=(x^(4))/(tan^(4)x),xne0`
`:." "underset(xto0)lim(x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1))=underset(xto0)lim(x^(4))/(tan^(4x))=1`
89.

`lim_(xto1) (1-x^(2))/(sin2pix)` is equal to

Answer» Correct Answer - B
`underset(xto1)lim(1-x^(2))/(sin2pix)=-underset(xto1)lim(2pi(1-x)(1+x))/(2pisin(2pi-2pix))`
`=underset(xto1)lim((2pi-2pix))/((2pi-2pix))(1+x)/(2pi)=(-1)/(pi)`
90.

Evaluate `lim_(yto0)(y^(2)+sin x)/(x^(2)+siny^(2)),` where `(x,y)to(0,0)` along the curve `x=y^(2)`.

Answer» Correct Answer - 2
`underset(yto0)underset(xto0)lim(y^(2)+sin x)/(x^(2)+siny^(2))=underset(xto0)lim(x+sinx)/(x^(2)+sinx)=underset(xto0)lim(1+(sinx)/(x))/(x+(sinx)/(x))=2`
91.

`lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2))` is equal toA. `f(x)f(y)`B. `f(x)+f(y)`C. `f(x)-f(y)`D. none of these

Answer» Correct Answer - D
We know that `cos^(-1)((1-x^(2))/(1+x^2))={{:(2tan^(-1)x", "xge0),(-2tan^(-1)x", "xle0):}`
or `underset(xto0)lim(1)/(x)cos^(-1)((1-x^(2))/(1+x^2))=underset(xto0^(+))lim(2tan^(-1)x)/(x)=2`
and`underset(xto0)lim(1)/(x)cos^(-1)((1-x^(2))/(1+x^2))=underset(xto0^(-))lim[-(2tan^(-1)x)/(x)]=-2`
92.

`lim_(yto0) ((x+y)sec(x+y)-xsecx)/(y)` is equal to

Answer» Correct Answer - A
`underset(yto0)lim{(x{sec(x+y)-secx})/(y)+sec(x+y)}`
`=underset(yto0)lim[(x)/(y){(cosx-cos(x+y))/(cos(x+y)cosx)}]+underset(yto0)limsec(x+y)`
`=underset(yto0)lim[(x2sin(x+(y)/(2))sin((y)/(2)))/(ycos(x+y)cosx)]+secx`
`=underset(yto0)lim[(xsin(x+(y)/(2)))/(cos(x+y)cosx)xx(sin((y)/(2)))/((y)/(2))]+secx`
`=xtanxsecx+secx`
`=secx(xtanx+1)`
93.

Evaluate :\(\lim\limits_{x \to 1}\frac{x^{15}-1}{x^{10}-1}\)

Answer»

\(\lim\limits_{x \to 1}\frac{x^{15}-1}{x^{10}-1}\)

\(\lim\limits_{x \to 1}\frac{(x^5)^3-1^3}{(x^5)^2-1^2}\)

∵ a3 − b3 = (a − b) (a2 + b2 + ab)

\(=\lim\limits_{x \to 1}\frac{(x^5-1)(x^{10}+x^5+1)}{(x^5-1)(x^5+1)}\)

\(\lim\limits_{x \to 1}\frac{x^{10}+x^5+1}{x^5+1}\)

\(\frac{1^{10}+1^{5}+1}{1^5+1}\)

\(\frac{3}{2}\)

94.

Evaluate the following limit : \(\lim\limits_{\text x \to 0} \) 9lim(x→0)

Answer»

Given the limit \(\Rightarrow\lim\limits_{\text x\to 0}\) 9

Always remember the limiting value of a constant (such as 4, 13, b, etc.) is the constant itself. So, the limiting value of constant 9 is itself, i.e., 9.

95.

`lim_(x rarr -1)(x^(5)+1)/(x+1)=`_____.A. 1B. -5C. 5D. None of these

Answer» Correct Answer - C
`underset(x rarr -1)("lim")(x^(5)+1)/(x+1)`
`underset(x rarr -1)("lim")(x^(5)-(-1)^(5))/(x-(-1))=5(-1)^(5-1) = 5(-1)^(4)=5`.
96.

The scientists who put calculus in mathematical form are _______ and _______.

Answer» Correct Answer - Newton and Leibnitz
97.

`lim_(x rarr a)x^(n) + ax^(n-1) +a^(2)x^(n-2) + .........+a^(n)=`________.

Answer» Correct Answer - `na^(n)`
98.

The limiting position of a secant is _______.

Answer» Correct Answer - tangent
99.

Evaluate : \(\lim\limits_{x \to \frac{\pi}{4}}\frac{tan^3x-tanx}{cos(x+\frac{\pi}{4})}\)

Answer»

\(\lim\limits_{x \to \frac{\pi}{4}}\frac{tan^3x-tanx}{cos(x+\frac{\pi}{4})}\) 

\(=\lim\limits_{x \to \frac{\pi}{4}}\frac{tanx(tan^2x-1)}{cos(x+\frac{\pi}{4})}\) 

\(=\lim\limits_{x \to \frac{\pi}{4}}tanx.\lim\limits_{x \to \frac{\pi}{4}}[\frac{-(1-tan^2\,x)}{cos(x+\frac{\pi}{4})}]\) 

\(=1\times[-\lim\limits_{x \to \frac{\pi}{4}}\frac{(1+tan\,x)(1-tan\,x)}{cos(x+\frac{\pi}{4})}]\) 

\(=\lim\limits_{x \to \frac{\pi}{4}}(1+tanx)\lim\limits_{x \to \frac{\pi}{4}}[\frac{cos\,x-sin\,x}{cos\,x.cos(x+\frac{\pi}{4})}]\) 

\(=-2\sqrt 2\times\) \(\lim\limits_{x \to \frac{\pi}{4}}\frac{cos(x+\frac{\pi}{4})}{cos\,x.cos(x+\frac{\pi}{4})}\) 

∵ [cos x − sin x = \(\sqrt{2}\,cos\,(x+\frac{\pi}{4})]\)

100.

Differentiate the following with respect to x(i) y = (ax)m + bm(ii) y = x3 + 4x2 + 7x + 2

Answer»

(i) y = amxm + bm

dy/dx = ammxm-1 + 0 = ammxm-1

(ii) dy/dx = 3x2 + 4(2x) + 7 = 0

= 3x2 + 8x + 7