Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

401.

Evaluate `lim_(xto1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrtx))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1).`

Answer» `underset(xto1)lim(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrtx))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1)`
`=underset(xto1)lim(x^(1//2)+x^(1//4)+x^(1//8)+x^(1//16)-4)/(x-1)`
`=underset(xto1)lim((x^(1//2)-1)/(x-1)+(x^(1//4)-1)/(x-1)+(x^(1//8)-1)/(x-1)+(x^(1//16)-1)/(x-1))`
`=1/2+1/4+1/8+1/16=(8+4+2+1)/(16)=15/16`
402.

If `f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):}` Then the value of `lim_(xrarr0) g(f(x))`A. is `-2`B. is `-3`C. is 1D. does not exist

Answer» Correct Answer - B
`underset(xrarr0+)(lim)g(f(x))=g(f(0^(+)))=g(1^(+))" "(becauseunderset(xrarr0)(lim)(x)/(sinx)=1^(+))`
`" "=1-2(1)-2=3`
`underset(xrarr0^(-))(lim)g(f(x))=g(f(0^(-)))=g(2^(+))" "(becauseunderset(xrarr0^(-))(lim)(2-x)=2^(+))`
`" "=2-5=-3`
`rArr" "underset(xrarr0)(lim)g(f(x))=-3`
403.

`lim_(x -> oo) x^n / e^x = 0`, (n is an integer) forA. no vlaue of nB. all values of nC. only negative values of nD. only positive values of n

Answer» Correct Answer - B
404.

`lim_(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2x-3))+root(3)((2x-3))+...+root(n)((2x-3)))` is equal to

Answer» Correct Answer - C
Since the highest degree of x is `1//2,` divide numerator and denominator by `sqrt(x).` Then we have limit `(2)/(sqrt(2))` or `sqrt(2)`.
405.

`lim_(xtooo) {20sqrt(x+sqrt(x+sqrt(x+sqrt(x+sqrt(x+...)}` is equal to

Answer» Correct Answer - B
406.

If `L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3))` exists finitely, then Equation `ax^(2)+bx+c=0` has

Answer» Correct Answer - D
`L=underset(xto0)lim(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3))`
`=underset(xto0)lim((x-(x^(3))/(3!))+a(1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!))+b(1-(x)/(1!)+(x^(2))/(2!)-(x^(3))/(3!))+c(x-(x^(2))/(2)+(x^(3))/(3)))/(x^(3))`
`=underset(xto0)lim((a+b)+(1+a-b+c)x+((a)/(2)+(b)/(2)-(c)/(2))x^(2)+(-1(1)/(31)+(a)/(3!)-(b)/(3!)+(c)/(3))x^(3))/(x^(3))`
`implies a+b=0,1+a-b+c=0,(a)/(2)+(b)/(2)-(c)/(2)=0`
and `L=-(1)/(3!)+(a)/(3!)-(b)/(3!)+(c)/(3)`
Solving first three equations we get `c=0, a=-1//2,b=1//2.`
`:." "L=-1//3`
Equation `ax^(2)+bx+c=0` reduces to `x^(2)-x=0impliesx=0,1`
`||x+c|-2a|lt4b` reduces to `||x|+1|lt2`
`implies-2lt|x|+1lt2`
`implies0le|x|lt1`
`impliesx in[-1,1]`
407.

If `L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3))` exists infinetely then The value of a is

Answer» Correct Answer - C
`L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3))`
`=underset(xtooo)lim(((x+1)^(2)-(ax^(2)+x+3))/(x+1+sqrt(ax^(2)+x+3)))`
`=underset(xtooo)lim(((1-a)x^(2)+x-2)/(x+1+sqrt(ax^(2)+x+3)))`
L exists finitely if `1-a=0" or "a=1`
`:." "L=underset(xtooo)lim((x-2)/(x+1+sqrt(x^(2)+x+3)))`
`=underset(xtooo)lim((1-(2)/(x))/(1+(1)/(x)+sqrt(1+(1)/(x)+(3)/(x^(2)))))`
408.

If `f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x)` exists, then The value of b isA. `-1`B. 1C. 0D. 2

Answer» Correct Answer - C
`f(x)=underset(nrarroo)(lim)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n))`
`={{:(x^(2)+ax+1",",|x|lt1),(2x^(2)+x+b",",|x|gt1),((-a+b+3)/(2)",",x=-1),((a+b+5)/(2)",",x=1):}`
`underset(xrarr-1)(lim)f(x)" exists if"`
`underset(xrarr -1)(lim)f(x)=underset(xrarr-1^(+))(lim)f(x)`
`rArr" "underset(xrarr-1^(-))(lim)(2x^(2)+x+b)=underset(xrarr-1^(+))(lim)(x^(2)+ax+1)`
`rArr" "2-1+b=1-a+1`
`rArr" "a+b=1" (i)"`
`underset(xrarr1)(lim)f(x)" exists if"`
`underset(xrarr1^(-))(lim)f(x)=underset(xrarr1^(+))(lim)f(x)`
`rArr" "underset(xrarr1^(-))(lim)(x^(2)+ax+1)=underset(xrarr1^(+))(lim)(2x^(2)+x+b)`
`rArr 1+a+1=2+1+b`
`rArr a-b=1" (ii)"`
`"Solving Eqs. (i) and (ii), we get a = 1 and b=0."`
409.

If `f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x)` exists, then The value of a isA. `-1`B. 1C. 0D. 2

Answer» Correct Answer - B
`f(x)=underset(nrarroo)(lim)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n))`
`={{:(x^(2)+ax+1",",|x|lt1),(2x^(2)+x+b",",|x|gt1),((-a+b+3)/(2)",",x=-1),((a+b+5)/(2)",",x=1):}`
`underset(xrarr-1)(lim)f(x)" exists if"`
`underset(xrarr -1)(lim)f(x)=underset(xrarr-1^(+))(lim)f(x)`
`rArr" "underset(xrarr-1^(-))(lim)(2x^(2)+x+b)=underset(xrarr-1^(+))(lim)(x^(2)+ax+1)`
`rArr" "2-1+b=1-a+1`
`rArr" "a+b=1" (i)"`
`underset(xrarr1)(lim)f(x)" exists if"`
`underset(xrarr1^(-))(lim)f(x)=underset(xrarr1^(+))(lim)f(x)`
`rArr" "underset(xrarr1^(-))(lim)(x^(2)+ax+1)=underset(xrarr1^(+))(lim)(2x^(2)+x+b)`
`rArr 1+a+1=2+1+b`
`rArr a-b=1" (ii)"`
`"Solving Eqs. (i) and (ii), we get a = 1 and b=0."`
410.

`lim_(nrarroo) (1-x+x.root n e)^(n)` is equal toA. `e^(x)`B. `e^(-x)`C. `e^(2x)`D. none of these

Answer» Correct Answer - A
`underset(nrarroo)(lim)(1-x+x.rootn(e))^(n)" "(1^(oo)"form")`
`=e^(underset(nrarroo)(lim)(1-x+xe^(1//n)-1))`
`=e^(x)e^(underset(nrarroo)(lim)((e^(1//n)-1))/(1//n))`
`=e^(x)`
411.

The value of `lim_(nrarroo) ((sqrtn^(2)+n-1)/(n))^(2sqrt(n^(2)+n-1))` isA. eB. `1//e`C. `e^(2)`D. `e^(-2)`

Answer» Correct Answer - B
`L=underset(nrarroo)(lim)((sqrt(n^(2)+n)-1)/(n))^(2sqrt(n^(2)+n)-1)`
`=e^(underset(nrarroo)(lim)[(sqrt(n^(2)+n)-1-n)/(n)](2sqrt(n^(2)+n)-1))`
`=e^(underset(nrarroo)(lim)([(n^(2)+n)-(1+n)^(2)](2sqrt(n^(2)+n)-1))/(n{sqrt(n^(2)+n)+(1+n)}))`
`=e^(underset(nrarroo)(lim)((-n-1)(2sqrt(n^(2)+n)-1))/(n{sqrt(n^(2)+n)+(1+n)}))`
`=e^(underset(nrarroo)(lim)((-1-(1)/(n))(2sqrt(1+(1)/(n))-(1)/(n))n^(2))/(n^(2){sqrt(1+(1)/(n))+(1)/(n)+1})=e^(-1))`
412.

If `f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n)`, then the value of `lim_(xrarr0) (f(x)-1)/(x)` is

Answer» Correct Answer - A
`f(x)=underset(nrarroo)(lim)(cos.(x)/(sqrtn))^(n)`
`" "=e^(underset(nrarroo)(lim)(cos.(x)/(sqrtn)-1).n)`
`" "e^(-(2underset(nrarroo)(lim)(x^(2))/(4)(sin^(2).(x)/(2sqrtn))/((x^(2))/(4sqrtn))))`
`" "=e^(-(1)/(2)x^(2))`
`rArr" "underset(xrarr0)(lim)(f(x)-1)/(x)=underset(xrarr0)(lim)(e^(-(1)/(2)x^(2))-1)/(x)=0`
413.

If `k in I` such that `lim_(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^(2n)=0,` thenA. k must bot be divisible by 24B. k is divisible by 24 or k is divisible neither by 4 nor by 6C. k must be divisible by 12 but not necessarity by 24D. none of these

Answer» Correct Answer - B
`underset(nrarroo)(lim)(cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^(2n)=0`
holds good if
`"Case I": cos .(kpi)/(4)=cos.(kpi)/(6)=1`
i.e., `(kpi)/(4)=2mpi and (kpi)/(6)=2p pi,m,p in Z`
i.e., k = 8m and k = 12 p
i.e., k is divisible by both 8 and 12 i.e., k is divisible by 24.
Case II: `-1 lt cos.(kpi)/(4),cos.(kpi)/(6) lt 1`
i.e., k is not divisible by 4 and k is not divisible by 6.
Case III: `cos.(kpi)/(4)=(2m+1)pi and (kpi)/(6)=(2p+1)pi`
`k=4 (2m+1) and k=6(2p+1)`
This is not possible.
414.

The value of `(lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1)` isA. `(3)/(5)`B. `(5)/(3)`C. 1D. none of these

Answer» Correct Answer - B
`L=underset(xrarr0^(+))(lim)(tanx^((1)/(5)))/(tan^(-1)sqrtx)(log(1+5x))/((e^(3root5x)-1))`
`=underset(xrarr0^(+))(lim)(tan(x^((1)/(5))))/(x^((1)/(5))).x^((1)/(5))((sqrtx)/(tan^(-1)sqrtx))^(2).(1)/(x).5x.((log(1+5x))/(5x))/(((e^(3.x^((1)/(5)))-1)/(3x^((1)/(5)))).3x^((1)/(5)))`
`=1.1.(loge)/(1).(5)/(3)=(5)/(3)`
415.

If `L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3))` exists finitely, then The solutions set of `||x+c|-2a|lt4b` isA. `{:(a,b,c,d),(s,r,q,p):}`B. `{:(a,b,c,d),(q,s,r,p):}`C. `{:(a,b,c,d),(s,r,p,q):}`D. `{:(a,b,c,d),(s,p,q,r):}`

Answer» Correct Answer - C
`L=underset(xto0)lim(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3))`
`=underset(xto0)lim((x-(x^(3))/(3!))+a(1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!))+b(1-(x)/(1!)+(x^(2))/(2!)-(x^(3))/(3!))+c(x-(x^(2))/(2)+(x^(3))/(3)))/(x^(3))`
`=underset(xto0)lim((a+b)+(1+a-b+c)x+((a)/(2)+(b)/(2)-(c)/(2))x^(2)+(-1(1)/(31)+(a)/(3!)-(b)/(3!)+(c)/(3))x^(3))/(x^(3))`
`implies a+b=0,1+a-b+c=0,(a)/(2)+(b)/(2)-(c)/(2)=0`
and `L=-(1)/(3!)+(a)/(3!)-(b)/(3!)+(c)/(3)`
Solving first three equations we get `c=0, a=-1//2,b=1//2.`
`:." "L=-1//3`
Equation `ax^(2)+bx+c=0` reduces to `x^(2)-x=0impliesx=0,1`
`||x+c|-2a|lt4b` reduces to `||x|+1|lt2`
`implies-2lt|x|+1lt2`
`implies0le|x|lt1`
`impliesx in[-1,1]`
416.

Let `< a_n >` be a sequence such that `lim_(x->oo)a_n=0.` Then `lim_(n->oo)(a_1+a_2++a_n)/(sqrt(sum_(k=1)^n k)),` is

Answer» Correct Answer - C
417.

The value of `lim_(xrarr oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n))`is

Answer» Correct Answer - C
Let
`l=lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....+nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n))`
Then, ,
`l=lim_(xto oo)(2h^(-1//2)+3h^(-1//3)+4h^(-1//4)+....+nx^(-1//n))/((2-3h)^(1//2)+(h)^(-1//2)+(2-3h)^(1//3)+h^(-1//3)....+(2-3h)^(1//n)h^(-1//n)) "where" h=(1)/(x)`
`rArrl=lim_(hto0)(2+3h^(((1)/(2)-(1)/(3)))+4h^(((1)/(2)-(1)/(4)))+.....+nh^(((1)/(2)-(1)/(n))))/((2-3h)^(1/2)+(2-3h)^(1/3)+h^(((1)/(2)-(1)/(4)))+....+(2-3h)^(1/n)h^(((1)/(2)-1/n)))`
`rArr l=(2)/(sqrt(2))=sqrt(2)`
418.

If `A_l=(x-a_i)/(|x-a_i|)30, i=1,2,..., n` and if `a_1 lt a_2 lt a_3lt ..... lta_n`. Then, `lim_(xtoa_m) (A_1A_2.....A_n), 1 le mle n`A. is equal ot `(-1)^m`B. is equal to `(-1)^m+1`C. is equal to `(-1)^m-1`D. does not exist.

Answer» Correct Answer - D
419.

Let `lt a_n gt` be a sequence such that `a_1=1 and a_n+1 =cos a_n, n gt 1 `. If `a=lim_(xtooo) a_n`, then a belongs to the intervalA. `(0,pi//6)`B. `(pi//6,pi//3)`C. `(pi//3,pi//2)`D. `(pi//2,4pi//3)`

Answer» Correct Answer - B
420.

IF `f(x)={{:(x,"if",x,"is rational"),(1-x,"if",x, "is irrational"):},"then find" lim_(xto1//2) f(x)` if exists.

Answer» `underset(xto1//2^(+))limf(x)=underset(xto1//2^(+))limx" "`(if `1//2^(+)`rational)
`=1//2`
`underset(xto1//2^(-))limf(x)=underset(xto1//2^(+))lim(1-x)" "`(if `1//2^(+)`is irrational)
`=1-1//2=1//2`
So, `underset(xto1//2^(+))limf(x)=1//2` in any case.
Similarly, we get `underset(xto1//2^(-))limf(x)=1//2`
`:." "underset(xto1//2)limf(x)=1//2`
421.

If `S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a ,` then `lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k)` is equal to

Answer» Correct Answer - A
422.

`lim_(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1))` is equal toA. 4B. `(1//2`C. 2D. `1//4`

Answer» Correct Answer - A
`underset(xtooo)lim(x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1))=underset(xtooo)lim(x^(2)"tan"(1)/(x) )/(-xsqrt(8+(7)/(x)+(1)/(x^(2))))`
`=underset(xtooo)lim("tan"(1)/(x) )/((1)/(x)sqrt(8+(7)/(x)+(1)/(x^(2))))=-(1)/(2sqrt(2))`
423.

Which of the following is/are correct?A. always 1B. always -1C. `(-1)^(m+1)`D. `(-1)^(n-m)`

Answer» Correct Answer - A::B::C
`(1)underset(xto0^(+))lim([x+|x|])/(x)=underset(xto0^(+))lim([x+x])/(x)=underset(xto0^(+))lim([2x])/(x)=0`
`underset(xto0^(-))lim([x+|x|])/(x)=underset(xto0^(-))lim([x-x])/(x)=underset(xto0^(-))lim(0)/(x)=0`
`(2)underset(xto0^(+))lim(xe^((1)/(x)))/(1+e^((1)/(x)))=underset(xto0^(+))lim(x)/(1+e^(-(1)/(x)))=0`
`underset(xto0^(-))lim(xe^((1)/(x)))/(1+e^((1)/(x)))=0`
`(3)underset(xto3^(+))lim(x-3)^((1)/(5))sgn(x-3)=underset(xto3^(+))lim(x-3)^((1)/(5))xx1=0`
`underset(xto3^(-))lim(x-3)^((1)/(5))sgn(x-3)=underset(xto3^(-))lim(x-3)^((1)/(5))xx(-1)=0`
`(4)underset(xto0^(+))lim(tan^(-1)|x|)/(x)=underset(xto0^(+))lim(tan^(-1)x)/(x)=1`
`underset(xto0^(-))lim(tan^(-1)|x|)/(x)=underset(xto0^(+))limtan^(-1)(-x)/(x)=-1`
424.

If `a_(n)` and `b_(n)` are positive integers and `a_(n)+sqrt2b_(n)=(2+sqrt2))^(n)`, then `lim_(nrarroo) ((a_(n))/(b_(n)))`=A. `sqrt2`B. 2C. `e^(sqrt2)`D. `e^(2)`

Answer» Correct Answer - A
We have `a_(n)+sqrt2b_(n)=(2+sqrt2)^(n)`
`rArr" "a_(n)-sqrt2b_(n)=(2-sqrt2)^(n)`
Solving we get `a_(n)=(1)/(2)[(2+sqrt2)^(n)+(2-sqrt2)^(n)]`
and `b_(n)=([(2+sqrt2)^(n)+(2-sqrt2)^(n)])/([(2+sqrt2)^(n)-(2-sqrt2)^(n)])`
`" "=sqrt2([1+((2-sqrt2)/(2+sqrt2))^(n)])/([1-((2-sqrt2)/(2+sqrt2))^(n)])`
Hence, `underset(nrarroo)(lim)((a_(n))/(b_(n)))=sqrt2((1+0)/(1-0))=sqrt2" "(because(2-sqrt2)/(2+sqrt2)lt1)`
425.

Let `alpha,beta(alpha < beta)` be the roots of the equation `ax^2+bx+c=0.` If `lim_(x->oo)(|ax^2+bx+c|)/(ax^2+bx+c)=1` thenA. `alt 0 and alpha lt m lt beta `B. `agt 0 and m gt 1 `C. a gt0 and m lt 1`D. all the above

Answer» Correct Answer - D
426.

Let `L=lim_(xtoa) (|2sinx-1|)/(2sinx-1)`. ThenA. `1//2`B. `-1//3`C. `-1//6`D. 3

Answer» Correct Answer - A::B::C
`L=underset(xtoa)lim(|2sinx-1|)/(2sinx-1)`
For `a=pi//6`.
`L.H.L.=underset(xto(pi^(-))/(6))lim(1-2sinx)/(2sinx-1)=-1`
`R.H.L.=underset(xto(pi^(+))/(6))lim(2sinx-1)/(2sinx-1)=1`
Hence, the limit does not exist.
For `a=pi,underset(xto pi)lim(1-2sinx)/(2sinx-1)=-1" "`(as in neighborhood of `pi, sinx` is less than `1/2`).
For `a=(pi)/(2),underset(xto pi//2)lim(2sinx-1)/(2sinx-1)=1" "`(as in neighborhood of `pi/2, sin x` approaches 1).
427.

If `alpha,beta` are the roots of the equation `ax^2+bx+c=0`, then `lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) ` is equal toA. `2a(alpha-beta)`B. `-2In |a(alpha-beta)|`C. `e^2a(alpha-beta)`D. `e^(a^(2))|alpha-beta|`

Answer» Correct Answer - C
428.

Let `alpha,betainR` be such that `lim_(xto0) (x^(2)sin(betax))/(alphax-sinx)=1`. Then `6(alpha+beta)` equals___________.

Answer» Correct Answer - `(7)`
`underset(xto0)lim(x^(2){betax-((betax)^(3))/(3!)+...})/(alphax-(x-(x^(3))/(3!)+...))=1`
`implies" "underset(xto0)lim(x^(3)(beta-(beta^(3)x^(2))/(3!)+...))/((alpha-1)x+(x^(3))/(3!)+(x^(5))/(5!)+...)=1`
`implies" "underset(xto0)lim(x^(2)(beta-(beta^(3)x^(2))/(3!)+...))/((alpha-1)+(x^(2))/(3!)+(x^(4))/(5!)+...)=1`
`implies" "underset(xto0)lim(beta-(beta^(3))/(3!)x^(2)...)/((1)/(3!)-(x^(2))/(5!)+...)=1`
`:." "beta=(1)/(3!)=(1)/(6)`
`:." "6(alpha+beta)=6(1+(1)/(6))=7`
429.

Evaluate: ` lim_(x->oo) { ((a_1)^(1/x)+(a_2)^(1/x)+.... +(a_n)^(1/x))/n}^(nx)`A. `a_1+a_2+...a_n`B. `e^(a_1+a_2+..+a_n)`C. `(a_1+a_2+...+a_n)/(n)`D. `a_1a_2.......a_n`

Answer» Correct Answer - D
430.

If `|cos^-1(1)/(n)|lt (pi)/(2)`, then `lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}`A. `(2-pi)/(pi)`B. `(pi-2)/(pi)`C. `1`D. `0`

Answer» Correct Answer - B
`lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}`
`=lim_(n to oo) (2)/(pi){(n+1)cos^-1.(1)/(n)-(pi)/(2)n}`
`=lim_(n to oo) (2)/(pi){n(cos^-1.(1)/(n)-(pi)/(2))+cos^-1.(1)/(n)}`
`=lim_(n to oo) (2)/(pi){nsin^-1.(1)/(n)-(pi)/(2)+cos^-1.(1)/(n)}`
`=lim_(n to oo) (2)/(pi){(sin^-1.(1)/(n))/((1)/(n))+cos^-1.(1)/(n)}=(2)/(pi)(-1+(pi)/(2))=(pi-2)/(pi)`
431.

Evaluate `lim_(ntooo) nsin(2pisqrt(1+n^(2))),(n inN).`

Answer» L= `underset(ntooo)limnsin(2pisqrt(1+n^(2)))`
`underset(ntooo)limnsin(2pisqrt(1+n^(2))-2npi)`
`underset(ntooo)limnsin{(2pi(sqrt(1+n^(2))-n))/((sqrt(1+n^(2))+n))(sqrt(1+n^(2))+n)}`
`=underset(ntooo)lim{(nsin((2pi)/(sqrt(1+n^(2))+n)))/(((2npi)/(sqrt(1+n^(2))+n)))((2pi)/(sqrt(1+n^(2))+n))}`
`underset(ntooo)lim(2npi)/(n(sqrt(1+(1)/(n^(2)))+1))`
`=(2pi)/(2)=pi`
432.

Evaluate: `lim_(n rarr oo) (n^(2)(1+2+3+4+......+n))/(n^(4)+4n^(2))`.

Answer» Correct Answer - `(1)/(2)`
433.

If `lim_(xto1) (2-x+a[x-1]+b[1+x])` exists, then a and b can take the values (where `[.]` denotes the greatest integer function)A. is always equal to -1B. is always equal to +1C. does not exist None of theseD.

Answer» Correct Answer - B::C
Since the greatest integer function is discountinuous at integral values of x, for a given limit to exist both left-and right-hand limits must be equal.
`L.H.L.=underset(xto1^(-))lim(2-x+a[x-1]+b[1+x])`
`=2-1+a(-1)+b(1)=1-a+b`
`R.H.L.=underset(xto1^(+))lim(2-x+a[x-1]+b[1+x])`
`=2-1+a(0)+b(2)=1+2b`
On comparing, we have `-a=b`.
434.

`lim_(xto1) (xsin(x-[x]))/(x-1)`, where `[.]` denotes the greatest integer function, is equal toA. `(2)/(pi-1)`B. `(pi+1)/(2)`C. `(2)/(pi+1)`D. `(2(pi+1))/(pi-1)`

Answer» Correct Answer - C
`underset(xto1)lim(xsin(x-[x]))/(x-1)`
Now,`L.H.L.=underset(hto0)lim((1-h)sin(1-h-[1-h]))/((1-h)-1)`
`=underset(hto0)lim((1-h)sin(1-h))/(-h)=-oo`
`R.H.L.=underset(hto0)lim((1+h)sin(1+h-[1+h]))/((1+h)-1)=underset(hto0)lim((1+h)sinh)/(h)=1`
Hence, the limit does not exist.
435.

If `lim_(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3)`, then the value of bc is _________.A. `a=2`B. `a=1`C. `L=(1)/(64)`D. L=(1)/(32)`

Answer» Correct Answer - `(3)`
`underset(xto1)lim(1+as+bx^(2))^((e)/(x-1))=e^(3)`
or `e^(underset(xto1)lim(1+as+bx^(2)-1)^((e)/(x-1)))=e^(3)`
or `e^(underset(xto1)lim(c(ax+bx^(2)))/(x-1))=e^(3)`
or `underset(xto1)lim(c(ax+bx^(2)))/(x-1)=3`
or `underset(hto0)lim(c"("a(1+h)+b(1+h)^(2)")")/(1+h-1)=3`
or`underset(hto0)lim((ca+b)+(ac+2b)h+bh^(2))/(h)=3`
or`ca+b=0 " and "ac+2b=3`
or `b=3" and "ac=-3`
Also, the form must be `1^(oo)` for which a+b=0, i.e.,a=-3" and "c=1`.
436.

`lim_(xto1) [cosec(pix)/(2)]^(1//(1-x))` (where `[.]` represents the greatest integer function) is equal toA. (i) exists, (ii) does not existB. (i) does not exist, (ii) existsC. both (i) and (ii) existD. neither (i) nor (ii) exists

Answer» Correct Answer - B
`cosec(pix)/(2)to1^(+)" when "xto1`
or`[cosec(pix)/(2)]=1
`:." ""limit "=1`
437.

Let `lim_(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a)`. Then the value of `f(4)` is_________.A. `+-(pi)/(4)`B. `+-(pi)/(3)`C. `+-(pi)/(6)`D. `+-(pi)/(2)`

Answer» Correct Answer - `(6)`
Put `x=1+h`. Then,
`f(a)=underset(hto0)lim((1+h)^(a)-a(1+h)+a-1)/(h^(2))`
`=underset(hto0)lim((1+ah+(a(a-1))/(2!)h^(2)+...)-a-ah+a-1)/(h^(2))`
`:.f(a)=(a(a-1))/(2)`
`:.f(4)=6`
438.

Let `m` and `n` be two positive integers greater than 1. If `lim_(ato0) (e^(cos(alpha^(n)))-e)/(alpha^(m))=-(e)/(2),`then the value of `(m)/(n)` is ___________.

Answer» Correct Answer - `(2)`
`mge2" and "nge2`
`underset(alphato0)lim(e^(cos(alpha^(n)))-e)/(alpha^(m))`
`=exxunderset(alphato0)lim(e^(cos(alpha^(n))-1)-1)/(cos(alpha^(n))-1)xx((cos(alpha^(n))-1)/((alpha^(n))^(2)))(alpha^(2n))/(alpha^(m))`
`=exxunderset(alphato0)lim((e^(cos(alpha^(n))-1)-1)/(cos(alpha^(n))-1))xxunderset(alphato0)lim((cos(alpha^(n))-1)/((alpha^(2n))))xxunderset(alphato0)limalpha^(2n-m)`
`=exx1xxunderset(alphato0)lim(-2"sin"^(2)(alpha^(n))/(2))/(alpha^(2n))xxunderset(alphato0)limalpha^(2n-m)`
`=exx1xx(-(1)/(2))xxunderset(alphato0)limalpha^(2n-m)`
Now, `underset(alphato0)limalpha^(2n-m)` must be equal to 1.
i.e., `2n-m=0`
or `(m)/(n)=2`
439.

Evaluate `lim_(xtooo)[(x^(4)sin((1)/(x))+x^(2))/((1+|x|^(3)))].`

Answer» `underset(xtooo)lim[(x^(4)sin((1)/(x))+x^(2))/((1-x^(3)))]" "`(as x is negative)
`=underset(xtooo)lim[(xsin((1)/(x))+1/x)/(1/x^(3)-1)]`
`underset(xtooo)lim[(sin((1)/(x))/((1)/x)+(1)/(x))/((1)/(x^(3))-1)]`
`=(1+0)/(0-1)=-1`
440.

Evaluate `lim_(x to oo) x("tan"^(-1)(x+1)/(x+4)-(pi)/(4)).`

Answer» We have `underset(xtooo)limx("tan"^(-1)(x+1)/(x+4)-(pi)/(4))`
`=underset(xtooo)limx("tan"^(-1)(x+1)/(x+4)-tan^(-1)1)`
`=underset(xtooo)limxtan^(-1)(((x+1)/(x+4)-1)/(1+(x+1)/(x+4)))`
`=underset(xtooo)limxtan^(-1)((-3)/(2x+5))`
`=underset(xtooo)lim{(tan^(-1)((-3)/(2x+5)))/((-3)/(2x+5))}((-3)/(2x+5))`
`=underset(xtooo)lim{(tan^(-1)((-3)/(2x+5)))/((-3)/(2x+5))}underset(xtooo)lim((-3)/(2x+5))`
`=1xxunderset(xtooo)lim((-3)/(2+(5)/(x)))=1xx((-3)/(2))=-(3)/(2)`
441.

The largest value of the non-negative integer a for which `lim_(xto1) {(-ax+sin(x-1)+a)/(x+sin(x-1)a)}^((1-x)/(1-sqrt(x)))=(1)/(4)` is ___________.

Answer» Correct Answer - `(2)`
`underset(xto1)lim{(-ax+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=(1)/(4)`
`implies" "underset(xto1)lim{((sin(x-1))/((x-1))-a)/((sin(x-1))/((x-1))+1)}^(1+sqrt(x))=(1)/(4)`
`implies" "((1-a)/(2))^(1)=(1)/(4)`
`implies" "a=0,a=2`
442.

Evaluate `lim_(xto0)(tanx-sinx)/(x^(3)).`

Answer» We have `underset(xto0)lim(tanx-sinx)/(x^(3))" "`(0/0 form)
`=underset(xto0)lim((sinx-sinxcosx)/(x^(3)cosx))`
`=underset(xto0)lim{(sinx(1-cosx))/(x^(3)cosx)}=underset(xto0)lim{(sinx)/(x)(1-cosx)/(x^(2))(1)/(cosx)}`
`={underset(xto0)lim(sinx)/(x)}{underset(xto0)lim(2"sin"^(2)(x)/(2))/(((x)/(2))xx4)}underset(xto0)lim(1)/(cosx)`
`={underset(xto0)lim(sinx)/(x)}1/2{underset(xto0)lim((sin(x/2))/((x)/2))^(2)}underset(xto0)lim(1)/(cosx)`
`=1xx1/2(1)^(2)xx1/2=1/2`
443.

If `lim_(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0`, then `a+b` is equal toA. 36B. 37C. 38D. 40

Answer» Correct Answer - B
`underset(xrarr0)(lim)(x^(3))/(sqrt(a+x)(bx-sinx))=1`
`rArr" "underset(xrarr0)(lim)(x^(3))/(sqrta(bx-sinx))=1`
`rArr" "underset(hrarr0)(lim)(3x^(2))/(sqrta(b-cos x))=1`
`therefore" "b=1`
`therefore" "l=underset(xrarr0)(lim)(3x^(2))/(sqrta(1-cosx))`
`" "=underset(xrarr0)(lim)(3x^(2))/(sqrta 2sin^(2).(x)/(2))=(6)/(sqrta)`
`therefore" "a=26`
Thus `a+b=37`
444.

Evaluate `lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))`

Answer» Correct Answer - 1
`underset(xto0)lim(e^(x)+e^(-x)-2)/(x^(2))" "`(form 0/0)
`=underset(xto0)lim(1)/(e^(x))((e^(x)-1)/(x))^(2)`
=1
445.

`lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)`

Answer» Correct Answer - `-12ln2xxln3`
`underset(xto0)lim((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)`
`=underset(xto0)lim((3^(x)-1)(4^(x)-1))/(sqrt((2cosx+7))-3)`
`=underset(xto0)lim((3^(x)-1)(4^(x)-1)(sqrt(2cosx+7))+3)/((2cosx+7-9))`
`=underset(xto0)lim(((3^(x)-1))/(x)xx((4^(x)-1))/(x)(sqrt((2cosx+7))+3))/((-2(1-cosx))/(x^(2)))`
`=(("1n "3)("1n "4)6)/(-2xx(1)/(2))=-6" 1n "3xx" 1n "4`
`=-12" 1n "2xx" 1n "3`
446.

`lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx)` is equal toA. `underset(xto0)limf(x)` exists for `ngt0`B. `underset(xto0)limf(x)` does not exists for `nlt0`C. `underset(xto0)limf(x)` does not exists for any value of nD. `underset(xto0)limf(x)` exists for any value of n

Answer» Correct Answer - C
`underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx)=underset(xto0)lim((1+tanx)^((1)/(sinx)))/((1+sinx)^((1)/(sinx)))`
`=(underset(xto0)lim((1+tanx)^((1)/(tanx)))^((1)/(cosx)))/((1+sinx)^((1)/(sinx)))`
`=(e^((1)/(cos0)))/(e)=1`
447.

If `lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1`, then the value of `p` is___________.

Answer» Correct Answer - `(1)`
`underset(xto0)lim(p sin2x+(1-cos2x))/(x+tanx)=1`
`implies" "underset(xto0)lim(2p((sin2x)/(2x))+((1-cos2x)/(x)))/(1+(tanx)/(x))=1`
`implies" "(2p+0)/(1+1)=1`
`implies" "p=1`
448.

Let `f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x))` for `x!=1`

Answer» Correct Answer - C::D
`f(1^(+))=underset(hto0)lim(1-(1+h)(1+h))/(h)"cos"(1)/(h)`
`=underset(hto0)lim(-h^(2)-2h)/(h)"cos"(1)/(h)=underset(hto0)lim(-h-2)"cos"(1)/(h)`
Thus, `underset(xto1^(+))limf(x)` does nto exist.
`f(1^(-))=underset(hto0)lim(1-(1-h))/(h)"cos"(1)/(h)`
`=underset(hto0)lim(-1(1-h^(2)))/(h)"cos"(1)/(h)``=underset(hto0)lim(h^(2))/(h)"cos"(1)/(h)=underset(hto0)lim h"cos"(1)/(h)=0`
449.

Evaluate `lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0`

Answer» Correct Answer - `ln a`
`underset(xto0)lima^(sinx)xx((a^(tanx-sinx)-1))/((tanx-sinx))=a^(0)" 1n "a=" 1n "a`
450.

Let`L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0`. If L is finite, then

Answer» Correct Answer - A::C
`L=underset(xto0)lim(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4))`
`=underset(xto0)lim((1)/(x^(2)(a+sqrt(a^(2)-x^(2))))-(1)/(4x^(2)))`
`=underset(xto0)lim((4-a)-sqrt(a^(2)-x^(2)))/(4x^(2)(a+sqrt(a^(2)-x^(2))))`
Numerator` to" if "a=2` and then `L=(1)/(64)`.